Медиана треугольника как найти сторону

Узнать ещё

Знание — сила. Познавательная информация

Видео:Длина медианы треугольникаСкачать

Длина медианы треугольника

По сторонам и медиане найти сторону треугольника

Чтобы по сторонам и медиане найти сторону треугольника, достаточно знать ход решения задачи. Учить дополнительную формулу не обязательно.

По двум сторонам и медиане найти третью сторону треугольника — задача, обратная нахождению медианы треугольника по трем его сторонам .

Сначала рассмотрим, как по сторонам и медиане найти сторону треугольника, в общем виде.

Медиана треугольника как найти сторонуПусть в треугольнике ABC известны стороны AB=c, AC=b и медиана BF=m.

На луче BF отложим отрезок FD, FD=BF и соединим точку D с точками A и C.

Медиана треугольника как найти сторону

Поскольку в полученном четырехугольнике ABCD диагонали точкой пересечения делятся пополам, то ABCD — параллелограмм (по признаку). А значит, мы можем применить свойство диагоналей параллелограмма: сумма квадратов диагоналей параллелограмма равна сумме квадратов его сторон. Имеем: AC²+BD²=2(AB²+BC²). Отсюда b²+(2m)²=2(c²+BC²), b²+4m²=2c²+2BC², BC²=(b²+4m²-2c²)/2.

Переходим к решению конкретной задачи.

По двум сторонам 6 см и 8 см и медиане,проведенной к третьей стороне, найти неизвестную сторону треугольника. Длина медианы равна √46 см.

Пусть AB=6 см, BC=8 см, BF=√46 см. Рассуждая аналогично, получаем: AC²+BD²=2(AB²+BC²), AC²+(2√46)²=2(6²+8²), AC²+4∙46=200, AC²=200-184=16, AC=4 см.

Видео:Задача найти сторону равностороннего треугольника по медианеСкачать

Задача найти сторону равностороннего треугольника  по медиане

Найти сторону треугольника через медиану и стороны

Найти сторону треугольника через медиану и стороны — задача, обратная нахождению медианы через стороны.

Решается она аналогично, то есть с помощью дополнительного построения и применения свойства диагоналей параллелограмма.

Стороны треугольника равны 6 см и 8 см. Медиана, проведенная к его третьей стороне, равна √46 см. Найти неизвестную сторону треугольника.

Медиана треугольника как найти сторону

BO — медиана, BO=√46 см.

1) На луче BO отложим отрезок OD,

Медиана треугольника как найти сторону

2) Соединим точку D с точками A и C.

3) AO=CO (так как BO — медиана по условию), OD=BO (по построению).

Так как диагонали четырехугольника ABCD в точке пересечения делятся пополам, то ABCD — параллелограмм (по признаку).

Медиана треугольника как найти сторону

Медиана треугольника как найти сторону

Медиана треугольника как найти сторону

Медиана треугольника как найти сторону

Медиана треугольника как найти сторону

Медиана треугольника как найти сторону

Медиана треугольника как найти сторону

Если ввести обозначения BC=a, AB=c, AC=b, BO=mb, то получим формулу для нахождения стороны треугольника через медиану и две другие стороны:

Видео:Равнобедренный треугольник. Свойства равнобедренного треугольника | Математика | TutorOnlineСкачать

Равнобедренный треугольник. Свойства равнобедренного треугольника | Математика | TutorOnline

Определение и свойства медианы равностороннего треугольника

В данной статье мы рассмотрим определение и свойства медианы равностороннего треугольника, а также разберем примеры решения задач для закрепления изложенного материала.

Видео:Уравнения стороны треугольника и медианыСкачать

Уравнения стороны треугольника и медианы

Определение медианы

Медиана – это отрезок, соединяющий вершину треугольника и середину противоположной стороны.

Медиана треугольника как найти сторону

Треугольник называется равносторонним, если все его стороны равны (AB = BC = AC).

Видео:Задание 15 ОГЭ. Медиана равностороннего треугольникаСкачать

Задание 15 ОГЭ. Медиана равностороннего треугольника

Свойства медианы равностороннего треугольника

Свойство 1

Любая медиана в равностороннем треугольнике одновременно является и высотой, и серединным перпендикуляром, и биссектрисой угла, из которого проведена.

Медиана треугольника как найти сторону

    BD – медиана, высота и серединный перпендикуляр к стороне AC, а также биссектриса угла ABC;

Свойство 2

Все три медианы в равностороннем треугольнике равны между собой. Т.е. AF = BD = CE.

Медиана треугольника как найти сторону

Свойство 3

Медианы в равностороннем треугольнике пресекаются в одной точке, которая делит их в отношении 2:1.

Медиана треугольника как найти сторону

Свойство 4

Любая медиана равностороннего треугольника делит его на два равных по площади (равновеликих) прямоугольных треугольника. Т.е. S1 = S2.

Медиана треугольника как найти сторону

Свойство 5

Равносторонний треугольник делится тремя медианами на шесть равновеликих прямоугольных треугольников. Т.е. S1 = S2 = S3 = S4 = S5 = S6.

Медиана треугольника как найти сторону

Свойство 6

Точка пересечения медиан в равностороннем треугольнике является центром описанной вокруг и вписанной окружностей.

Медиана треугольника как найти сторону

  • r – радиус вписанной окружности;
  • R – радиус описанной окружности;
  • R = 2r (следует из Свойства 3).

Свойство 7

Длину медианы равностороннего треугольника можно вычислить по формуле:

Медиана треугольника как найти сторону

a – сторона треугольника.

Видео:Высота, биссектриса, медиана. 7 класс.Скачать

Высота, биссектриса, медиана. 7 класс.

Примеры задач

Задача 1
Вычислите длину медианы равностороннего треугольника, если известно, что его сторона равна 6 см.

Решение
Для нахождения требуемого значения применим формулу выше:

Медиана треугольника как найти сторону

Задача 2
Самая большая сторона одного из треугольников, образованных в результате пересечения трех медиан в равностороннем треугольнике, равняется 8 см. Найдите длину стороны данного треугольника.

Решение
Нарисуем чертеж согласно условиям задачи.

Медиана треугольника как найти сторону

Из Свойства 5 мы знаем, что в результате пересечения всех медиан образуются 6 прямоугольных треугольников.

  • BG = 8 см (самая большая сторона, является гипотенузой △BFG);
  • FG = 4 см (катет △BFG, в 2 раза меньше гипотенузы BG – следует из Свойства 3).

Применяем теорему Пифагора, чтобы найти длину второго катета BF:
BF 2 = BG 2 – FG 2 = 8 2 – 4 2 = 48 см 2 .
Следовательно, BF ≈ 6,93 см.

BF равняется половине стороны BC (т.к. медиана делит сторону треугольника пополам), следовательно, BC ≈ 13,86 см.

🎬 Видео

7 класс, 17 урок, Медианы, биссектрисы и высоты треугольникаСкачать

7 класс, 17 урок, Медианы, биссектрисы и высоты треугольника

8. Медиана треугольника и её свойства.Скачать

8. Медиана треугольника и её свойства.

Как найти медиану треугольника по его сторонамСкачать

Как найти медиану треугольника по его сторонам

Известна биссектриса равностороннего треугольника. Найти сторону этого треугольника. ОГЭ №16Скачать

Известна биссектриса равностороннего треугольника. Найти сторону этого треугольника. ОГЭ №16

Как найти медиану, зная стороны треугольника? Удвоение медианы.Скачать

Как найти медиану, зная стороны треугольника? Удвоение медианы.

№158. Основание равнобедренного треугольника равно 8 см. Медиана, проведенная к боковой сторонеСкачать

№158. Основание равнобедренного треугольника равно 8 см. Медиана, проведенная к боковой стороне

ЗАДАЧА ДЛЯ ОТЛИЧНИКОВ | Как найти медиану треугольника через стороныСкачать

ЗАДАЧА ДЛЯ ОТЛИЧНИКОВ | Как найти медиану треугольника через стороны

Формулы для медианы треугольникаСкачать

Формулы для медианы треугольника

7 класс, 18 урок, Свойства равнобедренного треугольникаСкачать

7 класс, 18 урок, Свойства равнобедренного треугольника

Задание 9 ОГЭ от ФИПИСкачать

Задание 9 ОГЭ от ФИПИ

Построение медианы в треугольникеСкачать

Построение медианы в треугольнике

Как найти длину биссектрисы, медианы и высоты? | Ботай со мной #031 | Борис ТрушинСкачать

Как найти длину биссектрисы, медианы и высоты?  | Ботай со мной #031 | Борис Трушин

Геометрия 7 класс (Урок№12 - Медианы треугольника. Биссектрисы треугольника. Высоты треугольника.)Скачать

Геометрия 7 класс (Урок№12 - Медианы треугольника. Биссектрисы треугольника. Высоты треугольника.)

Треугольник с перпендикулярными медианами. Как найти третью сторону по известным двум?Скачать

Треугольник с перпендикулярными медианами. Как найти третью сторону по известным двум?
Поделиться или сохранить к себе: