Найти большее основание трапеции при вписанной окружности

Трапеция. Формулы, признаки и свойства трапеции

Параллельные стороны называются основами трапеции, а две другие боковыми сторонами

Так же, трапецией называется четырехугольник, у которого одна пара противоположных сторон параллельна, и стороны не равны между собой.

  • Основы трапеции — параллельные стороны
  • Боковые стороны — две другие стороны
  • Средняя линия — отрезок, соединяющий середины боковых сторон.
  • Равнобедренная трапеция — трапеция, у которой боковые стороны равны
  • Прямоугольная трапеция — трапеция, у которой одна из боковых сторон перпендикулярна основам
Найти большее основание трапеции при вписанной окружностиНайти большее основание трапеции при вписанной окружности
Рис.1Рис.2

Содержание
  1. Основные свойства трапеции
  2. Сторона трапеции
  3. Формулы определения длин сторон трапеции:
  4. Средняя линия трапеции
  5. Формулы определения длины средней линии трапеции:
  6. Высота трапеции
  7. Формулы определения длины высоты трапеции:
  8. Диагонали трапеции
  9. Формулы определения длины диагоналей трапеции:
  10. Площадь трапеции
  11. Формулы определения площади трапеции:
  12. Периметр трапеции
  13. Формула определения периметра трапеции:
  14. Окружность описанная вокруг трапеции
  15. Формула определения радиуса описанной вокруг трапеции окружности:
  16. Окружность вписанная в трапецию
  17. Формула определения радиуса вписанной в трапецию окружности
  18. Другие отрезки разносторонней трапеции
  19. Формулы определения длин отрезков проходящих через трапецию:
  20. Трапеция. Свойства трапеции
  21. Свойства трапеции
  22. Свойства и признаки равнобедренной трапеции
  23. Вписанная окружность
  24. Площадь
  25. Узнать ещё
  26. Трапеция вписана в окружность
  27. 💡 Видео

Видео:Планиметрия 27 | mathus.ru | окружность, касающаяся основания трапеции и вписанной в нее окружностиСкачать

Планиметрия 27 | mathus.ru | окружность, касающаяся основания трапеции и вписанной в нее окружности

Основные свойства трапеции

AK = KB, AM = MC, BN = ND, CL = LD

3. Средняя линия трапеции параллельна основаниям и равна их полусумме:

m =a + b
2

BC : AD = OC : AO = OB : DO

d 1 2 + d 2 2 = 2 a b + c 2 + d 2

Видео:Трапеция и вписанная окружностьСкачать

Трапеция и вписанная окружность

Сторона трапеции

Формулы определения длин сторон трапеции:

a = b + h · ( ctg α + ctg β )

b = a — h · ( ctg α + ctg β )

a = b + c· cos α + d· cos β

b = a — c· cos α — d· cos β

4. Формулы боковых сторон через высоту и углы при нижнем основании:

с =hd =h
sin αsin β

Видео:Нафиг теорему синусов 3 задание проф. ЕГЭ по математике (часть II)Скачать

Нафиг теорему синусов 3 задание проф. ЕГЭ по математике (часть II)

Средняя линия трапеции

Формулы определения длины средней линии трапеции:

1. Формула определения длины средней линии через длины оснований:

m =a + b
2

2. Формула определения длины средней линии через площадь и высоту:

m =S
h

Видео:Окружность, вписанная в трапециюСкачать

Окружность, вписанная в трапецию

Высота трапеции

Формулы определения длины высоты трапеции:

h = c· sin α = d· sin β

2. Формула высоты через диагонали и углы между ними:

h =sin γ ·d 1 d 2=sin δ ·d 1 d 2
a + ba + b

3. Формула высоты через диагонали, углы между ними и среднюю линию:

h =sin γ ·d 1 d 2=sin δ ·d 1 d 2
2 m2 m

4. Формула высоты трапеции через площадь и длины оснований:

h =2S
a + b

5. Формула высоты трапеции через площадь и длину средней линии:

h =S
m

Видео:Радиус описанной окружности трапецииСкачать

Радиус описанной окружности трапеции

Диагонали трапеции

Формулы определения длины диагоналей трапеции:

d 1 = √ a 2 + d 2 — 2 ad· cos β

d 2 = √ a 2 + c 2 — 2 ac· cos β

2. Формулы диагоналей через четыре стороны:

d 1 =d 2 + ab —a ( d 2 — c 2 )
a — b
d 2 =c 2 + ab —a ( c 2 — d 2 )
a — b

d 1 = √ h 2 + ( a — h · ctg β ) 2 = √ h 2 + ( b + h · ctg α ) 2

d 2 = √ h 2 + ( a — h · ctg α ) 2 = √ h 2 + ( b + h · ctg β ) 2

d 1 = √ c 2 + d 2 + 2 ab — d 2 2

d 2 = √ c 2 + d 2 + 2 ab — d 1 2

Видео:Задание 16. Поиск большего основания трапецииСкачать

Задание 16. Поиск большего основания трапеции

Площадь трапеции

Формулы определения площади трапеции:

1. Формула площади через основания и высоту:

