Найти координаты точки на единичной окружности, полученной поворотом точки ( Aleft( 1;0 right) ) на ( -225^circ ) .
Окружность единичная с центром в точке ( left( 0;0 right) ) , значит, мы можем воспользоваться упрощёнными формулами:
( beginx=cos beta =cos (-225^circ )\y=sin beta =sin (-225^circ )end ) .
Можно заметить, что ( -225^circ =-360^circ +135^circ ; -225^circ =-180^circ -45^circ ) . Изобразим рассматриваемый пример на рисунке:
Радиус ( <_>W ) образует с осью ( x ) углы, равные ( 45^circ ) и ( 135^circ ) . Зная, что табличные значения косинуса и синуса ( 45^circ ) равны ( displaystyle dfrac<sqrt> ) , и определив, что косинус здесь принимает отрицательное значение, а синус положительное, имеем:
Подробней подобные примеры разбираются при изучении формул приведения тригонометрических функций в теме «Формулы тригонометрии».
Таким образом, искомая точка имеет координаты ( left( -dfrac<sqrt>;dfrac<sqrt> right) ) .
- Тригонометрические вычисления применяются практически во всех областях геометрии, физики и инженерного дела. Большое значение имеет техника триангуляции, позволяющая измерять расстояния до недалёких звёзд в астрономии, между ориентирами в географии, контр
- «Управление общеобразовательной организацией: новые тенденции и современные технологии»
- Описание презентации по отдельным слайдам:
- Дистанционное обучение как современный формат преподавания
- Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО
- Математика: теория и методика преподавания в образовательной организации
- Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:
- Дистанционные курсы для педагогов
- Другие материалы
- Вам будут интересны эти курсы:
- Оставьте свой комментарий
- Автор материала
- Дистанционные курсы для педагогов
- Подарочные сертификаты
- 10.V-3. Поворот точки вокруг начала координат-2
- 📹 Видео
Видео:Найти координаты точки единичной окружности полученной при повороте точки Ро(1;0) на угол π, 450°...Скачать
Тригонометрические вычисления применяются практически во всех областях геометрии, физики и инженерного дела. Большое значение имеет техника триангуляции, позволяющая измерять расстояния до недалёких звёзд в астрономии, между ориентирами в географии, контр
Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.
Видео:10 класс, 11 урок, Числовая окружностьСкачать
«Управление общеобразовательной организацией:
новые тенденции и современные технологии»
Свидетельство и скидка на обучение каждому участнику
Описание презентации по отдельным слайдам:
Тригонометрические Функции Поворот точки вокруг начала координат
Проверка домашнего задания 1. Какая фигура называется углом ? 2. В чем измеряются углы? 3. Какие углы бывают, примеры их величин? 4. Какой угол принимают за угол в 10 ? 5. Что такое угол в один радиан? 6. Каково соотношение между радианом и градусом? 7. Сколько радиан составляют 1800?
Проверочная работа 1800 = π
Ответы на проверочную работу Оценка за проверочную работу: 7-8 верных ответов — оценка «3» 9-10 верных ответов – оценка «4» 11-12 верных ответов – оценка «5»
Единичная окружность Окружность с центром в начале координат и радиусом равным 1 — называется единичной окружностью. О Р 1 1 -1 -1 точка Р — начало отсчета углов М α + α — α I четверть II четверть III четверть IV четверть -α
Единичная окружность Окружность с центром в начале координат и радиусом равным 1 — называется единичной окружностью. О Р точка Р — начало отсчета углов + α — α I четверть II четверть III четверть IV четверть α = 00 α = 900 α = 1800 α = 2700 α = 3600
Единичная окружность Окружность с центром в начале координат и радиусом равным 1 — называется единичной окружностью. О Р точка Р — начало отсчета углов — α I четверть II четверть III четверть IV четверть α = 00 α = -900 α = -1800 α = -2700 α = 3600
Единичная окружность точка Р — начало отсчета углов Задание устно: Определить четверть ,в которой лежит угол 125 0 -45 0 — 300 0 -250 0 -150 0 2100 3300 3900 4600 -1200 Р π 12 3π 4 7π 4 7π 8
Координаты точки на единичной окружности О Р (1;0) I четверть II четверть III четверть IV четверть 00 900 = 1800 = 2700 = 3600= А (0;1) В (-1;0) С (0;-1) Точке А (0,1) соответствую углы: 900 900+3600 900+3600 +3600 +… 900-3600 900-3600 -3600 -… Или в радианах:
Координаты точки на единичной окружности О Р (1;0) 00 900 = 1800 = 2700 = 3600= А (0;1) В (-1;0) С (0;-1) 1. Каждому углу соответствует единственная точка на окружности 2. Одной и той же точке на окружности соответствует бесконечное множество углов где к – целое число М
Самостоятельная работа Найти координаты точки окружности, соответствующей углу: Записать все углы в радианах, соответствующие точке на окружности с координатами: 6. (0;-1) 7. (1;0) Найти координаты точки окружности, соответствующей углу: Записать все углы, соответствующие точке на окружности с координатами: 6. (-1;0) 7. (0;1) Вариант 2 Вариант 1
Ответы на проверочную работу Сегодня на уроке я узнал….. Сегодня на уроке я познакомился……. Сегодня на уроке я повторил……. Сегодня на уроке я научился……… Д/З: §22 стр.123 № 420
Курс повышения квалификации
Дистанционное обучение как современный формат преподавания
- Сейчас обучается 942 человека из 80 регионов
Курс повышения квалификации
Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО
- Сейчас обучается 315 человек из 69 регионов
Курс профессиональной переподготовки
Математика: теория и методика преподавания в образовательной организации
- Сейчас обучается 694 человека из 75 регионов
Ищем педагогов в команду «Инфоурок»
Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:
5 479 804 материала в базе
Видео:Как искать точки на тригонометрической окружности.Скачать
Дистанционные курсы для педагогов
Другие материалы
- 29.12.2015
- 722
- 29.12.2015
- 3542
- 29.12.2015
- 1078
- 29.12.2015
- 708
- 29.12.2015
- 533
- 29.12.2015
- 2109
- 29.12.2015
- 934
Вам будут интересны эти курсы:
Оставьте свой комментарий
Авторизуйтесь, чтобы задавать вопросы.
Добавить в избранное
- 29.12.2015 2165 —> —> —> —>
- PPTX 396.5 кбайт —> —>
- Оцените материал:
Настоящий материал опубликован пользователем Балкарова Наталья Александровна. Инфоурок является информационным посредником и предоставляет пользователям возможность размещать на сайте методические материалы. Всю ответственность за опубликованные материалы, содержащиеся в них сведения, а также за соблюдение авторских прав несут пользователи, загрузившие материал на сайт
Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.
Автор материала
- На проекте: 6 лет
- Подписчики: 0
- Всего просмотров: 33051
- Всего материалов: 24
Московский институт профессиональной
переподготовки и повышения
квалификации педагогов
Видео:Точки, полученные поворотом точки Р (1; 0) вокруг начала координат на заданные углыСкачать
Дистанционные курсы
для педагогов
548 курсов от 690 рублей
Выбрать курс со скидкой
Выдаём документы
установленного образца!
Учителя о ЕГЭ: секреты успешной подготовки
Время чтения: 11 минут
В Роспотребнадзоре заявили о широком распространении COVID-19 среди детей
Время чтения: 1 минута
В Китае приняли закон о сокращении нагрузки на школьников
Время чтения: 1 минута
В России утвердили новые правила аккредитации образовательных учреждений
Время чтения: 1 минута
В Минпросвещения рассказали о формате обучения школьников после праздников
Время чтения: 1 минута
Стартовал региональный этап Всероссийской олимпиады школьников
Время чтения: 2 минуты
Пандемия позволила детям получить больше внимания со стороны родителей
Время чтения: 1 минута
Подарочные сертификаты
Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.
Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.
Видео:Алгебра 10 класс. 20 сентября. Числовая окружность #6 координаты точекСкачать
10.V-3. Поворот точки вокруг начала координат-2
Алгебра. 10 класс. Тригонометрия. Тест 3.
Вариант 1.
1. Найти координаты точки единичной окружности, полученной поворотом точки (1; 0) на угол 3π/2±π.
A) (0; -1); B) (0; 1); C) (1; 0); D) (-1; 0).
2. Найти координаты точки единичной окружности, полученной поворотом точки (1; 0) на угол π/6±π.
3. Найти координаты точки единичной окружности, полученной поворотом точки (1; 0) на угол π+πk, где kϵZ.
A) (-1; 0); (1; 0); B) (0; -1); (1; 0); C) (1; 0); (0; 1); D) (0; -1); (-1; 0).
4. Записать все углы, на которые нужно повернуть точку Р(1; 0), чтобы в результате получить
A) 3π/4+2πk, kϵZ; B) -π/4+2πk, kϵZ; C) π/4+2πk, kϵZ; D) 7π/4+2πk, kϵZ.
5. Записать все углы, на которые нужно повернуть точку Р(1; 0), чтобы в результате получались
A) π/6+πk, kϵZ; B) π/3+2πk, kϵZ; C) -π/3+πk, kϵZ; D) -π/6+2πk, kϵZ.
6. При повороте точки Р(1; 0) вокруг начала координат получены углы α=π/2+πk, kϵZ. Записать те из них, которые принадлежат отрезку [-5π; -7π/2].
A) -9π/2; -4π; B) -9π/2; -7π/2; C) -7π/2; D) -5π; -9π/2.
7. Точке М единичной окружности соответствует бесконечное множество действительных чисел ±5π/6+2πk, где kϵZ. Записать те из них, которые принадлежат отрезку [3π; 9π/2].
A) 19π/6; B) 17π/6; C) 4π; D) 13π/6.
8. Точке М единичной окружности соответствует бесконечное множество действительных чисел ±π/3+πk, где kϵZ. Записать те из них, которые принадлежат отрезку [-2π; -π/2].
A) -5π/3; -4π/3; B) -4π/3; -2π/3; C) -5π/3; -4π/3; -2π/3; D) -2π; -4π/3; -2π/3.
Вариант 2.
1. Найти координаты точки единичной окружности, полученной поворотом точки (1; 0) на угол π/2±π.
A) (0; -1); B) (0; 1); C) (1; 0); D) (-1; 0).
2. Найти координаты точки единичной окружности, полученной поворотом точки (1; 0) на угол π/3±π.
3. Найти координаты точки единичной окружности, полученной поворотом точки (1; 0) на угол -π+πk, где kϵZ.
A) (-1; 0); (0; -1); B) (0; -1); (1; 0); C) (1; 0); (0; 1); D) (1; 0); (-1; 0).
4. Записать все углы, на которые нужно повернуть точку Р(1; 0), чтобы в результате получить
A) 5π/6+2πk, kϵZ; B) π/6+2πk, kϵZ; C) -π/6+2πk, kϵZ; D) 5π/3+2πk, kϵZ.
5. Записать все углы, на которые нужно повернуть точку Р(1; 0), чтобы в результате получались
A) -π/4+πk, kϵZ; B) π/4+πk, kϵZ; C) -π/8+πk, kϵZ; D) -π/6+2πk, kϵZ.
6. При повороте точки Р(1; 0) вокруг начала координат получены углы α=πk, kϵZ. Записать те из них, которые принадлежат отрезку [4π; 11π/2].
A) 9π/2; 5π; B) 4π; 9π/2; C) 4π; 5π; D) 5π.
7. Точке М единичной окружности соответствует бесконечное множество действительных чисел -π/4+2πk, где kϵZ. Записать те из них, которые принадлежат отрезку [-9π/2; -3π].
A) -13π/4; B) -19π/4; C) -15π/4; D) -17π/4.
8. Точке М единичной окружности соответствует бесконечное множество действительных чисел ±2π/3+2πk, где kϵZ. Записать те из них, которые принадлежат отрезку [-5π; -7π/2].
A) -16π/3; B) -14π/3; C) -13π/3; D) -3π; -14π/3.
Вариант 3.
1. Найти координаты точки единичной окружности, полученной поворотом точки (1; 0) на угол -π/2±π.
A) (0; 1); B) (0; -1); C) (1; 0); D) (-1; 0).
2. Найти координаты точки единичной окружности, полученной поворотом точки (1; 0) на угол 3π/4±π.
3. Найти координаты точки единичной окружности, полученной поворотом точки (1; 0) на угол -3π/2+πk, где kϵZ.
A) (-1; 0); (0; -1); B) (0; 1); (0; -1); C) (1; 0); (0; 1); D) (1; 0); (-1; 0).
4. Записать все углы, на которые нужно повернуть точку Р(1; 0), чтобы в результате получить
A) 5π/3+2πk, kϵZ; B) π/3+2πk, kϵZ; C) π/6+2πk, kϵZ; D) 7π/6+2πk, kϵZ.
5. Записать все углы, на которые нужно повернуть точку Р(1; 0), чтобы в результате получались
A) -π/6+πk, kϵZ; B) -π/4+πk, kϵZ; C) -π/3+πk, kϵZ; D) π/6+2πk, kϵZ.
6. При повороте точки Р(1; 0) вокруг начала координат получены углы α=5π/6+2πk, kϵZ. Записать те из них, которые принадлежат отрезку [-6π; -4π].
A) -5π; B) -29π/6; C) -25π/6; D) -31π/6.
7. Точке М единичной окружности соответствует бесконечное множество действительных чисел ±π/4+2πk, где kϵZ. Записать те из них, которые принадлежат отрезку [-5π; -3π].
A) -17π/4; B) -15π/4; C) -15π/4; -17π/4; D) -13π/4; -15π/4.
8. Точке М единичной окружности соответствует бесконечное множество действительных чисел π/4+πk/2, где kϵZ. Записать те из них, которые принадлежат отрезку [5π; 13π/2].
A) 21π/4; 23π/4; 25π/4; B) 21π/4; 23π/4; C) 23π/4; 25π/4; D) 23π/4.
Вариант 4.
1. Найти координаты точки единичной окружности, полученной поворотом точки (1; 0) на угол -3π/2±π.
A) (-1; 0); B) (0; 1); C) (1; 0); D) (0; -1).
2. Найти координаты точки единичной окружности, полученной поворотом точки (1; 0) на угол 5π/6±π.
3. Найти координаты точки единичной окружности, полученной поворотом точки (1; 0) на угол 3π/2+πk, где kϵZ.
A) (-1; 0); (0; -1); B) (0; -1); (0; 1); C) (1; 0); (0; 1); D) (1; 0); (-1; 0).
4. Записать все углы, на которые нужно повернуть точку Р(1; 0), чтобы в результате получить
A) π/3+2πk, kϵZ; B) -π/3+2πk, kϵZ; C) 2π/3+2πk, kϵZ; D) π/6+2πk, kϵZ.
5. Записать все углы, на которые нужно повернуть точку Р(1; 0), чтобы в результате получались
A) π/6+πk, kϵZ; B) -π/4+πk, kϵZ; C) π/3+πk, kϵZ; D) π/4+πk, kϵZ.
6. При повороте точки Р(1; 0) вокруг начала координат получены углы α=π/3+2πk, kϵZ. Записать те из них, которые принадлежат отрезку [-5π/2; -π].
A) -5π/3; B) -π/3; -4π/3; C) -2π/3; D) -4π/3.
7. Точке М единичной окружности соответствует бесконечное множество действительных чисел ±π/3+2πk, где kϵZ. Записать те из них, которые принадлежат отрезку [-2π; -π/2].
A) -π/3; B) -2π/3; C) -4π/3; D) -5π/3.
8. Точке М единичной окружности соответствует бесконечное множество действительных чисел π/4+πk/2, где kϵZ. Записать те из них, которые принадлежат отрезку [-7π/2; -5π/2].
A) -13π/4; B) -13π/4; -11π/4; C) -11π/4; D) -3π.
📹 Видео
Как найти координаты точек на тригонометрической окружностиСкачать
ТРИГОНОМЕТРИЯ С НУЛЯ - Единичная Окружность // Подготовка к ЕГЭ по МатематикеСкачать
Алгебра 10 класс Поворот точки вокруг начала координат ЛекцияСкачать
Точки на числовой окружностиСкачать
Изобразить на единичной окружности точку.Скачать
9 класс, 11 урок, Формулы для вычисления координат точкиСкачать
Найти координаты точки окружности заданного радиуса Д301Скачать
Решение задач по теме "Поворот точки вокруг начала координат"Скачать
Тригонометрическая окружность. Как выучить?Скачать
Алгебра 10 класс (Урок№29 - Радианная мера угла.)Скачать
Всё про углы в окружности. Геометрия | МатематикаСкачать
§22 Поворот точки вокруг начала координатСкачать
10 класс, 12 урок, Числовая окружность на координатной плоскостиСкачать
Координаты точек на числовой окружности, часть 3. Алгебра 10 класс.Скачать
Координаты точек на числовой окружности, часть 5. Алгебра 10 класс.Скачать