Задача:
Дан параллелепипед ABCDA1B1C1D1, построен на векторах AB(4,3,0), AD(2,1,2) и AA1(-3,-2,5).
Найти:
Решение:
- а) Объем параллелепипеда будем искать через смешанное произведение векторов (AB AD AA1). Мы знаем, что модуль смешанного произведения векторов равен объему параллелепипеда, построенному на этих векторах.
(AB AD AA1) | = |
| = | 20 — 18 + 0 — 0 — 30 + 16 | = | -12 | . |
---|
Мы нашли смешанное произведение, ещё надо его взять по модулю и найдём объем параллелепипеда:
VABCDA1B1C1D1=12.
б) Площадь, как мы уже знаем, можно искать через векторное произведение векторов. Грань ABCD построена на векторах AB и AD, найдём их векторное произведение. SABCD= |[AB AD]|.
[AB AD] | = |
| = | 6i — 8j — 2k | , |
---|
Теперь найдём модуль этого вектора:
SABCD= |[AB AD]|=√ | (36+64+4) | =2√(26). |
---|
[AD AA1] | = |
| = | 9i — 16j — k | , |
---|
SADD1A1= |[AD AA1]|=√(81+256+1)=13√2.
h | = |
| = |
| = |
| = |
| . |
---|
cos(λ1) | = |
| . |
---|
Координаты вектора AB мы имеем, от вектор B1D надо найти. Для этого используем следующую формулу:
B1D = B1A1 + A1A + AD = — AB — AA1 + AD1 = — (4, 3, 0) — (-3, -2, 5) + (2, 1, 2); (Не забывайте, что всё это векторы, надо сложить их соответствующие координаты. )
Сделав вычисления по этой формуле, мы найдём, что вектор B1D имеет координаты (1, 0, -3). Теперь надо найти длину векторов AB и B1D:
|AB|=√(16+9+0)=5, |B1D|=√(1+0+9)=√(10).
Найдём скалярное произведение векторов AB и B1D, (AB B1D)=4*1 + 3*0 + 0*(-3)=4.
Теперь, имея все данные мы можем подставить их в нашу формулу:
cos(λ1) | = |
| = |
| . |
---|
д) Что бы найти cos(λ2), мы используем то, что угол между двумя плоскостями равен углу между перпендикулярами до этих плоскостей. А как мы знаем, векторное произведение — это и есть перпендикуляр до плоскости перемножаемых векторов. Поэтому в роле перпендикуляра к плоскости ADD1A1 мы можем взять вектор [AD AA1], который мы нашли в пункте б), и знаем, что его координаты (9, -16, -1), точно также и для плоскости ABCD — вектор [AB AD] с координатами (6, -8, -2).
Теперь нам остаётся, как в предыдущем варианте найти только косинус угла между двумя векторами, координаты которых нам известны.
cos(λ2) | = |
| = |
| . |
---|
Вот таким не хитрым способом мы и нашли косинус угла между гранями ABCD и ADD1A1.
Видео:№361. Диагонали параллелепипеда ABCDA1B1C1D1 пересекаются в точке О. Разложите векторыСкачать
Найти диагональ параллелепипеда по векторам
4.6. Задачи с решениями
1. В параллелепипеде обозначим . Выразить через векторы a, b, с диагонали параллелепипеда и диагонали граней.
Решение. Сделаем чертёж. Пользуясь правилом сложения векторов, получаем:
AC = AB + AD = b + с, AC1 = AA1 + AC = a + b + с .
Из того же треугольника AA1C получаем: A1C = AC — AA1 = b + с — a.
Чтобы найти B1C, заметим, что B1C = A1D, так как у этих векторов совпадают и длины, и направления. Поэтому B1C = A1D = AD — AA1 = с — a.
Аналогично: DC1 = AB1 = AA1 + AB = a + b .
2. Найти длину и направляющие косинусы вектора AB, если его начало и конец находятся в точках A(7, 6), B(2 — 6).
Решение. Так как каждая точка задана двумя координатами, то рассматривается вектор на плоскости. Находим его координаты, вычитая из координат точки B (конца вектора) координаты точки A (начала вектора): AB = (2 — 7, —6 — 6) = (—5, —12). Находим длину: |AB | = 13, направляющие косинусы: .
3. Найти координату z вектора a = (1, —3, z), если известно, что она отрицательна, а модуль |a| = . Где окажется конец вектора a, если его отложить из точки M(5, —2, 1)?
Решение. По условию, . поэтому ZN = —8.
4. Найти расстояние между точками A(5, —2, 4) и B( —1, 0, 6).
Решение. Расстояние равно длине вектора AB. Найдём:
5. При каких p, q векторы a = (2,p, — 1), b = qi + 9j + 3k будут коллинеарными?
Видео:Найдите длины диагоналей параллелограмма, построенного на векторах a=(1;-1;-4) и b=(-5;3;8)Скачать
Правило параллелепипеда. Разложение вектора
Вы будете перенаправлены на Автор24
Видео:§20 Нахождение объёма параллелипипедаСкачать
Правило параллелепипеда
Для правила сложения трех векторов рассмотрим следующую задачу.
Дан прямоугольный параллелепипед $ABCDA_1B_1C_1D_1$. Доказать, что $overrightarrow+overrightarrow+overrightarrow=overrightarrow$
Доказательство.
Воспользуемся свойством правила треугольника сложения двух векторов $overrightarrow+overrightarrow=overrightarrow$, получим:
Так как $overrightarrow=overrightarrow, overrightarrow=overrightarrow$
Из этой задачи получаем следующее правило для нахождения сложения трех векторов. Чтобы найти сумму трех векторов $overrightarrow,overrightarrow и overrightarrow$ нужно от произвольной точки $O$ отложить векторы $overrightarrow=overrightarrow$, $overrightarrow=overrightarrow$ и $overrightarrow=overrightarrow$ и построим параллелепипед на этих векторах. Тогда вектор диагонали $overrightarrow$ и будет суммой этих трех векторов. Это правило называется правилом параллелепипеда для сложения трех векторов.
Видео:Площадь параллелограмма по векторамСкачать
Разложение вектора по двум неколлинеарным векторам
Вспомним сначала, какие векторы называются компланарными.
Два вектора, которые параллельны одной плоскости называются компланарными.
Произвольный вектор $overrightarrow
$ можно разложить по трем некомпланарным векторам $overrightarrow, overrightarrow$ и $overrightarrow$ с единственными коэффициентами разложения.
Математически это можно записать следующим образом
Доказательство.
Существование: Пусть нам даны три некомпланарных вектора $overrightarrow, overrightarrow$ и $overrightarrow$. Выберем произвольную точку $O$ и построим следующие векторы:
[overrightarrow=overrightarrow, overrightarrow=overrightarrow, overrightarrow=overrightarrow и overrightarrow
=overrightarrow]
Рассмотрим следующий рисунок:
Произведем следующие дополнительные построения. Проведем через точку $P$ прямую, которая будет параллельна вектору $overrightarrow$. Пусть эта прямая пересекает плоскость $OAB$ в точке $P_1$. Далее, проведем через точку $P_1$ прямую, которая будет параллельна вектору $overrightarrow$. Пусть эта прямая пересекает прямую $OA$ в точке $P_2$ (смотри рисунок выше).
Воспользуемся свойством правила треугольника сложения двух векторов $overrightarrow+overrightarrow=overrightarrow$, получим:
Так как векторы $overrightarrow$ и $overrightarrow$ коллинеарны, то
Так как векторы $overrightarrow
$ и $overrightarrow$ коллинеарны, то
Так как векторы $overrightarrow
$ и $overrightarrow$ коллинеарны, то
Тогда, получаем, что
Существование разложения доказано.
Единственность: Предположим противное. Пусть существует еще одно разложение вектора $overrightarrow
$ по векторам $overrightarrow, overrightarrow$ и $overrightarrow$:
Вычтем эти разложения друг из друга
Из этого получаем
Теорема доказана.
💡 Видео
Площадь параллелограмма, построенного на данных векторахСкачать
10 класс, 44 урок, Правило параллелепипедаСкачать
№359. Дан параллелепипед ABCDA1B1C1D1. а) Разложите вектор BD1 по векторам ВА, ВС и ВВ1.Скачать
Правило параллелепипеда для векторовСкачать
Найдите площадь параллелограмма, построенного на векторахСкачать
44. Правило параллелепипедаСкачать
№358. Дан параллелепипед ABCDA1B1C1D1. Назовите вектор, начало и конец которого являются вершинамиСкачать
1. Векторы и параллелограмм задачи №1Скачать
№748. Диагонали параллелограмма ABCD пересекаются в точке O. Равны ли векторы?Скачать
Найти угол между векторами и площадь параллелограмма, построенного на этих векторахСкачать
Сумма квадратов диагоналей параллелограммаСкачать
№330. Нарисуйте параллелепипед ABCDA1B1C1D1 и обозначьте векторы C1D1, BA1Скачать
Решение, найти высоту параллелепипеда, построенного на векторах a, b, c пример 17 Высшая математикаСкачать
2. Векторы в параллелограмме Решение задач №2Скачать
Математика без Ху!ни. Смешанное произведение векторовСкачать
Угол между векторами. 9 класс.Скачать