S =( a + b )· h
2

3. Формула площади через диагонали и угол между ними:

S =d 1 d 2· sin γ=d 1 d 2· sin δ
22

4. Формула площади через четыре стороны:

S =a + bc 2 —(( a — b ) 2 + c 2 — d 2)2
22( a — b )

5. Формула Герона для трапеции

S =a + b√ ( p — a )( p — b )( p — a — c )( p — a — d )
| a — b |

где

p =a + b + c + d— полупериметр трапеции.
2

Видео:Задача про трапецию, описанную около окружностиСкачать

Задача про трапецию, описанную около окружности

Периметр трапеции

Формула определения периметра трапеции:

1. Формула периметра через основания:

Видео:Геометрия Задача № 26 Найти радиус вписанной в трапецию окружностиСкачать

Геометрия Задача № 26  Найти радиус вписанной в трапецию окружности

Окружность описанная вокруг трапеции

Формула определения радиуса описанной вокруг трапеции окружности:

1. Формула радиуса через стороны и диагональ:

R =a·c·d 1
4√ p ( p — a )( p — c )( p — d 1)

где

p =a + c + d 1
2

a — большее основание

Видео:Трапеция вписана в окружность. Найти радиус окружностиСкачать

Трапеция вписана в окружность.  Найти радиус окружности

Окружность вписанная в трапецию

Формула определения радиуса вписанной в трапецию окружности

1. Формула радиуса вписанной окружности через высоту:

r =h
2

Видео:Как найти стороны равнобокой трапеции, описанной около трёх попарно касающихся равных окружностей?Скачать

Как найти стороны равнобокой трапеции, описанной около трёх попарно касающихся равных окружностей?

Другие отрезки разносторонней трапеции

Формулы определения длин отрезков проходящих через трапецию:

1. Формула определения длин отрезков проходящих через трапецию:

KM = NL =bKN = ML =aTO = OQ =a · b
22a + b

Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!

Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.

Видео:Трапеция. Практическая часть - решение задачи. 8 класс.Скачать

Трапеция. Практическая часть - решение задачи. 8 класс.

Трапеция. Свойства трапеции

Трапеция – четырехугольник, у которого только одна пара сторон параллельна (а другая пара сторон не параллельна).

Найти большее основание трапеции при вписанной окружности

Параллельные стороны трапеции называются основаниями. Другие две — боковые стороны .
Если боковые стороны равны, трапеция называется равнобедренной .

Найти большее основание трапеции при вписанной окружности

Трапеция, у которой есть прямые углы при боковой стороне, называется прямоугольной .

Найти большее основание трапеции при вписанной окружности

Отрезок, соединяющий середины боковых сторон, называется средней линией трапеции .

Найти большее основание трапеции при вписанной окружности

Видео:Боковые стороны трапеции, описанной около окружности, равны 13 и 1. Найдите среднюю линию трапеции.Скачать

Боковые стороны трапеции, описанной около окружности, равны 13 и 1. Найдите среднюю линию трапеции.

Свойства трапеции

1. Средняя линия трапеции параллельна основаниям и равна их полусумме.

Найти большее основание трапеции при вписанной окружности

2. Биссектриса любого угла трапеции отсекает на её основании (или продолжении) отрезок, равный боковой стороне.

Найти большее основание трапеции при вписанной окружности

3. Треугольники Найти большее основание трапеции при вписанной окружностии Найти большее основание трапеции при вписанной окружности, образованные отрезками диагоналей и основаниями трапеции, подобны.

Коэффициент подобия – Найти большее основание трапеции при вписанной окружности

Отношение площадей этих треугольников есть Найти большее основание трапеции при вписанной окружности.

Найти большее основание трапеции при вписанной окружности

4. Треугольники Найти большее основание трапеции при вписанной окружностии Найти большее основание трапеции при вписанной окружности, образованные отрезками диагоналей и боковыми сторонами трапеции, имеют одинаковую площадь.

Найти большее основание трапеции при вписанной окружности

5. В трапецию можно вписать окружность, если сумма оснований трапеции равна сумме её боковых сторон.

Найти большее основание трапеции при вписанной окружности

6. Отрезок, соединяющий середины диагоналей, равен полуразности оснований и лежит на средней линии.

Найти большее основание трапеции при вписанной окружности

7. Точка пересечения диагоналей трапеции, точка пересечения продолжений её боковых сторон и середины оснований лежат на одной прямой.

Найти большее основание трапеции при вписанной окружности

8. Если сумма углов при любом основании трапеции равна 90°, то отрезок, соединяющий середины оснований, равен их полуразности.

Найти большее основание трапеции при вписанной окружности

Видео:8 класс, 6 урок, ТрапецияСкачать

8 класс, 6 урок, Трапеция

Свойства и признаки равнобедренной трапеции

1. В равнобедренной трапеции углы при любом основании равны.

Найти большее основание трапеции при вписанной окружности

2. В равнобедренной трапеции длины диагоналей равны.

3. Если трапецию можно вписать в окружность, то трапеция – равнобедренная.

Найти большее основание трапеции при вписанной окружности

4. Около равнобедренной трапеции можно описать окружность.

5. Если в равнобедренной трапеции диагонали перпендикулярны, то высота равна полусумме оснований.

Найти большее основание трапеции при вписанной окружности

Видео:Задание 26_Равнобедренная трапеция. Вписанная окружность.Скачать

Задание 26_Равнобедренная трапеция. Вписанная окружность.

Вписанная окружность

Если в трапецию вписана окружность с радиусом Найти большее основание трапеции при вписанной окружностии она делит боковую сторону точкой касания на два отрезка — Найти большее основание трапеции при вписанной окружностии Найти большее основание трапеции при вписанной окружности, то Найти большее основание трапеции при вписанной окружности

Найти большее основание трапеции при вписанной окружности

Видео:найти основание трапеции, средняя линия трапецииСкачать

найти основание трапеции, средняя линия трапеции

Площадь

Найти большее основание трапеции при вписанной окружностиили Найти большее основание трапеции при вписанной окружностигде Найти большее основание трапеции при вписанной окружности– средняя линия

Найти большее основание трапеции при вписанной окружности

Смотрите хорошую подборку задач с трапецией (входят в ГИА и часть В ЕГЭ) здесь и здесь.

Чтобы не потерять страничку, вы можете сохранить ее у себя:

Видео:Основания равнобедренной трапеции равны 72 и 30. Центр окружности, описанной около трапеции... (ЕГЭ)Скачать

Основания равнобедренной трапеции равны 72 и 30. Центр окружности, описанной около трапеции... (ЕГЭ)

Узнать ещё

Знание — сила. Познавательная информация

Видео:В равнобедренной трапеции большее основание равно 25 а боковая сторона равна 10 угол между ними 60°Скачать

В равнобедренной трапеции большее основание равно 25 а боковая сторона равна 10 угол между ними 60°

Трапеция вписана в окружность

Рассмотрим несколько направлений решения задач, в которых трапеция вписана в окружность.

Когда трапецию можно вписать в окружность? Четырехугольник можно вписать в окружность тогда и только тогда, когда сумма его противолежащих углов равна 180º. Отсюда следует, что вписать в окружность можно только равнобокую трапецию.

Радиус окружности, описанной около трапеции, можно найти как радиус окружности, описанной около из одного из двух треугольников, на которые трапецию делит ее диагональ.

Где находится центр окружности, описанной около трапеции? Это зависит от угла между диагональю трапеции и ее боковой стороной.

Найти большее основание трапеции при вписанной окружностиЕсли диагональ трапеции перпендикулярна ее боковой стороне, то центр окружности, описанной около трапеции, лежит на середине ее большего основания. Радиус описанной около трапеции окружности в этом случае равен половине ее большего основания:

Найти большее основание трапеции при вписанной окружности

Найти большее основание трапеции при вписанной окружности

Если диагональ трапеции образует с боковой стороной острый угол, центр окружности, описанной около трапеции лежит внутри трапеции.

Найти большее основание трапеции при вписанной окружности

Если диагональ трапеции образует с боковой стороной тупой угол, центр описанной около трапеции окружности лежит вне трапеции, за большим основанием.

Радиус описанной около трапеции окружности можно найти по следствию из теоремы синусов. Из треугольника ACD

Найти большее основание трапеции при вписанной окружности

Из треугольника ABC

Найти большее основание трапеции при вписанной окружности

Другой вариант найти радиус описанной окружности —

Найти большее основание трапеции при вписанной окружности

Найти большее основание трапеции при вписанной окружности

Найти большее основание трапеции при вписанной окружности

Синусы угла D и угла CAD можно найти, например, из прямоугольных треугольников CFD и ACF:

Найти большее основание трапеции при вписанной окружности

Найти большее основание трапеции при вписанной окружности

Найти большее основание трапеции при вписанной окружностиПри решении задач на трапецию, вписанную в окружность, можно также использовать то, что вписанный угол равен половине соответствующего ему центрального угла. Например,

Найти большее основание трапеции при вписанной окружности

Найти большее основание трапеции при вписанной окружностиКстати, использовать углы COD и CAD можно и для нахождения площади трапеции. По формуле нахождения площади четырехугольника через его диагонали

Найти большее основание трапеции при вписанной окружности

Найти большее основание трапеции при вписанной окружности

В равнобедренном треугольнике AMD углы при основании равны. Внешний угол CMD равен сумме внутренних углов, не смежных с ним:

💡 Видео

Геометрия Равнобокая трапеция вписана в окружность, центр которой принадлежит одному из основанияСкачать

Геометрия Равнобокая трапеция вписана в окружность, центр которой принадлежит одному из основания

Найти среднюю линию трапеции, зная большее основаниеСкачать

Найти среднюю линию трапеции, зная большее основание

ОГЭ ЗАДАНИЕ 17 ДОСРОЧНЫЙ ВАРИАНТ НАЙТИ БОЛЬШЕЕ ОСНОВАНИЕСкачать

ОГЭ ЗАДАНИЕ 17 ДОСРОЧНЫЙ ВАРИАНТ НАЙТИ БОЛЬШЕЕ ОСНОВАНИЕ
Поделиться или сохранить к себе: