Объём параллелепипеда равен смешанному произведению векторов на которых он построен:
Поскольку смешанное произведение векторов, может быть отрицательным числом, а объём геометрического тела — всегда число положительное, то при вычислении объёма параллелепипеда, построенного на векторах, результат смешанного произведения берется по модулю:
Таким образом, для того, чтобы вычислить объём параллелепипеда, построенного на векторах, нужно найти смешанное произведение данных векторов, и полученный результат взять по модулю.
Наш онлайн калькулятор, найдет площадь параллелепипеда с описанием подробного хода решения на русском языке.
Видео:Площадь параллелограмма, построенного на данных векторахСкачать
Смешанное, векторное и скалярное произведение векторов
Задача:
Дан параллелепипед ABCDA1B1C1D1, построен на векторах AB(4,3,0), AD(2,1,2) и AA1(-3,-2,5).
Найти:
Решение:
- а) Объем параллелепипеда будем искать через смешанное произведение векторов (AB AD AA1). Мы знаем, что модуль смешанного произведения векторов равен объему параллелепипеда, построенному на этих векторах.
(AB AD AA1) | = |
| = | 20 — 18 + 0 — 0 — 30 + 16 | = | -12 | . |
---|
Мы нашли смешанное произведение, ещё надо его взять по модулю и найдём объем параллелепипеда:
VABCDA1B1C1D1=12.
б) Площадь, как мы уже знаем, можно искать через векторное произведение векторов. Грань ABCD построена на векторах AB и AD, найдём их векторное произведение. SABCD= |[AB AD]|.
[AB AD] | = |
| = | 6i — 8j — 2k | , |
---|
Теперь найдём модуль этого вектора:
SABCD= |[AB AD]|=√ | (36+64+4) | =2√(26). |
---|
[AD AA1] | = |
| = | 9i — 16j — k | , |
---|
SADD1A1= |[AD AA1]|=√(81+256+1)=13√2.
h | = |
| = |
| = |
| = |
| . |
---|
cos(λ1) | = |
| . |
---|
Координаты вектора AB мы имеем, от вектор B1D надо найти. Для этого используем следующую формулу:
B1D = B1A1 + A1A + AD = — AB — AA1 + AD1 = — (4, 3, 0) — (-3, -2, 5) + (2, 1, 2); (Не забывайте, что всё это векторы, надо сложить их соответствующие координаты. )
Сделав вычисления по этой формуле, мы найдём, что вектор B1D имеет координаты (1, 0, -3). Теперь надо найти длину векторов AB и B1D:
|AB|=√(16+9+0)=5, |B1D|=√(1+0+9)=√(10).
Найдём скалярное произведение векторов AB и B1D, (AB B1D)=4*1 + 3*0 + 0*(-3)=4.
Теперь, имея все данные мы можем подставить их в нашу формулу:
cos(λ1) | = |
| = |
| . |
---|
д) Что бы найти cos(λ2), мы используем то, что угол между двумя плоскостями равен углу между перпендикулярами до этих плоскостей. А как мы знаем, векторное произведение — это и есть перпендикуляр до плоскости перемножаемых векторов. Поэтому в роле перпендикуляра к плоскости ADD1A1 мы можем взять вектор [AD AA1], который мы нашли в пункте б), и знаем, что его координаты (9, -16, -1), точно также и для плоскости ABCD — вектор [AB AD] с координатами (6, -8, -2).
Теперь нам остаётся, как в предыдущем варианте найти только косинус угла между двумя векторами, координаты которых нам известны.
cos(λ2) | = |
| = |
| . |
---|
Вот таким не хитрым способом мы и нашли косинус угла между гранями ABCD и ADD1A1.
Видео:§20 Нахождение объёма параллелипипедаСкачать
Найти объем и высоту параллелепипеда построенного на векторах
№ 1
Найти объём параллелепипеда, построенного на векторах , , .
Решение
Объём параллелепипеда, построенного на векторах a, b, c численно равен модулю смешанного произведения этих векторов.
V = | abc |
V = | -7 | = 7
№ 2
Найти объём пирамиды, построенной на векторах , , .
Решение
Объём пирамиды, построенной на векторах a, b, c равен 1/6 объёма параллелепипеда, построенного на этих векторах.
Объём параллелепипеда, построенного на векторах a, b, c численно равен модулю смешанного произведения этих векторов.
V = | abc |/6
V = | -7 | /6= 7/6
№ 3
Найти объём тетраэдра ABCD.
Решение
Построим векторы AB, AC, AD.
, , .
Объём тетраэдра, построенного на векторах AB, AC, AD равен 1/6 объёма параллелепипеда, построенного на этих векторах.
Объём параллелепипеда, построенного на векторах AB, AC, AD численно равен модулю смешанного произведения этих векторов.
V = | AB · AC· AD |/6
V = | 12 | /6 = 12/6 = 2
🎥 Видео
Найдите площадь параллелограмма, построенного на векторахСкачать
Даны вершины пирамиды A, B, C, D. Найдите объём пирамиды и высоту, опущенную на грань ACDСкачать
Решение, найти высоту параллелепипеда, построенного на векторах a, b, c пример 17 Высшая математикаСкачать
Математика без Ху!ни. Смешанное произведение векторовСкачать
Найти высоту параллелепипеда, построенного на векторах a=(2; 1; 3) b=(1; 2; 1) с=(1; 3; 1) пример 20Скачать
Найдите длины диагоналей параллелограмма, построенного на векторах a=(1;-1;-4) и b=(-5;3;8)Скачать
Площадь треугольника, построенного на векторахСкачать
Решение, вычислите объем параллелепипеда, построенного на векторах a, b, c пример 4Скачать
Решение, найти высоту параллелепипеда, построенного на векторах a, b, c пример 19 Высшая математикаСкачать
как найти площадь параллелограмма построенного на векторахСкачать
Решение, вычислить объем параллелепипеда, построенного на векторах a, b, c пример 11Скачать
Решение, найдите объем параллелепипеда, построенной на векторах a, b, c пример 7. Высшая математикаСкачать
1. Векторы и параллелограмм задачи №1Скачать
Высшая математика. 4 урок. Аналитическая геометрия. Вычисление объема тетраэдра.Скачать
Площадь параллелограмма по векторамСкачать
Решение, найти высоту параллелепипеда, построенного на векторах a, b, c пример 18 Высшая математикаСкачать
Задача 4. Вычислить площадь параллелограмма, построенного на векторах.Скачать
Решение, вычислить высоту параллелепипеда, построенного на векторах a, b, c пример 16Скачать