Найти коэффициент корреляции случайного вектора

ЧИСЛОВЫЕ ХАРАКТЕРИСТИКИ СЛУЧАЙНЫХ ВЕКТОРОВ. КОВАРИАЦИЯ И КОЭФФИЦИЕНТ КОРРЕЛЯЦИИ

Рассмотрим теперь моментные числовые характеристики случайных векторов, ограничиваясь двумерным случаем.

Определение. Начальным и центральным моментами порядка k + I случайного вектора <X,У) называются числа ак ,[Х, У] и Lkj[X, У] соответственно, определенные по формулам

Найти коэффициент корреляции случайного вектора

1. Ясно, что начальные моменты 1-го порядка — это математические ожидания компонент: У] = Щ, oc0,i[^> Л = Щ-

Вектор (тх, mY) называется математическим ожиданием или центром рассеяния случайного вектора (X, У).

  • 2. Центральные моменты первого порядка, очевидно, равны нулю: (J.J о = p0,i =0.
  • 3. Есть три начальных момента второго порядка: а2$[Х, У], а02[Х, У] и ocj<[Х, У], причем первые два из них — это начальные моменты второго порядка компонентХи У, т.е. а2(Х, У] = а2[Х] иа0>2[А, У] = а2[У].
  • 4. Имеются три центральных момента второго порядка, а именно i2fi[X, У], |li02[A, Л и Шд[^ У]. Первые два из них —это дисперсии компонент вектора (X, У): р20[А, У] = Dx, р02[А, У] = DY. Представляет особый интерес момент 1ц[Х, У].

Определение. Центральный момент второго порядка i< [[X, У] называется ковариацией случайных величин X и У и обозначается cov[A, У] или

Найти коэффициент корреляции случайного вектора

Рассмотрим основные свойства ковариации. Найти коэффициент корреляции случайного вектора

Найти коэффициент корреляции случайного вектора

тогда и только тогда, когда Хи Yсвязаны линейной зависимостью: Y = аХ + Ь.

]a 2 D 2 [X] = aD[X]. Отсюда следует (22.22).

б) Предположим теперь, что выполняется равенство (22.22). Это означает, что дискриминант А = 0, поэтому квадратное уравнение

Найти коэффициент корреляции случайного вектора

имеет единственное решение (обозначим его -а), т.е. D[Z_а] = D[-aX+ + Y] = 0. По свойству 1 дисперсии заключаем, что случайная величина -аХ + Y принимает единственное значение (обозначим его Ъ): -аХ + Y = Ь, откуда Y = аХ + Ь. ?

Замечание. Если случайные величины независимы, то их ковариация равна нулю, см. свойство 4. А обратное утверждение, в общем случае, неверно: существуют зависимые (в том числе и функционально зависимые) случайные величины, ковариация которых равна нулю.

Пример 22.26. Пусть СВДТ Xимеет ряд распределения

и У = X 2 , т.е. случайные величины X и У связаны функциональной зависимостью и, следовательно, зависимы (убедитесь, рассмотрев равенство (22.11)).

Найти ковариацию Хи Y.

? С учетом свойства 3 ковариации находим

Найти коэффициент корреляции случайного вектора

Легко убедиться, что М[Х] = 0 и М[Х 3 ] = ^xjp, = 0. Таким образом, cov[A У] = 0. ?

Замечание. Ковариация соу[Л У] определенным образом характеризует степень зависимости случайных величин X и У. Однако более удобной в приложениях является нормированная ковариация или коэффициент корреляции.

Определение. Коэффициентом корреляции случайных величин X и У называется число

Найти коэффициент корреляции случайного вектора

если оно существует. В случае p[2f, YJ = 0 величины X и Yназывают некоррелированными, а в противном случае — коррелированными.

Из свойств ковариации непосредственно вытекают такие свойства коэффициента корреляции:

  • 1. р[Х, Y]| 0, то с ростом одной из величин X и У другая в среднем также возрастает и говорят о положительной корреляции между ними. Например, пусть X — это рост случайно выбранного человека, а У — его вес. Тогда между Хи У имеется положительная корреляция.

При р[Х, У] Хи У ведут себя почти как некоррелированные. Если же |р[Х, У]| = 1 <сильная корреляция),то связь между Хи У напоминает линейную функциональную зависимость, переходя в нее при р[Х, У]| = 1 <полная корреляция).

Иллюстрации поведения реализаций (результатов измерений) <xh у/) случайного вектора <X,У) с коррелированными компонентами в зависимости от характера корреляции приведены на рис. 22.6. Каждая реализация представлена точкой в координатной системе Оху. Рис. 22.6, а, б, в иллюстрируют сильную положительную, слабую отрицательную и полную положительную корреляции соответственно.

Видео:Корреляция и ковариация двумерной случайной величиныСкачать

Корреляция и ковариация двумерной случайной величины

Найти коэффициент корреляции случайного вектора

6.5.1 лПЧБТЙБГЙС. лПЬЖЖЙГЙЕОФ ЛПТТЕМСГЙЙ

рХУФШ ЪБДБОП ЧЕТПСФОПУФОПЕ РТПУФТБОУФЧП ( W , F, P) Й ДЧЕ УМХЮБКОЩЕ ЧЕМЙЮЙОЩ ξ Й η ОБ ОЕН.

пртедемеойе 6.5.1.1
лпчбтйбгйек ДЧХИ УМХЮБКОЩИ ЧЕМЙЮЙО ξ Й η ОБЪЩЧБЕФУС ЮЙУМП, ПРТЕДЕМСЕНПЕ РП ЖПТНХМЕ: M((ξ — Mξ)(η — Mη)).

пвпъобюеойе: cov(ξ, η) = M((ξ — Mξ)(η — Mη))(6.5.1.1)

пЮЕЧЙДОП, ЮФП cov(ξ, η) НПЦОП ОБКФЙ ФПМШЛП Ч ФПН УМХЮБЕ, ЛПЗДБ УХЭЕУФЧХАФ УППФЧЕФУФЧХАЭЙЕ НБФЕНБФЙЮЕУЛЙЕ ПЦЙДБОЙС.

ъбнеюбойе. жПТНХМБ (6.5.1.1) Ч ТБУЮЕФБИ ЙУРПМШЪХЕФУС ТЕДЛП. пРЙТБСУШ ОБ УЧПКУФЧБ НБФЕНБФЙЮЕУЛПЗП ПЦЙДБОЙС Й ДЙУРЕТУЙЙ, НПЦОП РПМХЮЙФШ ВПМЕЕ ХДПВОЩЕ ДМС ТБУЮЕФПЧ ЖПТНХМЩ.

M((ξ — Mξ)(η — Mη)) = M(ξη — ηMξ — ξMη + MξMη) =

= M(ξη) — MξMη — MξMη + MξMη = M(ξη) — MξMη. уМЕДПЧБФЕМШОП,

D(ξ + η) = Dξ + Dη + 2M(ξη) — 2MξMη = Dξ + Dη + 2cov(ξ, η) (уНПФТЙ 6.2.2).

D(ξ — η) = D(ξ + (-η)) = Dξ + D(-η) — 2M(ξ(-η)) — MξM(-η) =
= Dξ + D(-η) — 2(M(ξη) — MξMη) = Dξ + Dη — 2cov(ξ, η).

Найти коэффициент корреляции случайного вектора

фептенб 6.5.1.1 (уЧПКУФЧБ ЛПЧБТЙБГЙЙ ДЧХИ УМХЮБКОЩИ ЧЕМЙЮЙО)
1. еУМЙ ξ Й η — ОЕЪБЧЙУЙНЩЕ УМХЮБКОЩЕ ЧЕМЙЮЙОЩ, ФП cov(ξ, η) = 0.
2. cov(ξ, η) = cov(η, ξ).
3. cov(ξ, ξ) = Dξ.
4. cov(ξ, Cη) = Ccov(ξ, η),
cov(Cξ, η) = Ccov(ξ, η), » C п R.
5. cov(ξ1 + ξ2, η) = cov(ξ1, η) + cov(ξ2, η);
cov(ξ, η1 + η2) = cov(ξ, η1) + cov(ξ, η2).

уРТБЧЕДМЙЧПУФШ ХФЧЕТЦДЕОЙК 2-3 УМЕДХЕФ ЙЪ ЖПТНХМЩ (6.5.1.2). дМС ДПЛБЪБФЕМШУФЧБ ПУФБМШОЩИ ЧПУРПМШЪХЕНУС УППФЧЕФУФЧХАЭЙНЙ УЧПКУФЧБНЙ НБФЕНБФЙЮЕУЛПЗП ПЦЙДБОЙС.

1) cov(ξ, η) = M(ξη) — MξMη = MξMη — MξMη = 0, ФБЛ ЛБЛ ДМС ОЕЪБЧЙУЙНЩИ η, ξ M(ξη) = MξMη.

4) cov(ξ, Cη) = M(ξCη) — MξM(Cη) = CM(ξη) — CMξMη = Ccov(ξ, η).

уРТБЧЕДМЙЧПУФШ ЧФПТПК ЖПТНХМЩ НПЦОП ДПЛБЪБФШ МЙВП БОБМПЗЙЮОП, МЙВП, ЙУРПМШЪХС УЧПКУФЧП 2.

уРТБЧЕДМЙЧПУФШ ЧФПТПК ЖПТНХМЩ НПЦОП ДПЛБЪБФШ МЙВП БОБМПЗЙЮОП, МЙВП ЙУРПМШЪХС УЧПКУФЧП 2.

умедуфчйе 6.5.1.1
1. cov(ξ, C) = cov(C, ξ) = 0, » C п R.
2. cov(ξ, Aξ + B) = cov(Aξ+B, ξ) = ADξ, » A, B п R.

1) рПУФПСООХА у НПЦОП ТБУУНБФТЙЧБФШ ЛБЛ УМХЮБКОХА ЧЕМЙЮЙОХ η, РТЙОЙНБАЭХА ПДОП ЪОБЮЕОЙЕ у У ЧЕТПСФОПУФША 1. пЮЕЧЙДОП, ЮФП Ч ЬФПН УМХЮБЕ УМХЮБКОЩЕ ЧЕМЙЮЙОЩ ξ Й η — ОЕЪБЧЙУЙНЩЕ УМХЮБКОЩЕ ЧЕМЙЮЙОЩ Й, УМЕДПЧБФЕМШОП, cov(ξ, η) = 0.

2) cov(ξ, Aξ + B) = cov(ξ, Aξ) + cov(ξ, B) = Acov(ξ, ξ) + 0 = ADξ.

ъбнеюбойе. уМЕДХЕФ РПНОЙФШ, ЮФП ЙЪ cov(ξ, η) = 0 ОЕ УМЕДХЕФ ОЕЪБЧЙУЙНПУФЙ УМХЮБКОЩИ ЧЕМЙЮЙО ξ, η.

оБРТЙНЕТ, РХУФШ ξ — УМХЮБКОБС ЧЕМЙЮЙОБ ДЙУЛТЕФОПЗП ФЙРБ, ЙНЕАЭБС УМЕДХАЭЙК ЪБЛПО ТБУРТЕДЕМЕОЙС:

xk-2-112
pk1/41/41/41/4

Mξ = (1/4)ћ(-2) + (1/4)ћ(-1) + (1/4)ћ2 + (1/4)ћ1 = 0.

тБУУНПФТЙН η = ξ 2 (η Й ξ Ч ФБЛПН УМХЮБЕ ЪБЧЙУЙНЩЕ УМХЮБКОЩЕ ЧЕМЙЮЙОЩ!) ъБЛПО ТБУРТЕДЕМЕОЙС УМХЮБКОПК ЧЕМЙЮЙОЩ η ЙНЕЕФ ЧЙД:

xk14
pk1/21/2

Mη = (1/2)ћ1 + (1/2)ћ4 = 5/2.

cov(ξ, η) = M(ξη) — MξMη = M(ξћξ 2 ) — 0ћ(5/2) = M(ξ 3 ).

уМХЮБКОБС ЧЕМЙЮЙОБ ξ 3 ЙНЕЕФ ЪБЛПО ТБУРТЕДЕМЕОЙС:

xk-8-118
pk1/41/41/41/4

Mξ 3 = (1/4)ћ(-8) + (1/4)ћ(-1) + (1/4)ћ1 + (1/4)ћ8 = 0. уМЕДПЧБФЕМШОП, cov (ξ, η) = 0, Б УМХЮБКОЩЕ ЧЕМЙЮЙОЩ СЧМСАФУС ЪБЧЙУЙНЩНЙ.

пртедемеойе 6.5.1.2
лПЬЖЖЙГЙЕОФПН лпттемсгйй ДЧХИ УМХЮБКОЩИ ЧЕМЙЮЙО ξ Й η ОБЪЩЧБЕФУС ЮЙУМП, ПРТЕДЕМСЕНПЕ РП ЖПТНХМЕ:

Найти коэффициент корреляции случайного вектора

пвпъобюеойе:Найти коэффициент корреляции случайного вектора(6.5.1.5)

ъбнеюбойе. пЮЕЧЙДОП, ЮФП ЛПЬЖЖЙГЙЕОФ ЛПТТЕМСГЙЙ ДЧХИ УМХЮБКОЩИ ЧЕМЙЮЙО НПЦОП ПРТЕДЕМЙФШ МЙЫШ Ч ФПН УМХЮБЕ, ЛПЗДБ УХЭЕУФЧХАФ УППФЧЕФУФЧХАЭЙЕ НБФЕНБФЙЮЕУЛЙЕ ПЦЙДБОЙС Й Dξ Найти коэффициент корреляции случайного вектора0, Dη Найти коэффициент корреляции случайного вектора0.

пРЙТБСУШ ОБ УЧПКУФЧБ ЛПЧБТЙБГЙЙ Й ДЙУРЕТУЙЙ (6.2.2), НПЦОП РПМХЮЙФШ ЕЭЕ ФТЙ ДПРПМОЙФЕМШОЩЕ ЖПТНХМЩ ДМС ЧЩЮЙУМЕОЙС ЛПЬЖЖЙГЙЕОФБ ЛПТТЕМСГЙЙ.

Найти коэффициент корреляции случайного вектора

(уНПФТЙ ЖПТНХМХ 6.5.1.3). уМЕДПЧБФЕМШОП,

уПЧЕТЫЕООП БОБМПЗЙЮОП, ПРЙТБСУШ ОБ ЖПТНХМХ 6.5.1.4, НПЦОП ДПЛБЪБФШ, ЮФП:

фептенб 6.5.1.2 (уЧПКУФЧБ ЛПЬЖЖЙГЙЕОФБ ЛПТТЕМСГЙЙ)
1. еУМЙ ξ Й η — ОЕЪБЧЙУЙНЩЕ УМХЮБКОЩЕ ЧЕМЙЮЙОЩ, ФП ρ(ξ, η) = 0.
2. ρ(ξ, η) = ρ(η, ξ).
3. ρ(Cξ, η) = ρ(ξ, Cη) = signC ρ(Cξ, η), » C п R (C Найти коэффициент корреляции случайного вектора0).
4. |ρ(ξ, η)| ≤ 1.
5. |ρ(ξ, η)| = 1 щ $ A, B п R (A Найти коэффициент корреляции случайного вектора0): η = Aξ + B.

уЧПКУФЧБ 1-2 УМЕДХАФ ЙЪ УЧПКУФЧ ЛПЧБТЙБГЙЙ.

Найти коэффициент корреляции случайного вектора

4) фБЛ ЛБЛ ДЙУРЕТУЙС МАВПК УМХЮБКОПК ЧЕМЙЮЙОЩ (ЕУМЙ ПОБ УХЭЕУФЧЕФ) — ЧЕМЙЮЙОБ ОЕПФТЙГБФЕМШОБС, ФП ЙЪ ЖПТНХМ (6.5.1.7 Й 6.5.1.8) УМЕДХЕФ:

Найти коэффициент корреляции случайного вектора

5) ( а ) (ОЕПВИПДЙНПУФШ)

Найти коэффициент корреляции случайного вектора

Б) ρ(ξ, η) = 1 а ЙЪ ЖПТНХМЩ 6.5.1.8 УМЕДХЕФ, ЮФП Найти коэффициент корреляции случайного вектора.

ч ФБЛПН УМХЮБЕ, $ C п R: Найти коэффициент корреляции случайного вектора

Найти коэффициент корреляции случайного вектора

фБЛЙН ПВТБЪПН, η = Aξ + B, ЗДЕ Найти коэффициент корреляции случайного вектора

ъБНЕФЙН, ЮФП Найти коэффициент корреляции случайного вектора.

В) ρ(ξ, η) = -1. тБУУХЦДБС БОБМПЗЙЮОП Й ЙУРПМШЪХС ЖПТНХМХ 6.5.1.7, НПЦОП ДПЛБЪБФШ, ЮФП

Найти коэффициент корреляции случайного вектора

( ш ) η = Aξ + B; A, B п R Й A Найти коэффициент корреляции случайного вектора0. (дПУФБФПЮОПУФШ.)

Найти коэффициент корреляции случайного вектора

умедуфчйе 6.5.1.2
ρ(ξ, ξ) = 1.

ъбнеюбойе. уМЕДХЕФ РПНОЙФШ, ЮФП ЙЪ ρ(ξ, η) = 0 ОЕ УМЕДХЕФ ОЕЪБЧЙУЙНПУФШ УМХЮБКОЩИ ЧЕМЙЮЙО ξ Й η. (фБЛ ЛБЛ ρ(ξ, η) = 0 щ cov(ξ,η)=0; Б ЙЪ cov(ξ,η)=0 ОЕ УМЕДХЕФ, ЮФП ξ Й η ОЕЪБЧЙУЙНЩЕ УМХЮБКОЩЕ ЧЕМЙЮЙОЩ).

пртедемеойе 6.5.1.3
еУМЙ ρ(ξ, η) = 0, ФП УМХЮБКОЩЕ ЧЕМЙЮЙОЩ ξ Й η ОБЪЩЧБАФУС оелпттемйтхенщнй.

ъбнеюбойе. еУМЙ ρ(ξ, η) Найти коэффициент корреляции случайного вектора0, ФП УМХЮБКОЩЕ ЧЕМЙЮЙОЩ ξ Й η СЧМСАФУС ЪБЧЙУЙНЩНЙ (РТЙ ρ(ξ, η) = 0 ПОЙ НПЗХФ ВЩФШ ЛБЛ ЪБЧЙУЙНЩНЙ, ФБЛ Й ОЕЪБЧЙУЙНЩНЙ).

Найти коэффициент корреляции случайного вектора

еУМЙ ρ(ξ, η) Найти коэффициент корреляции случайного вектора Найти коэффициент корреляции случайного вектора1, ФП ОБЙМХЮЫЕЕ МЙОЕКОПЕ РТЙВМЙЦЕОЙЕ ДМС η Найти коэффициент корреляции случайного вектораЙНЕЕФ ЧЙД:

Найти коэффициент корреляции случайного вектора

ьФП РТЙВМЙЦЕОЙЕ СЧМСЕФУС ОБЙМХЮЫЕН Ч УНЩУМЕ:

Найти коэффициент корреляции случайного вектора

рХУФШ ОБ ЧЕТПСФОПУФОПН РТПУФТБОУФЧЕ ( W , F, P) ЪБДБО УМХЮБКОЩК ЧЕЛФПТ (ξ1, ξ2, . , ξn).

Найти коэффициент корреляции случайного вектора

фБЛ ЛБЛ kij = cov(ξi, ξj) = cov(ξj, ξi) = kji, » i, j, ФП НБФТЙГБ K — УЙННЕФТЙЮОБС НБФТЙГБ (ПФОПУЙФЕМШОП ЗМБЧОПК ДЙБЗПОБМЙ); kii = Dξi, i= 1, . , n.

пртедемеойе 6.5.1.5
пРТЕДЕМЙФЕМШ ЛПЧБТЙБГЙПООПК НБФТЙГЩ ОБЪЩЧБЕФУС пвпвэеоопк дйуретуйек УМХЮБКОПЗП ЧЕЛФПТБ.

еУМЙ ξ1, ξ2, . , ξn РПРБТОП ОЕЪБЧЙУЙНЩ ЙМЙ cov(ξi, ξj) = 0, i Найти коэффициент корреляции случайного вектораj, ФП НБФТЙГБ K СЧМСЕФУС ДЙБЗПОБМШОПК::

Найти коэффициент корреляции случайного вектора

фептенб 6.5.1.3
еУМЙ ЙЪЧЕУФОБ ЛПЧБТЙБГЙПООБС НБФТЙГБ л = (kij)n УМХЮБКОПЗП ЧЕЛФПТБ (ξ1, ξ2, . , ξn) Й ηi = ci1ξ1 + ci2ξ2 + . + cinξn, i = 1, . , n; ФП ЕУФШ
Найти коэффициент корреляции случайного вектора
ФП ЛПЧБТЙБГЙПООБС НБФТЙГБ H = (hij), hij = cov(ηi, ηj) УМХЮБКОПЗП ЧЕЛФПТБ (η1, η2, . , ηn) НПЦЕФ ВЩФШ ОБКДЕОБ РП ЖПТНХМЕ:
H = CћKћC T .

Найти коэффициент корреляции случайного вектора

уМЕДПЧБФЕМШОП, ЛПТТТЕМСГЙПООБС НБФТЙГБ R СЧМСЕФУС УЙННЕФТЙЮОПК.

еУМЙ УМХЮБКОЩЕ ЧЕМЙЮЙОЩ ξ1, ξ2, . , ξn РПРБТОП ОЕЪБЧЙУЙНЩ ЙМЙ ОЕЛПТТЕМЙТХЕНЩ, ФП ЛПТТЕМСГЙПООБС НБФТЙГБ R СЧМСЕФУС ЕДЙОЙЮОПК:

Найти коэффициент корреляции случайного вектора

ъбнеюбойе. уМЕДХЕФ РПНОЙФШ, ЮФП ЮФП ЪОБС ЪБЛПО ТБУРТЕДЕМЕОЙС УМХЮБКОПЗП ЧЕЛФПТБ (ξ1, ξ2, . , ξn), НПЦОП ОБКФЙ ЮЙУМПЧЩЕ ИБТБЛФЕТЙУФЙЛЙ ЛПНРБОЕФ (ЕУМЙ ПОЙ УХЭЕУФЧХАФ).

оБРТЙНЕТ, ЕУМЙ ЧЕЛФПТ — УМХЮБКОБС ЧЕМЙЮЙОБ БВУПМАФОП ОЕРТЕТЧЩОПЗП ФЙРБ У РМПФОПУФША ТБУРТЕДЕМЕОЙС Найти коэффициент корреляции случайного вектора, ФП

Найти коэффициент корреляции случайного вектора

ъБРЙЫЙФЕ УБНПУФПСФЕМШОП УППФЧЕФУФЧХАЭЙЕ ЖПТНХМЩ ДМС УМХЮБКОПЗП ЧЕЛФПТБ ДЙУЛТЕФОПЗП ФЙРБ.

ъбдбюб 6.5.1.1 йЪЧЕУФОП, ЮФП Mξ = 1, Dξ = 2; η = 5ξ + 7. оБКФЙ cov(ξ, η).

cov(ξ, η) = cov(ξ, 5ξ + 7) = 5Dξ = 10.

ъбдбюб 6.5.1.2 йЪЧЕУФОП, ЮФП Mξ = 3, Dξ = 8. оБКФЙ ρ(ξ, η), ЕУМЙ η = — 15ξ + 2.

ъбдбюб 6.5.1.3 дБО ЪБЛПО ТБУРТЕДЕМЕОЙС УМХЮБКОПЗП ЧЕЛФПТБ (ξ1, ξ2) ДЙУЛТЕФОПЗП ФЙРБ:

Найти коэффициент корреляции случайного вектора567
00,200
0,10,10,150
0,20,050,150,1
0,30,050,10,1

оБКФЙ: ЛПЧБТЙБГЙПООХА Й ЛПТТЕМСГЙПООХА НБФТЙГЩ УМХЮБКОПЗП ЧЕЛФПТБ (ξ1, ξ2).

1) рТЕЦДЕ ЧУЕЗП ОБКДЕН ЪБЛПО ТБУРТЕДЕМЕОЙС ЛБЦДПК ЛПНРПОЕОФЩ (БМЗПТЙФН УНПФТЙ 4.4.2)

ξ1567
0,40,40,2

1 2 = 25ћ0,4 + 36ћ0,4 + 49ћ0,2 = 34,2;

ξ200,10,20,3
0,20,250,30,25

2 = 0ћ0,2 + 0,1ћ0,25 + 0,2ћ0,3 + 0,3ћ0,25 = 0,16;

2 2 = 0ћ0,1 + 0,01ћ0,25 + 0,04ћ0,3 + 0,09ћ0,25 = 0,037;

ъБНЕФЙН, ЮФП УМХЮБКОБС ЧЕМЙЮЙОБ ξ1ћξ2 РТЙОЙНБЕФ УМЕДХАЭЙЕ ЪОБЮЕОЙС Ч ЪБЧЙУЙНПУФЙ ПФ ЪОБЮЕОЙК ЛПНРПОЕОФ:

Найти коэффициент корреляции случайного вектора567
0000
0,10,50,60,7
0,211,21,4
0,31,51,82,1

уМЕДПЧБФЕМШОП, ЪБЛПО ТБУРТЕДЕМЕОЙС УМХЮБКОПК ЧЕМЙЮЙОЩ ξ1ћξ2 ЙНЕЕФ УМЕДХАЭЙК ЧЙД:

xk00,50,60,711,21,41,51,82,1
pk0,20,10,1500,050,150,10,050,10,1

M(ξ1ξ2) = 0ћ0,2 + 0,1ћ0,5 + 0,6ћ0,15 + 0,7ћ0 + 0,05ћ1 + 0,15ћ1,2 +
+ 1,4ћ0,1 + 1,5ћ0,05 + 0,1ћ1,8 + 0,1ћ2,1 = 0,975.

Найти коэффициент корреляции случайного вектора

12 = 0,56ћ0,0114 = 0,006384 а ρ12 = ρ21 = Найти коэффициент корреляции случайного вектора0,588.

Найти коэффициент корреляции случайного вектора

ъбдбюб 6.5.1.4 йЪЧЕУФЕО ЪБЛПО ТБУРТЕДЕМЕОЙС УМХЮБКОПЗП ЧЕЛФПТБ:

Найти коэффициент корреляции случайного вектора01
-10,10,2
00,20,3
100,2

оБКФЙ НБФЕНБФЙЮЕУЛПЕ ПЦЙДБОЙЕ Й ДЙУРЕТУЙА УМХЮБКОПК ЧЕМЙЮЙОЩ q = 2ξ1 + ξ 2 2.

уМЕДПЧБФЕМШОП, РТЕЦДЕ ЧУЕЗП ПРТЕДЕМЙН ЪБЛПОЩ ТБУРТЕДЕМЕОЙС ξ1 Й ξ2.

ξ1xk01
pk0,30,7

ξ2xk-101
pk0,30,50,2

ξ2 2xk01
pk0,50,5

ξ1ξ2 2xk01
pk0,60,4

cov(ξ1, ξ2 2 ) = 0,4 — 0,7 ћ 0,5 = 0,05. фБЛЙН ПВТБЪПН,

M q = 2ћ0,7 + 0,5 = 1,9;

D q = 4ћ0,21 + 0,25 + 2ћ0,05 = 0,84 + 0,25 + 0,1 = 1,29.

ъбдбюб 6.5.1.5 йЪЧЕУФОБ РМПФОПУФШ ТБУРТЕДЕМЕОЙС УМХЮБКОПЗП ЧЕЛФПТБ (ξ, η):

Найти коэффициент корреляции случайного вектора

оБКФЙ ЛПЧБТЙБГЙА УМХЮБКОЩИ ЧЕМЙЮЙО ξ, η.

Найти коэффициент корреляции случайного вектора

Cov(ξ, η) = π/2 — 1 — π 2 /16.

(чУЕ ЧЩЮЙУМЕОЙС РТПЧЕТШФЕ!)

Найти коэффициент корреляции случайного вектора

ъБДБЮЙ ДМС УБНПУФПСФЕМШОПЗП ТЕЫЕОЙС.

ъбдбюб 6.5.1.1(у) дБО ЪБЛПО ТБУРТЕДЕМЕОЙС УМХЮБКОПЗП ЧЕЛФПТБ (ξ1, ξ2):

Найти коэффициент корреляции случайного вектора025
10,100,2
200,30
40,10,30

уПУФБЧЙФШ ЛПЧБТЙБГЙПООХА Й ЛПТТЕМСГЙПООХА НБФТЙГЩ.

ъбдбюб 6.5.1.2(у) ъБДБО УМХЮБКОЩК ЧЕЛФПТ (ξ, η). йЪЧЕУФОП, ЮФП Mξ = 0, Mη = 2, Dξ = 2, Dη = 1, ρ(ξ, η) = — Найти коэффициент корреляции случайного вектора. оБКФЙ НБФЕНБФЙЮЕУЛПЕ ПЦЙДБОЙЕ Й ДЙУРЕТУЙА УМХЮБКОПК ЧЕМЙЮЙОЩ q = 2ξ — 3η.

ъбдбюб 6.5.1.3(у) йЪЧЕУФОБ РМПФОПУФШ ТБУРТЕДЕМЕОЙС УМХЮБКОПЗП ЧЕЛФПТБ (ξ, η):

Найти коэффициент корреляции случайного вектора

D — ФТЕХЗПМШОЙЛ, ПЗТБОЙЮЕООЩК РТСНЩНЙ x + y = 1, x = 0, y = 0. оБКФЙ ЛПЬЖЖЙГЙЕОФ ЛПТТЕМСГЙЙ.

© гЕОФТ ДЙУФБОГЙПООПЗП ПВТБЪПЧБОЙС пзх, 2000-2002

Видео:Теория вероятностей #19: ковариация, корреляция, зависимость двух случайных величинСкачать

Теория вероятностей #19: ковариация, корреляция, зависимость двух случайных величин

Двумерная дискретная случайная величина

Ранее мы разобрали примеры решений задач для одномерной дискретной случайной величины. Но бывает, что результат испытания описывается не одной, а несколькими случайными величинами (случайным вектором).

В случае двух величин (скажем, $X$ и $Y$) мы имеем дело с так называемой двумерной дискретной случайной величиной $(X,Y)$ (или системой случайных одномерных величин). Кратко выпишем основы теории.

Видео:Коэффициент корреляции. Дискретное распределениеСкачать

Коэффициент корреляции. Дискретное распределение

Система двух случайных величин: теория

Двумерная ДСВ задается законом распределения (обычно представленным в виде таблицы распределения):

$$ P(X=x_i, Y=y_k)=p_, i=1,2. m; k=1,2. n; quad sum_p_=1. $$

По нему можно найти одномерные законы распределения (составляющих):

$$ p_i=P(X=x_i)=sum_p_, i=1,2. m; \ p_k=P(Y=y_k)=sum_ p_, k=1,2. n. $$

Интегральная функция распределения задается формулой $F(x,y)=P(Xlt x, Ylt y)$. Даже для самого простого закона распределения 2 на 2 функция занимает 5 строк, поэтому ее редко выписывают в явном виде.

Если для любой пары возможных значений $(X=x_i, Y=y_k)$ выполняется равенство

$$P(X=x_i, Y=y_k)=P(X=x_i)cdot P(Y=y_k),$$

то случайные величины $X, Y$ называются независимыми.

Если случайные величины зависимы, для них можно выписать условные законы распределения (для независимых они совпадают с безусловными законами):

Для случайных величин $X,Y$, входящих в состав случайного вектора, можно вычислить ковариацию и коэффициент корреляции по формулам:

Далее вы найдете разные примеры задач с полным решением, где используются дискретные двумерные случайные величины (системы случайных величин).

Видео:Коэффициент корреляции. ТемаСкачать

Коэффициент корреляции. Тема

Примеры решений

Задача 1. В продукции завода брак вследствие дефекта А составляет 10%, а вследствие дефекта В — 20%. Годная продукция составляет 75%. Пусть X — индикатор дефекта А, a Y — индикатор дефекта В. Составить матрицу распределения двумерной случайной величины (X, Y). Найти одномерные ряды распределений составляющих X и У и исследовать их зависимость.

Задача 2. Два баскетболиста по два раза бросают мяч в корзину. При каждом броске вероятность попадания для первого баскетболиста 0,6, для второго – 0,7. Случайная величина X – число попаданий первым баскетболистом по кольцу. Случайная величина Y – суммарное число попаданий обоими баскетболистами. Построить таблицу распределения случайного вектора (X,Y). Найти характеристики вектора (X,Y). Зависимы или независимы случайные величины X и Y.

Задача 3. Слово РОССИЯ разрезано по буквам. Случайным образом вынимаем две буквы, тогда X – количество гласных среди них, затем вынимаем еще две буквы и Y – количество гласных во второй паре. Составить закон распределения системы случайных величин X, Y.

Задача 4. $X, Y$ — индикаторы событий $A, B$, означающий положительные ответы соответственно на вопросы $alpha, beta$ социологической анкеты. По данным социологического опроса двумерная случайная величина $(X,Y)$ имеет следующую таблицу распределения.
Положительному ответу присвоен ранг 1, отрицательному – 0.
Найти коэффициент корреляции $rho_$.

Задача 5. Составить закон распределения X — сумм очков и Y — числа тузов при выборе двух карт из колоды, содержащей только тузов, королей и дам (туз=11, дама=3, король=4)
Найти законы распределения величин Х и Y. Зависимы ли эти величины? Написать функцию распределения для (Х, Y). Построить ковариационный граф. Посчитать ковариацию (X,Y). Написать ковариационную матрицу. Посчитать корреляцию (X,Y) и написать корреляционную матрицу.

Задача 6. Бросаются две одинаковые игральные кости. Случайная величина X равна 1, если сумма выпавших чисел четна, и равна 0 в противном случае. Случайная величина Y равна 1, если произведение выпавших чисел четно, и 0 в противном случае. Описать закон распределения случайного вектора (X,Y). Найти D[X], D[Y] и cov[X,Y].

Задача 7. В урне лежат 100 шаров, из них 25 белых. Из урны последовательно вынимают два шара. Пусть $X_i$ – число белых шаров, появившихся при $i$-м вынимании. Найти коэффициент корреляции между величинами $X_1$ и $X_2$.

Задача 8. Для заданного закона распределения вероятностей двухмерной случайной величины (Х, Y):
YX 2 5
8 0,15 0,10
10 0,22 0,23
12 0,10 0,20
Найти коэффициент корреляции между величинами Х и Y.

Задача 9. Задана дискретная двумерная случайная величина (X,Y).
А) найти безусловные законы распределения составляющих;
Б) построить регрессию случайной величины Y на X;
В) построить регрессию случайной величины X на Y;
Г) найти коэффициент ковариации;
Д) найти коэффициент корреляции.
20 30 40 50 70
3 0,01 0,01 0,02 0,02 0,01
4 0,04 0,3 0,06 0,03 0,01
5 0,02 0,03 0,06 0,07 0,05
9 0,05 0,03 0,04 0,02 0,03
10 0,03 0,02 0,01 0,01 0,02

Задача 10. Система (x, y) задана следующей двумерной таблицей распределения вероятностей. Определить:
А) безусловные законы распределения составляющих;
Б) условный закон распределения y при x=1;
В) условное математическое ожидание x при y=2.
Г) вероятность того, что случайная величина (x,y) будет принадлежать области $|x|+|y|le 3$.
-3 0 2
-1 0 0,1 0,15
1 0,05 0,3 0,05
2 0,15 0,05 0,15

Видео:Коэффициент корреляции Пирсона, 2 способа вычисленияСкачать

Коэффициент корреляции Пирсона, 2 способа вычисления

Решебник по теории вероятности онлайн

Больше 11000 решенных и оформленных задач по теории вероятности:

🎬 Видео

Расчет коэффициента корреляции в ExcelСкачать

Расчет коэффициента корреляции в Excel

Коэффициент корреляции Пирсона в ExcelСкачать

Коэффициент корреляции Пирсона в Excel

Функция распределения непрерывной случайной величины. Вероятность попадания в интервалСкачать

Функция распределения непрерывной случайной величины. Вероятность попадания в интервал

Теория вероятностей #18: системы двух случайных величин, двумерное распределениеСкачать

Теория вероятностей #18: системы двух случайных величин, двумерное распределение

Случайный вектор двумерной случайной величиныСкачать

Случайный вектор двумерной случайной величины

Математика #1 | Корреляция и регрессияСкачать

Математика #1 | Корреляция и регрессия

Математика без Ху!ни. Ряд распределения дискретной случайной величины. Мат ожидание и дисперсия.Скачать

Математика без Ху!ни. Ряд распределения дискретной случайной величины. Мат ожидание и дисперсия.

Теория вероятностей #12: случайная величина, плотность и функция распределенияСкачать

Теория вероятностей #12: случайная величина, плотность и функция распределения

Как вычислить линейный коэффициент корреляции в MS Excel и построить уравнение регрессии?Скачать

Как вычислить линейный коэффициент корреляции в MS Excel  и построить уравнение регрессии?

Функция распределения дискретной случайной величиныСкачать

Функция распределения дискретной случайной величины

Ковариационная матрицаСкачать

Ковариационная матрица

Коэффициент корреляции. Статистическая значимостьСкачать

Коэффициент корреляции.  Статистическая значимость

Коэффициент корреляции ПирсонаСкачать

Коэффициент корреляции Пирсона

Математическое Ожидание, Дисперсия, Стандартное Отклонение за 5 минутСкачать

Математическое Ожидание, Дисперсия, Стандартное Отклонение за 5 минут

Функция распределения и плотность распределенияСкачать

Функция распределения и плотность распределения
Поделиться или сохранить к себе: