Найти длину высоты параллелепипеда опущенной из вершины на основание по векторам

Примеры

Пример 1. Проверим, лежат ли точки A (1, −1, 1) , B (2, 2, 3) , C (3, 1, 3) и D (0, 0, 1) в одной плоскости.

Решение. Вычисляем смешанное произведение векторов A B = , A C = и A D = :

( A B , A C , A D ) =
132
222
−110
= 1 · ( −2) − 3 · 2 + 2 · 4 = 0 .

Так как смешанное произведение равно нулю, то векторы компланарны и, следовательно, точки лежат в одной плоскости.

Пример 2. Даны вершины тетраэдра A (2, 3, 1) , B (4, 1, −2) , C (6, 3, 7) и D ( −5, −4, 8) . Найдем длину высоты, опущенной из вершины D на плоскость основания A B C (рис. 1).

Найти длину высоты параллелепипеда опущенной из вершины на основание по векторам

Решение. Из вершины A проводим векторы A B = , A C = и A D = .

В соответствии с геометрическим смыслом смешанногопроизведения имеем:

V тетр. =

1
6

· V параллелеп =

1
6

| ( A B , A C , A D ) | .

С другой стороны,

V тетр. =

1
3

S ΔABC · h , &nbsp где &nbsp S ΔABC =

1
2

| [ A B , A C ] | .

Сравнивая эти равенства, получаем

h =

3 V тетр
S ΔABC

.

1. Вычисляем смешанное произведение:

( A B , A C , A D ) =
2−2−3
406
−7−77
= 2 · 42 + 2 · 70 + ( −3) · ( −28) = 308 .

Следовательно, V тетр. = 308/6 .

2. Вычисляем координаты векторного произведения:

Видео:Даны вершины пирамиды A, B, C, D. Найдите объём пирамиды и высоту, опущенную на грань ACDСкачать

Даны вершины пирамиды A, B, C, D. Найдите объём пирамиды и высоту, опущенную на грань ACD

Смешанное, векторное и скалярное произведение векторов

Задача:

Найти длину высоты параллелепипеда опущенной из вершины на основание по векторамДан параллелепипед ABCDA1B1C1D1, построен на векторах AB(4,3,0), AD(2,1,2) и AA1(-3,-2,5).
Найти:

Решение:

  • а) Объем параллелепипеда будем искать через смешанное произведение векторов (AB AD AA1). Мы знаем, что модуль смешанного произведения векторов равен объему параллелепипеда, построенному на этих векторах.
(AB AD AA1)=
430
212
-3-25
=20 — 18 + 0 — 0 — 30 + 16=-12.

Мы нашли смешанное произведение, ещё надо его взять по модулю и найдём объем параллелепипеда:
VABCDA1B1C1D1=12.
б) Площадь, как мы уже знаем, можно искать через векторное произведение векторов. Грань ABCD построена на векторах AB и AD, найдём их векторное произведение. SABCD= |[AB AD]|.

[AB AD]=
ijk
430
212
=6i — 8j — 2k,

Теперь найдём модуль этого вектора:

SABCD= |[AB AD]|=√(36+64+4)=2√(26).
[AD AA1]=
ijk
212
-3-25
=9i — 16jk,

SADD1A1= |[AD AA1]|=√(81+256+1)=13√2.

  • в) Что бы найти длину высоты, проведенной из вершины A1 на грань ABCD, используем формулу для нахождения объема параллелепипеда V=h SABCD. С этой формулы видим:
    h=
    V
    SABCD
    =
    12
    2√(26)
    =
    6
    √(26)
    =
    3√(26)
    13
    .
  • г) Косинус угла λ1, между ребром AB и диагональю B1D будем высчитывать с помощью скалярного произведения векторов
    cos(λ1)=
    (AB B1D)
    |AB| * |B1D|
    .

    Координаты вектора AB мы имеем, от вектор B1D надо найти. Для этого используем следующую формулу:
    B1D = B1A1 + A1A + AD = — AB — AA1 + AD1 = — (4, 3, 0) — (-3, -2, 5) + (2, 1, 2); (Не забывайте, что всё это векторы, надо сложить их соответствующие координаты. )
    Сделав вычисления по этой формуле, мы найдём, что вектор B1D имеет координаты (1, 0, -3). Теперь надо найти длину векторов AB и B1D:
    |AB|=√(16+9+0)=5, |B1D|=√(1+0+9)=√(10).
    Найдём скалярное произведение векторов AB и B1D, (AB B1D)=4*1 + 3*0 + 0*(-3)=4.
    Теперь, имея все данные мы можем подставить их в нашу формулу:

    cos(λ1)=
    4
    5√(10)
    =
    2√(10)
    25
    .

    д) Что бы найти cos(λ2), мы используем то, что угол между двумя плоскостями равен углу между перпендикулярами до этих плоскостей. А как мы знаем, векторное произведение — это и есть перпендикуляр до плоскости перемножаемых векторов. Поэтому в роле перпендикуляра к плоскости ADD1A1 мы можем взять вектор [AD AA1], который мы нашли в пункте б), и знаем, что его координаты (9, -16, -1), точно также и для плоскости ABCD — вектор [AB AD] с координатами (6, -8, -2).
    Теперь нам остаётся, как в предыдущем варианте найти только косинус угла между двумя векторами, координаты которых нам известны.

    cos(λ2)=
    6*9 + (-8)*(-16) + (-2)*(-1)
    2√(26) * 13√(2)
    =
    46√(13)
    169
    .

    Вот таким не хитрым способом мы и нашли косинус угла между гранями ABCD и ADD1A1.

    Видео:Вычисляем высоту через координаты вершин 1Скачать

    Вычисляем высоту через координаты вершин  1

    Задача 61425 Объём параллелепипеда, построенного на.

    Условие

    Найти длину высоты параллелепипеда опущенной из вершины на основание по векторам

    Объём параллелепипеда, построенного на векторах a, b, c, равен V = 12.
    Площадь параллелограмма, построенного на векторах a, b, равна S = 3. Найти высоту
    параллелепипеда, построенного на векторах 2a + b, a − b, a + b + 4c, которая опущена из
    конца третьего вектора на грань, построенную на первых двух.

    Решение

    Найти длину высоты параллелепипеда опущенной из вершины на основание по векторам

    По условию:
    S_(данного параллелограмма)=3 ⇒[m] |[vec × vec]|=3[/m]

    Найдем векторное произведение:

    Найдем смешанное произведение

    V_( параллелепипеда)=S_( основания )*Н=S_( параллелограмма)*Н

    🎥 Видео

    Математика без Ху!ни. Смешанное произведение векторовСкачать

    Математика без Ху!ни. Смешанное произведение векторов

    §20 Нахождение объёма параллелипипедаСкачать

    §20 Нахождение объёма параллелипипеда

    1. Векторы и параллелограмм задачи №1Скачать

    1. Векторы и параллелограмм задачи №1

    Площадь параллелограмма по векторамСкачать

    Площадь параллелограмма по векторам

    Площадь параллелограмма, построенного на данных векторахСкачать

    Площадь параллелограмма, построенного на данных векторах

    Найдите длины диагоналей параллелограмма, построенного на векторах a=(1;-1;-4) и b=(-5;3;8)Скачать

    Найдите длины диагоналей параллелограмма, построенного на векторах a=(1;-1;-4) и b=(-5;3;8)

    Найдите площадь треугольника АВС, если А(5;2;6), В(1;2;0), С(3;0;3)Скачать

    Найдите площадь треугольника АВС, если А(5;2;6), В(1;2;0), С(3;0;3)

    Решение задач на векторное и смешанное произведения векторовСкачать

    Решение задач на векторное и смешанное произведения векторов

    18+ Математика без Ху!ни. Векторное произведение.Скачать

    18+ Математика без Ху!ни. Векторное произведение.

    Нахождение длины вектора через координаты. Практическая часть. 9 класс.Скачать

    Нахождение длины вектора через координаты. Практическая часть. 9 класс.

    Найдите площадь параллелограмма, построенного на векторахСкачать

    Найдите площадь параллелограмма, построенного на векторах

    КАК НАЙТИ ВЫСОТУ ПРЯМОУГОЛЬНОГО ПАРАЛЛЕЛЕПИПЕДА, ЕСЛИ ИЗВЕСТЕН ОБЪЕМ, ДЛИНА И ШИРИНА? Пример 5 классСкачать

    КАК НАЙТИ ВЫСОТУ ПРЯМОУГОЛЬНОГО ПАРАЛЛЕЛЕПИПЕДА, ЕСЛИ ИЗВЕСТЕН ОБЪЕМ, ДЛИНА И ШИРИНА? Пример 5 класс

    Высшая математика. 4 урок. Аналитическая геометрия. Вычисление объема тетраэдра.Скачать

    Высшая математика. 4 урок. Аналитическая геометрия. Вычисление объема тетраэдра.

    Площадь треугольника, построенного на векторахСкачать

    Площадь треугольника, построенного на векторах

    Решение, найти высоту параллелепипеда, построенного на векторах a, b, c пример 18 Высшая математикаСкачать

    Решение, найти высоту параллелепипеда, построенного на векторах a, b, c пример 18 Высшая математика

    Угол между векторами | МатематикаСкачать

    Угол между векторами | Математика

    Решение, найти высоту параллелепипеда, построенного на векторах a, b, c пример 17 Высшая математикаСкачать

    Решение, найти высоту параллелепипеда, построенного на векторах a, b, c пример 17 Высшая математика

    §17 Смешанное произведение векторовСкачать

    §17 Смешанное произведение векторов
  • Поделиться или сохранить к себе: