Найти длину высоты тетраэдра по векторам

Примеры

Пример 1. Проверим, лежат ли точки A (1, −1, 1) , B (2, 2, 3) , C (3, 1, 3) и D (0, 0, 1) в одной плоскости.

Решение. Вычисляем смешанное произведение векторов A B = , A C = и A D = :

( A B , A C , A D ) =
132
222
−110
= 1 · ( −2) − 3 · 2 + 2 · 4 = 0 .

Так как смешанное произведение равно нулю, то векторы компланарны и, следовательно, точки лежат в одной плоскости.

Пример 2. Даны вершины тетраэдра A (2, 3, 1) , B (4, 1, −2) , C (6, 3, 7) и D ( −5, −4, 8) . Найдем длину высоты, опущенной из вершины D на плоскость основания A B C (рис. 1).

Найти длину высоты тетраэдра по векторам

Решение. Из вершины A проводим векторы A B = , A C = и A D = .

В соответствии с геометрическим смыслом смешанногопроизведения имеем:

V тетр. =

1
6

· V параллелеп =

1
6

| ( A B , A C , A D ) | .

С другой стороны,

V тетр. =

1
3

S ΔABC · h , &nbsp где &nbsp S ΔABC =

1
2

| [ A B , A C ] | .

Сравнивая эти равенства, получаем

h =

3 V тетр
S ΔABC

.

1. Вычисляем смешанное произведение:

( A B , A C , A D ) =
2−2−3
406
−7−77
= 2 · 42 + 2 · 70 + ( −3) · ( −28) = 308 .

Следовательно, V тетр. = 308/6 .

2. Вычисляем координаты векторного произведения:

Видео:Высшая математика. 4 урок. Аналитическая геометрия. Вычисление объема тетраэдра.Скачать

Высшая математика. 4 урок. Аналитическая геометрия. Вычисление объема тетраэдра.

Онлайн решение Пирамиды по координатам вершин

1) чертёж пирамиды по координатам её вершин;

2) длины и уравнения рёбер, медиан, апофем, высот;

3) площади и уравнения граней;

4) система линейных неравенств, определяющих пирамиду;

5) основания и точка пересечения медиан (центроид);

6) уравнения плоскостей, проходящих через вершины параллельно противолежащим граням;

7) объём пирамиды;

8) основания, площади и уравнения биссекторов;

9) углы между рёбрами, между рёбрами и гранями, двугранные (внутренние между гранями), телесные;

10) параметры и уравнения вписанной и описанной сфер;

Внимание! Этот сервис может не работать в браузере Internet Explorer.

Запишите координаты вершин пирамиды и нажмите кнопку.

A ( ; ; ), B ( ; ; ),
C ( ; ; ), D ( ; ; )

Примечание: дробные числа записывайте
через точку, а не запятую.

Округлять до -го знака после запятой.

Видео:Математика без Ху!ни. Смешанное произведение векторовСкачать

Математика без Ху!ни. Смешанное произведение векторов

Как найти высоту тетраэдра формула

Найти длину высоты тетраэдра по векторам

Высота тетраэдра — равна корню квадратному из двух третих, помноженному на длину ребра тетраэдра

(h – высота тетраэдра, a – ребро тетраэдра)

Видео:Даны вершины пирамиды A, B, C, D. Найдите объём пирамиды и высоту, опущенную на грань ACDСкачать

Даны вершины пирамиды A, B, C, D. Найдите объём пирамиды и высоту, опущенную на грань ACD

Вывод формулы высоты тетраэдра

Чтобы получить формулу высоты тетраэдра необходимо произвести дополнительные геометрические построения. На рисунке красные линии CF и FS — это высоты соответствующих правильных треугольников ABC и ABS:

Теперь в треугольнике CFS известны все стороны. Высота тетраэдра, как видно из геометрических построений — это высота треугольника CFS. Подставив стороны треугольника в формулу и произведя простые сокращения (используем формулу разность квадратов) получим формулу (1).

Рассмотрим произвольный треугольник ABC и точку D , не лежащую в плоскости этого треугольника. Соединим отрезками эту точку с вершинами треугольника ABC . В результате получим треугольники ADC , CDB , ABD . Поверхность ограниченная четырьмя треугольниками ABC , ADC , CDB и ABD называется тетраэдром и обозначается DABC .
Найти длину высоты тетраэдра по векторамТреугольники, из которых состоит тетраэдр, называются его гранями.
Стороны данных треугольников называют ребрами тетраэдра. А их вершины – вершинами тетраэдра

Тетраэдр имеет 4 грани, 6 ребер и 4 вершины.
Два ребра, которые не имеют общей вершины, называются противоположными.
Зачастую для удобства, одну из граней тетраэдра называют основанием, а оставшиеся три грани боковыми гранями.

Найти длину высоты тетраэдра по векторамНо также верно и утверждение, что любая произвольная треугольная пирамида является тетраэдром. Тогда также верно, что тетраэдром называют пирамиду, в основании которой лежит треугольник.

Высотой тетраэдра называется отрезок, который соединяет вершину с точкой, расположенной на противоположной грани и перпендикулярный к ней.
Медианой тетраэдра называется отрезок, который соединяет вершину с точкой пересечения медиан противоположной грани.
Бимедианой тетраэдра называется отрезок, который соединяет середины скрещивающихся ребер тетраэдра.

Так как тетраэдр – это пирамида с треугольным основанием, то объем любого тетраэдра можно рассчитать по формуле

  • S – площадь любой грани,
  • H – высота, опущенная на эту грань

Видео:Нахождение длины вектора через координаты. Практическая часть. 9 класс.Скачать

Нахождение длины вектора через координаты. Практическая часть. 9 класс.

Правильный тетраэдр – частный вид тетраэдра

Тетраэдр, у которого все грани равносторонние треугольник называется правильным.
Свойства правильного тетраэдра:

  • Все грани равны.
  • Все плоские углы правильного тетраэдра равны 60°
  • Так как каждая его вершина является вершиной трех правильных треугольников, то сумма плоских углов при каждой вершине равна 180°
  • Любая вершина правильного тетраэдра проектируется в ортоцентр противоположной грани (в точку пересечения высот треугольника).

Найти длину высоты тетраэдра по векторам

Пусть нам дан правильный тетраэдр ABCD с ребрами равными a . DH – его высота.
Произведем дополнительные построения BM – высоту треугольника ABC и DM – высоту треугольника ACD .
Высота BM равна BM и равна Найти длину высоты тетраэдра по векторам
Рассмотрим треугольник BDM , где DH , являющаяся высотой тетраэдра также и высота данного треугольника.
Высоту треугольника, опущенную на сторону MB можно найти, воспользовавшись формулой

Найти длину высоты тетраэдра по векторам, где
BM=Найти длину высоты тетраэдра по векторам, DM=Найти длину высоты тетраэдра по векторам, BD=a,
p=1/2 (BM+BD+DM)= Найти длину высоты тетраэдра по векторам
Подставим эти значения в формулу высоты. Получим
Найти длину высоты тетраэдра по векторам
Вынесем 1/2a. Получим

Найти длину высоты тетраэдра по векторам
Найти длину высоты тетраэдра по векторам
Применим формулу разность квадратов
Найти длину высоты тетраэдра по векторам
После небольших преобразований получим
Найти длину высоты тетраэдра по векторам
Найти длину высоты тетраэдра по векторам
Объем любого тетраэдра можно рассчитать по формуле
Найти длину высоты тетраэдра по векторам,
где Найти длину высоты тетраэдра по векторам,
Найти длину высоты тетраэдра по векторам
Подставив эти значения, получим
Найти длину высоты тетраэдра по векторам

Таким образом формула объема для правильного тетраэдра

Найти длину высоты тетраэдра по векторам

где a –ребро тетраэдра

Видео:Задача 6. Вычислить объём тетраэдра с вершинами в точках и его высоту, опущенную из вершины на граньСкачать

Задача 6. Вычислить объём тетраэдра с вершинами в точках и его высоту, опущенную из вершины на грань

Вычисление объема тетраэдра, если известны координаты его вершин

Пусть нам даны координаты вершин тетраэдра
Найти длину высоты тетраэдра по векторам
Из вершины Найти длину высоты тетраэдра по векторампроведем векторы Найти длину высоты тетраэдра по векторам, Найти длину высоты тетраэдра по векторам, Найти длину высоты тетраэдра по векторам.
Для нахождения координат каждого из этих векторов вычтем из координаты конца соответствующую координату начала. Получим
Найти длину высоты тетраэдра по векторам
Найти длину высоты тетраэдра по векторам
Найти длину высоты тетраэдра по векторам

Геометрических смысл смешенного произведения трех векторов заключается в следующем – смешенное произведение трех векторов равно объему параллелепипеда, построенного на этих векторах.
Так как тетраэдр есть пирамида с треугольным основанием, а объем пирамиды в шесть раз меньше объема параллелепипеда, то тогда имеет смысл следующая формула

Найти длину высоты тетраэдра по векторам

Видео:Вычисляем высоту через координаты вершин 1Скачать

Вычисляем высоту через координаты вершин  1

Свойства

Зная высоту тетраэдра, можно вычислить его ребро, перевернув формулу так, чтобы ребро было равно корню из трех вторых, умноженному на высоту. a=√(3/2) h

Выразив таким образом ребро тетраэдра через его высоту, можно найти периметр тетраэдра, то есть длину всех его ребер, площадь одной грани и площадь полной поверхности тетраэдра. Периметр тетраэдра будет равен шести длинам его ребер, площадь одной грани – ребру в квадрате, умноженному на корень из трех, деленный на четыре, а площадь полной поверхности – четырем площадям одной грани. P=6a=6√(3/2) h S_1=(√3 a^2)/4=(3√3 h^2)/8 S_(п.п.)=4S_1=(3√3 h^2)/2

Через высоту, подставленную вместо ребра в определенном соотношении можно найти соответственно и радиусы вписанной и описанной окружностей в основание тетраэдра. r=h/(2√2) R=h/√2

Апофема тетраэдра проходит из вершины к противоположной стороне грани под прямым углом и рассчитать ее можно как из прямоугольного треугольника с боковым ребром по той же грани, так и из прямоугольного треугольника во внутреннем пространстве тетраэдра с высотой. l=3h/(2√2)

Чтобы вычислить объем тетраэдра, необходимо возвести в куб ребро и разделить полученное значение на шесть корней из двух, либо подставить вместо ребра корень из трех вторых, умноженный на высоту и преобразовать формулу объема для высоты. V=(√3 h^3)/8

В тетраэдр можно вписать сферу или описать сферу около него, тогда, зная высоту, чтобы вычислить радиусы вписанной и описанной сфер, необходимо воспользоваться следующими, уже готовыми формулами. (рис.60.2, 60.3) r_1=h/4 R_1=3h/4

🎬 Видео

Вычисляем угол через координаты вершинСкачать

Вычисляем угол через координаты вершин

§20 Нахождение объёма параллелипипедаСкачать

§20 Нахождение объёма параллелипипеда

Площадь параллелограмма, построенного на данных векторахСкачать

Площадь параллелограмма, построенного на данных векторах

18+ Математика без Ху!ни. Скалярное произведение векторов. Угол между векторами.Скачать

18+ Математика без Ху!ни. Скалярное произведение векторов. Угол между векторами.

Найдите площадь треугольника АВС, если А(5;2;6), В(1;2;0), С(3;0;3)Скачать

Найдите площадь треугольника АВС, если А(5;2;6), В(1;2;0), С(3;0;3)

Угол между векторами | МатематикаСкачать

Угол между векторами | Математика

Уравнения стороны треугольника и медианыСкачать

Уравнения стороны треугольника и медианы

Урок 3. Произведение векторов и загадочный угол между векторами. Высшая математика | TutorOnlineСкачать

Урок 3. Произведение векторов и загадочный угол между векторами. Высшая математика | TutorOnline

Математика без Ху!ни. Угол между векторами, применение скалярного произведения.Скачать

Математика без Ху!ни. Угол между векторами, применение скалярного произведения.

Вычисление медианы, высоты и угла по координатам вершинСкачать

Вычисление медианы, высоты и угла по координатам вершин

Смешанное произведение векторовСкачать

Смешанное произведение векторов

№362. Точка К — середина ребра ВС тетраэдра ABCD. Разложите вектор DK по векторамСкачать

№362. Точка К — середина ребра ВС тетраэдра ABCD. Разложите вектор DK по векторам

18+ Математика без Ху!ни. Векторное произведение.Скачать

18+ Математика без Ху!ни. Векторное произведение.

Площадь треугольника, построенного на векторахСкачать

Площадь треугольника, построенного на векторах
Поделиться или сохранить к себе: