Равносторонний треугольник углы равны

Углы равностороннего треугольника

Чему равны углы равностороннего треугольника?

(свойство углов равностороннего треугольника)

Все углы равностороннего треугольника равны по 60º.

Аналогично, так как AC=BC, ∠A=∠B.

Отсюда следует, что в равностороннем треугольнике все углы равны между собой: ∠A=∠B=∠C

Так как сумма углов треугольника равна 180º, то ∠A=∠B=∠C=180º:3=60º, то есть каждый угол равностороннего треугольника равен 60º.

Что и требовалось доказать .

Тот факт, что все углы равностороннего треугольника равны между собой, можно рассмотреть также как следствие из теоремы о соотношении между сторонами и углами треугольника. В треугольнике напротив большей стороны лежит больший угол, напротив меньшей стороны — меньший угол. Так как все три стороны правильного треугольника равны, то и все углы тоже равны.

Содержание
  1. Свойства равностороннего треугольника: теория и пример задачи
  2. Определение равностороннего треугольника
  3. Свойства равностороннего треугольника
  4. Свойство 1
  5. Свойство 2
  6. Свойство 3
  7. Свойство 4
  8. Свойство 5
  9. Свойство 6
  10. Пример задачи
  11. Треугольник
  12. Типы треугольников
  13. По величине углов
  14. Остроугольный треугольник
  15. Тупоугольный треугольник
  16. Прямоугольный треугольник
  17. По числу равных сторон
  18. Разносторонний треугольник
  19. Равнобедренный треугольник
  20. Равносторонний (правильный) треугольник
  21. Вершины, углы и стороны треугольника
  22. Свойства углов и сторон треугольника
  23. Сумма углов треугольника равна 180°
  24. В треугольнике против большей стороны лежит больший угол, и обратно. Против равных сторон лежат равные углы
  25. Сумма длин двух любых сторон треугольника больше длины оставшейся стороны
  26. Теорема синусов
  27. Теорема косинусов
  28. Теорема о проекциях
  29. Формулы для вычисления длин сторон треугольника
  30. Формулы сторон через медианы
  31. Медианы треугольника
  32. Свойства медиан треугольника
  33. Формулы медиан треугольника
  34. Формулы медиан треугольника через стороны
  35. Биссектрисы треугольника
  36. Свойства биссектрис треугольника
  37. Формулы биссектрис треугольника
  38. Формулы биссектрис треугольника через стороны
  39. Формулы биссектрис треугольника через две стороны и угол
  40. Высоты треугольника
  41. Свойства высот треугольника
  42. Формулы высот треугольника
  43. Формулы высот треугольника через сторону и угол
  44. Формулы высот треугольника через сторону и площадь
  45. Формулы высот треугольника через две стороны и радиус описанной окружности
  46. Окружность вписанная в треугольник
  47. Свойства окружности вписанной в треугольник
  48. Формулы радиуса окружности вписанной в треугольник
  49. Радиус вписанной в треугольник окружности равен отношению площади треугольника к его полупериметру
  50. Радиус вписанной в треугольник окружности через три стороны
  51. Формулы высот треугольника через две стороны и радиус описанной окружности
  52. Окружность описанная вокруг треугольника
  53. Свойства окружности описанной вокруг треугольника
  54. Свойства углов
  55. Формулы радиуса окружности описанной вокруг треугольника
  56. Радиус описанной окружности через три стороны и площадь
  57. Радиус описанной окружности через площадь и три угла
  58. Радиус описанной окружности через сторону и противоположный угол (теорема синусов)
  59. Связь между вписанной и описанной окружностями треугольника
  60. Формулы радиуса окружности описанной вокруг треугольника
  61. Радиус описанной окружности через площадь и три угла
  62. Средняя линия треугольника
  63. Свойства средней линии треугольника
  64. Признаки
  65. Периметр треугольника
  66. Формулы площади треугольника
  67. Формула площади треугольника по стороне и высоте
  68. Формула площади треугольника по трем сторонам
  69. Формула площади треугольника по двум сторонам и углу между ними
  70. Формула площади треугольника по трем сторонам и радиусу описанной окружности
  71. Формула площади треугольника по трем сторонам и радиусу вписанной окружности
  72. Равенство треугольников
  73. Определение
  74. Свойства
  75. Признаки равенства треугольников
  76. По двум сторонам и углу между ними
  77. По стороне и двум прилежащим углам
  78. По трем сторонам
  79. Подобие треугольников
  80. Определение
  81. Признаки подобия треугольников
  82. Свойства
  83. Прямоугольные треугольники
  84. Свойства прямоугольного треугольника
  85. Признаки равенства прямоугольных треугольников
  86. Свойства
  87. 💥 Видео

Видео:Равнобедренный треугольник. Свойства равнобедренного треугольника | Математика | TutorOnlineСкачать

Равнобедренный треугольник. Свойства равнобедренного треугольника | Математика | TutorOnline

Свойства равностороннего треугольника: теория и пример задачи

В данной статье мы рассмотрим определение и свойства равностороннего (правильного) треугольника. Также разберем пример решения задачи для закрепления теоретического материала.

Видео:7 класс, 18 урок, Свойства равнобедренного треугольникаСкачать

7 класс, 18 урок, Свойства равнобедренного треугольника

Определение равностороннего треугольника

Равносторонним (или правильным) называется треугольник, в котором все стороны имеют одинаковую длину. Т.е. AB = BC = AC.

Равносторонний треугольник углы равны

Примечание: правильный многоугольник – это выпуклый многоугольник, имеющий равные стороны и углы между ними.

Видео:№116. Докажите, что в равностороннем треугольнике все углы равны.Скачать

№116. Докажите, что в равностороннем треугольнике все углы равны.

Свойства равностороннего треугольника

Свойство 1

В равностороннем треугольнике все углы равны 60°. Т.е. α = β = γ = 60°.

Равносторонний треугольник углы равны

Свойство 2

В равностороннем треугольнике высота, проведенная к любой из сторон, одновременно является биссектрисой угла, из которого она проведена, а также медианой и серединным перпендикуляром.

Равносторонний треугольник углы равны

CD – медиана, высота и серединный перпендикуляр к стороне AB, а также биссектриса угла ACB.

Свойство 3

В равностороннем треугольнике биссектрисы, медианы, высоты и серединные перпендикуляры, проведенные ко всем сторонам, пересекаются в одной точке.

Равносторонний треугольник углы равны

Свойство 4

Центры вписанной и описанной вокруг равностороннего треугольника окружностей совпадают и находятся на пересечении медиан, высот, биссектрис и серединных перпендикуляров.

Равносторонний треугольник углы равны

Свойство 5

Радиус описанной вокруг равностороннего треугольника окружности в 2 раза больше радиуса вписанной окружности.

Равносторонний треугольник углы равны

  • R – радиус описанной окружности;
  • r – радиус вписанной окружности;
  • R = 2r.

Свойство 6

В равностороннем треугольнике, зная длину стороны (условно примем ее за “a”), можно вычислить:

1. Высоту/медиану/биссектрису:
Равносторонний треугольник углы равны

2. Радиус вписанной окружности:
Равносторонний треугольник углы равны

3. Радиус описанной окружности:
Равносторонний треугольник углы равны

4. Периметр:
Равносторонний треугольник углы равны

5. Площадь:
Равносторонний треугольник углы равны

Видео:Признаки равенства треугольников | теорема пифагора | Математика | TutorOnlineСкачать

Признаки равенства треугольников | теорема пифагора | Математика | TutorOnline

Пример задачи

Дан равносторонний треугольник, сторона которого равна 7 см. Найдите радиус описанной вокруг и вписанной окружности, а также, высоту фигуры.

Решение
Применим формулы, приведеные выше, для нахождения неизвестных величин:

Видео:Геометрия 7 класс (Урок№13 - Равнобедренный треугольник.)Скачать

Геометрия 7 класс (Урок№13 - Равнобедренный треугольник.)

Треугольник

Треугольник — фигура, которая состоит из трёх точек, не лежащих на одной прямой, и трёх отрезков, попарно соединяющих эти точки. Точки называются вершинами треугольника, а отрезки — его сторонами.

Видео:Геометрия. 7 класс. Теоремы. Т5. Первое свойство равнобедренного треугольника.Скачать

Геометрия. 7 класс. Теоремы. Т5. Первое свойство равнобедренного треугольника.

Типы треугольников

Равносторонний треугольник углы равны

По величине углов

Остроугольный треугольник

Равносторонний треугольник углы равны

— все углы треугольника острые.

Тупоугольный треугольник

Равносторонний треугольник углы равны

— один из углов треугольника тупой (больше 90°).

Прямоугольный треугольник

Равносторонний треугольник углы равны

— один из углов треугольника прямой (равен 90°).

По числу равных сторон

Разносторонний треугольник

Равносторонний треугольник углы равны

— все три стороны не равны.

Равнобедренный треугольник

Равносторонний треугольник углы равны

— две стороны равны.

Равносторонний (правильный) треугольник

Равносторонний треугольник углы равны

— все три стороны равны.

Видео:Равнобедренный треугольник. 7 класс.Скачать

Равнобедренный треугольник. 7 класс.

Вершины, углы и стороны треугольника

Равносторонний треугольник углы равны

Свойства углов и сторон треугольника

Сумма углов треугольника равна 180°

В треугольнике против большей стороны лежит больший угол, и обратно. Против равных сторон лежат равные углы

  • если α > β , тогда a > b
  • если α = β , тогда a = b

Сумма длин двух любых сторон треугольника больше длины оставшейся стороны

Теорема синусов

Стороны треугольника пропорциональны синусам противолежащих углов.

a sin α = b sin β = c sin γ

Теорема косинусов

Квадрат любой стороны треугольника равен сумме квадратов двух других сторон без удвоенного произведение этих сторон на косинус угла между ними.

a 2 = b 2 + c 2 — 2 b c · cos α
b 2 = a 2 + c 2 — 2 a c · cos β
c 2 = a 2 + b 2 — 2 a b · cos γ

Теорема о проекциях

Для остроугольного треугольника:

a = b cos γ + c cos β
b = a cos γ + c cos α;
c = a cos β + b cos α;

Формулы для вычисления длин сторон треугольника

Формулы сторон через медианы

a = 2 3 2 m b 2 + m c 2 — m a 2

b = 2 3 2 m a 2 + m c 2 — m b 2

c = 2 3 2 m a 2 + m b 2 — m c 2

Видео:Геометрия Равносторонний треугольникСкачать

Геометрия  Равносторонний треугольник

Медианы треугольника

Медиана треугольника — отрезок внутри треугольника, который соединяет вершину треугольника с серединой противоположной стороны.

Равносторонний треугольник углы равны

Свойства медиан треугольника

  1. Медианы треугольника пересекаются в одной точке. Точка пересечения медиан называется центроидом.

В точке пересечения медианы треугольника делятся в отношении два к одному (2:1)
AO OD = BO OE = CO OF = 2 1

Медиана треугольника делит треугольник на две равновеликие части

Треугольник делится тремя медианами на шесть равновеликих треугольников

S ∆AOF = S ∆AOE = S ∆BOF = S ∆BOD = S ∆COD = S ∆COE

  • Из векторов, образующих медианы, можно составить треугольник
  • Формулы медиан треугольника

    Формулы медиан треугольника через стороны

    m a = 1 2 2 b 2 + 2 c 2 — a 2

    m b = 1 2 2 a 2 + 2 c 2 — b 2

    m c = 1 2 2 a 2 + 2 b 2 — c 2

    Видео:Геометрия 7 класс (Урок№9 - Треугольник.)Скачать

    Геометрия 7 класс (Урок№9 - Треугольник.)

    Биссектрисы треугольника

    Биссектриса угла — луч с началом в вершине угла, делящий угол на два равных угла.

    Равносторонний треугольник углы равны

    Свойства биссектрис треугольника

    1. Биссектрисы треугольника пересекаются в одной точке, равноудаленной от трех сторон треугольника, — центре вписанной окружности.

    Биссектриса треугольника делит противолежащую сторону на отрезки, пропорциональные прилежащим сторонам треугольника
    AE AB = EC BC

    Угол между биссектрисами внутреннего и внешнего углов треугольника при одной вершине равен 90°

    Угол между l c и l c ‘ = 90°

  • Если в треугольнике две биссектрисы равны, то треугольник — равнобедренный.
  • Формулы биссектрис треугольника

    Формулы биссектрис треугольника через стороны

    l a = 2 b c p p — a b + c

    l b = 2 a c p p — b a + c

    l c = 2 a b p p — c a + b

    где p = a + b + c 2 — полупериметр треугольника.

    Формулы биссектрис треугольника через две стороны и угол

    l a = 2 b c cos α 2 b + c

    l b = 2 a c cos β 2 a + c

    l c = 2 a b cos γ 2 a + b

    Видео:Высота, биссектриса, медиана. 7 класс.Скачать

    Высота, биссектриса, медиана. 7 класс.

    Высоты треугольника

    Равносторонний треугольник углы равны

    Высота треугольника — это перпендикуляр, опущенный из вершины треугольника на прямую содержащую противоположную сторону.

    В зависимости от типа треугольника высота может содержаться:

    • внутри треугольника — для остроугольного треугольника;
    • совпадать с его стороной — для катета прямоугольного треугольника;
    • проходить вне треугольника — для острых углов тупоугольного треугольника.

    Свойства высот треугольника

    1. Высоты треугольника пересекаются в одной точке, называемой ортоцентром треугольника.

  • Если в треугольнике две высоты равны, то треугольник — равнобедренный.
  • h a : h b : h c = 1 a : 1 b : 1 c = BC : AC : AB

    1 h a : 1 h b : 1 h c = 1 r

    Формулы высот треугольника

    Формулы высот треугольника через сторону и угол

    h a = b sin γ = c sin β

    h b = c sin α = a sin γ

    h c = a sin β = b sin α

    Формулы высот треугольника через сторону и площадь

    Формулы высот треугольника через две стороны и радиус описанной окружности

    Видео:Признаки равенства треугольников. 7 класс.Скачать

    Признаки равенства треугольников. 7 класс.

    Окружность вписанная в треугольник

    Окружность называется вписанной в треугольник, если она касается всех трех его сторон.

    Равносторонний треугольник углы равны

    Свойства окружности вписанной в треугольник

    • Центр вписанной в треугольник окружности лежит на пересечении биссектрис внутренних углов треугольника.
    • В любой треугольник можно вписать окружность, и только одну.

    Формулы радиуса окружности вписанной в треугольник

    Радиус вписанной в треугольник окружности равен отношению площади треугольника к его полупериметру

    Радиус вписанной в треугольник окружности через три стороны

    Формулы высот треугольника через две стороны и радиус описанной окружности

    Видео:7 кл г. Теорема: «катет лежавший напротив угла в 30 градусов равен половине гипотенузы»Скачать

    7 кл г. Теорема: «катет лежавший напротив угла в 30 градусов равен половине гипотенузы»

    Окружность описанная вокруг треугольника

    Окружность называется описанной вокруг треугольника, если она содержит все вершины треугльника.

    Равносторонний треугольник углы равны

    Свойства окружности описанной вокруг треугольника

    • Центр описанной вокруг треугольника окружности лежит на пересечении серединных перпендикуляров к его сторонам.
    • Вокруг любого треугольника можно описать окружность, и только одну.

    Свойства углов

    Центр описанной окружности лежит внутри остроугольного треугольника, снаружи тупоугольнго треугольника, на середине гипотенузы прямоугольного треугольника.

    Формулы радиуса окружности описанной вокруг треугольника

    Радиус описанной окружности через три стороны и площадь

    Радиус описанной окружности через площадь и три угла

    Радиус описанной окружности через сторону и противоположный угол (теорема синусов)

    Видео:№225. Докажите, что каждый угол равностороннего треугольника равен 60°.Скачать

    №225. Докажите, что каждый угол равностороннего треугольника равен 60°.

    Связь между вписанной и описанной окружностями треугольника

    Равносторонний треугольник углы равны

    Формулы радиуса окружности описанной вокруг треугольника

    Если d — расстояние между центрами вписанной и описанной окружностей, то

    d 2 = R 2 — 2 R r

    Радиус описанной окружности через площадь и три угла

    Видео:Геометрия 7 класс (Урок№32 - Повторение. Равнобедренный треугольник и его свойства.)Скачать

    Геометрия 7 класс (Урок№32 - Повторение. Равнобедренный треугольник и его свойства.)

    Средняя линия треугольника

    Средняя линия треугольника — отрезок, соединяющий середины двух сторон треугольника.

    Равносторонний треугольник углы равны

    Свойства средней линии треугольника

    • Любой треугольник имеет три средних линии.
    • Средняя линия треугольника параллельна основанию и равна его половине.
      MN = 1 2 AC ; KN = 1 2 AB ; KM = 1 2 BC

    MN || AC ; KN || AB ; KM || BC

  • Средняя линия отсекает треугольник, подобный данному, площадь которого равна четвёрти площади исходного треугольника.
    S ∆MBN = 1 4 S ∆ABC ; S ∆MAK = 1 4 S ∆ABC ; S ∆NCK = 1 4 S ∆ABC
  • При пересечении всех трёх средних линий образуются 4 равных треугольника, подобных (даже гомотетичных) исходному с коэффициентом 1/2.
    ∆MBN

    Признаки

    Если отрезок параллелен одной из сторон треугольника и соединяет середину стороны треугольника с точкой, лежащей на другой стороне треугольника, то этот отрезок — средняя линия.

    Видео:7 класс, 17 урок, Медианы, биссектрисы и высоты треугольникаСкачать

    7 класс, 17 урок, Медианы, биссектрисы и высоты треугольника

    Периметр треугольника

    Равносторонний треугольник углы равны

    Периметр треугольника ∆ABC равен сумме длин его сторон.

    Видео:№228. Найдите углы равнобедренного треугольника, если один из его углов равен: а) 40°Скачать

    №228. Найдите углы равнобедренного треугольника, если один из его углов равен: а) 40°

    Формулы площади треугольника

    Равносторонний треугольник углы равны

    Формула площади треугольника по стороне и высоте

    Равносторонний треугольник углы равны

    Площадь треугольника равна половине произведения длины стороны треугольника на длину проведенной к этой стороне высоты.

    S = 1 2 a · h a ,
    S = 1 2 b · h b ,
    S = 1 2 c · h c ,

    где a, b, c — стороны треугольника,
    ha, hb, hc — высоты, проведенные к сторонам a, b, c треугольника.

    Формула площади треугольника по трем сторонам

    Равносторонний треугольник углы равны

    Формула Герона формула для вычисления площади треугольника S по длинам его сторон a, b, c .

    S = p p — a p — b p — c ,

    где p — полупериметр треугольника: p = a + b + c 2
    a, b, c — стороны треугольника.

    Формула площади треугольника по двум сторонам и углу между ними

    Равносторонний треугольник углы равны

    Площадь треугольника равна половине произведения двух его сторон умноженного на синус угла между ними.

    S = 1 2 a · b · sin γ ,
    S = 1 2 b · c · sin α ,
    S = 1 2 a · c · sin β ,

    где a, b, c — стороны треугольника,
    γ — угол между сторонами a и b ,
    α — угол между сторонами b и c ,
    β — угол между сторонами a и c .

    Формула площади треугольника по трем сторонам и радиусу описанной окружности

    a, b, c — стороны треугольника,
    R — радиус описанной окружности.

    Формула площади треугольника по трем сторонам и радиусу вписанной окружности

    Равносторонний треугольник углы равны

    Площадь треугольника равна произведения полупериметра треугольника на радиус вписанной окружности.

    где S — площадь треугольника,
    r — радиус вписанной окружности,
    p — полупериметр треугольника: p = a + b + c 2

    Видео:Известна биссектриса равностороннего треугольника. Найти сторону этого треугольника. ОГЭ №16Скачать

    Известна биссектриса равностороннего треугольника. Найти сторону этого треугольника. ОГЭ №16

    Равенство треугольников

    Равносторонний треугольник углы равны

    Определение

    Если два треугольника АВС и А1В1С1 можно совместить наложением, то они равны.

    Свойства

    У равных треугольников равны и их соответствующие элементы. (В равных треугольниках против равных сторон лежат равные углы, против равных углов лежат равные стороны).

    Признаки равенства треугольников

    По двум сторонам и углу между ними

    Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны.

    По стороне и двум прилежащим углам

    Если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника, то такие треугольники равны.

    По трем сторонам

    Если три стороны одного треугольника соответственно равны трем сторонам другого треугольника, то такие треугольники равны.

    Видео:ОГЭ 16🔴Скачать

    ОГЭ 16🔴

    Подобие треугольников

    Равносторонний треугольник углы равны

    Определение

    Подобные треугольники — треугольники, у которых углы соответственно равны, а стороны одного соответственно пропорциональны сторонам другого треугольника.

    ∆MNK => α = α 1 , β = β 1 , γ = γ 1 и AB MN = BC NK = AC MK = k

    где k — коэффициент подобия.

    Признаки подобия треугольников

    1. Если два угла одного треугольника соответственно равны двум углам другого, то такие треугольники подобны.
    2. Если три стороны одного треугольника пропорциональны трем сторонам другого, то такие треугольники подобны.
    3. Если две стороны одного треугольника пропорциональны двум сторонам другого, а углы, между этими сторонами, равны, то такие треугольники подобны.

    Свойства

    Площади подобных треугольников относятся как квадрат коэффициента подобия:

    S ∆АВС S ∆MNK = k 2

    Видео:Равносторонний треугольник в окружностиСкачать

    Равносторонний треугольник в окружности

    Прямоугольные треугольники

    Прямоугольный треугольник — треугольник, в котором один угол прямой (то есть равен 90˚).

    Свойства прямоугольного треугольника

    • Равносторонний треугольник углы равны Сумма двух острых углов прямоугольного треугольника равна 90°.
      Сумма углов треугольника равна 180°, а прямой угол равен 90°, поэтому сумма двух острых углов прямоугольного треугольника ∠ 1 + ∠ 2 = 90° .
    • Равносторонний треугольник углы равны

    Катет прямоугольного треугольника, лежащий против угла в 30°, равен половине гипотенузы (гипотенуза в два раза длиннее катета, лежащего против угла в 30°).

    Рассмотрим прямоугольный треугольник ABC, в котором ∠ A — прямой, ∠ B = 30°, и значит, что ∠ C = 60°.

    Докажем, что BC=2AC.
    Приложим к треугольнику ABC равный ему треугольник ABD , как показано на рисунке.
    Получим треугольник BCD, в котором ∠ B = ∠ D = 60° , поэтому DC = BC. Но DC = 2AC. Следовательно, BC = 2AC.

    Справедливо и обратное суждение: Если катет прямоугольного треугольника равен половине гипотенузы (или гипотенуза в два раза длиннее катета), то угол, лежащий против этого катета, равен 30°.

    Признаки равенства прямоугольных треугольников

    Так как в прямоугольном треугольнике угол между двумя катетами — прямой, а любые два прямых угла равны, то из общих признаков равенства треугольников для прямоугольных треугольников можно сформулировать свои признаки равенства.

    1. Если катеты одного прямоугольного треугольника соответственно равны катетам другого, то такие треугольники равны.
    2. Если катет и прилежащий к нему острый угол одного прямоугольного треугольника соответственно равны катету и прилежащему к нему острому углу другого, то такие треугольники равны.
    3. Если гипотенуза и острый угол одного прямоугольного треугольника соответственно равны гипотенузе и острому углу другого, то такие треугольники равны.
    4. Если гипотенуза и катет одного прямоугольного треугольника соответственно равны гипотенузе и катету другого, то такие треугольники равны.

    Свойства

    Площади подобных треугольников относятся как квадрат коэффициента подобия:

    💥 Видео

    Свойства равнобедренного треугольника. 7 класс.Скачать

    Свойства равнобедренного треугольника. 7 класс.
  • Поделиться или сохранить к себе: