Начертите окружность проведи в ней хорду радиус диаметр

Начертите окружность с центром А и радиусом 2 см. Проведите в этой окружности радиус АС, диаметр МК, хорду BD, не являющуюся диаметром. Найдите

Видео:Радиус и диаметрСкачать

Радиус и диаметр

Ваш ответ

Видео:РАДИУС ОКРУЖНОСТЬ ДИАМЕТР КРУГ / 3 КЛАСС МАТЕМАТИКА. ЧТО ТАКОЕ ОКРУЖНОСТЬ ? ЧТО ТАКОЕ РАДИУС ?Скачать

РАДИУС ОКРУЖНОСТЬ ДИАМЕТР КРУГ / 3 КЛАСС МАТЕМАТИКА. ЧТО ТАКОЕ ОКРУЖНОСТЬ ? ЧТО ТАКОЕ РАДИУС ?

решение вопроса

Видео:Математика 3 класс (Урок№33 - Круг. Окружность (центр, радиус, диаметр)Скачать

Математика 3 класс (Урок№33 - Круг. Окружность (центр, радиус, диаметр)

Похожие вопросы

  • Все категории
  • экономические 43,282
  • гуманитарные 33,619
  • юридические 17,900
  • школьный раздел 607,013
  • разное 16,829

Популярное на сайте:

Как быстро выучить стихотворение наизусть? Запоминание стихов является стандартным заданием во многих школах.

Как научится читать по диагонали? Скорость чтения зависит от скорости восприятия каждого отдельного слова в тексте.

Как быстро и эффективно исправить почерк? Люди часто предполагают, что каллиграфия и почерк являются синонимами, но это не так.

Как научится говорить грамотно и правильно? Общение на хорошем, уверенном и естественном русском языке является достижимой целью.

Видео:Окружность и круг, 6 классСкачать

Окружность и круг, 6 класс

Окружность

Окружность — это геометрическая фигура, образованная замкнутой кривой линией, все точки которой одинаково удалены от одной и той же точки.

Точка, от которой одинаково удалены все точки окружности, называется центром окружности. Центр окружности обычно обозначают большой латинской буквой O:

Начертите окружность проведи в ней хорду радиус диаметр

Окружность делит плоскость на две области — внутреннюю и внешнюю. Геометрическая фигура, ограниченная окружностью, — это круг:

Начертите окружность проведи в ней хорду радиус диаметр

Видео:Окружность, диаметр, хорда геометрия 7 классСкачать

Окружность, диаметр, хорда геометрия 7 класс

Построение окружности циркулем

Для построения окружности используют специальный прибор — циркуль:

Начертите окружность проведи в ней хорду радиус диаметр

Установим циркулю произвольный раствор (расстояние между ножками циркуля) и, поставив его ножку с остриём в какую-нибудь точку плоскости (например, на листе бумаги), станем вращать циркуль вокруг этой точки. Другая его ножка, снабжённая карандашом или грифелем, прикасающимся к плоскости, начертит на плоскости замкнутую линию — окружность:

Начертите окружность проведи в ней хорду радиус диаметр

Видео:Окружность. Как найти Радиус и ДиаметрСкачать

Окружность. Как найти Радиус и Диаметр

Радиус, хорда и диаметр

Радиус — это отрезок, соединяющий любую точку окружности с центром. Радиусом также называется расстояние от точки окружности до её центра:

Начертите окружность проведи в ней хорду радиус диаметр

Все радиусы окружности имеют одну и ту же длину, то есть они равны между собой. Радиус обозначается буквой R или r.

Хорда — это отрезок, соединяющий две точки окружности. Хорда, проходящая через центр, называется диаметром окружности.

Начертите окружность проведи в ней хорду радиус диаметр

Диаметр обозначается буквой D. Диаметр окружности в два раза больше её радиуса:

Дуга — это часть окружности, ограниченная двумя точками. Любые две точки делят окружность на две дуги:

Начертите окружность проведи в ней хорду радиус диаметр

Чтобы различать дуги, на которые две точки разделяют окружность, на каждую из дуг ставят дополнительную точку:

Начертите окружность проведи в ней хорду радиус диаметр

Для обозначения дуг используется символ Начертите окружность проведи в ней хорду радиус диаметр:

  • Начертите окружность проведи в ней хорду радиус диаметрAFB — дуга с концами в точках A и B, содержащая точку F;
  • Начертите окружность проведи в ней хорду радиус диаметрAJB — дуга с концами в точках A и B, содержащая точку J.

О хорде, которая соединяет концы дуги, говорят, что она стягивает дугу.

Начертите окружность проведи в ней хорду радиус диаметр

Хорда AB стягивает дуги Начертите окружность проведи в ней хорду радиус диаметрAFB и Начертите окружность проведи в ней хорду радиус диаметрAJB.

Видео:Круг. Окружность (центр, радиус, диаметр)Скачать

Круг. Окружность (центр, радиус, диаметр)

Что такое хорда окружности в геометрии, её определение и свойства

Начертите окружность проведи в ней хорду радиус диаметрХорда в переводе с греческого означает «струна». Это понятие широко применяется в разных областях науки — в математике, биологии и других.

В геометрии для термина определение будет следующим: это отрезок прямой линии, который соединяет между собой две произвольные точки на одной окружности. Если такой отрезок пересекает центр кривой, она называется диаметром описываемой окружности.

Видео:Радиус Хорда ДиаметрСкачать

Радиус Хорда Диаметр

Как построить геометрическую хорду

Чтобы построить этот отрезок, прежде всего необходимо начертить круг. Обозначают две произвольные точки, через которые проводят секущую линию. Отрезок прямой, который располагается между точками пересечения с окружностью, называется хордой.

Если разделить такую ось пополам и из этой точки провести перпендикулярную прямую, она будет проходить через центр окружности. Можно провести обратное действие — из центра окружности провести радиус, перпендикулярный хорде. В этом случае радиус разделит её на две идентичные половины.

Если рассматривать части кривой, которые ограничиваются двумя параллельными равными отрезками, то эти кривые тоже будут равными между собой.

Видео:Окружность круг хорда диаметр радиус дуга сектор сегментСкачать

Окружность   круг   хорда   диаметр   радиус   дуга   сектор   сегмент

Свойства

Существует ряд закономерностей, связывающих между собой хорды и центр круга:

  1. Начертите окружность проведи в ней хорду радиус диаметрЕсли расстояния от хорд до центра равны между собой, то такие хорды тоже равны между собой.
  2. Существует также обратная зависимость — если длины отрезков равны между собой, то расстояния от них до центра тоже будут равными.
  3. Чем большую длину имеет стягивающий отрезок прямой, тем меньше расстояние от него до центра окружности. И наоборот, чем она меньше, чем расстояние от указанного отрезка до центра описываемого круга больше.
  4. Чем больше расстояние от «струны» до центра, тем меньше длина этой оси. Справедливой будет также и обратная взаимосвязь — чем меньше расстояние от центра до хорды, тем больше длина.
  5. Хорда в геометрии, которая имеет максимально возможную для этой окружности длину, называется диаметром круга. Такая ось проходит через центр и делит её на две равные части.
  6. Отрезок с наименьшей длиной представляет собой точку.
  7. Если ось представляет собой точку, то расстояние от неё до центра круга будет равняться радиусу.

Видео:Длина окружности. Площадь круга. 6 класс.Скачать

Длина окружности. Площадь круга. 6 класс.

Взаимосвязь с радиусом и диаметром

Вышеуказанные математические понятия связаны между собой следующими закономерностями:

  1. Начертите окружность проведи в ней хорду радиус диаметрЕсли описываемый отрезок не является диаметром этого круга, и этот диаметр делит его пополам, то эта ось и диаметр перпендикулярны между собой.
  2. С другой стороны, диаметр, который перпендикулярен любой произвольной стягивающей, делит её на две равные части.
  3. Если ось не является диаметром, и последний делит её на две равные части, то он делит пополам и обе дуги, которые стянуты этим отрезком.
  4. Если диаметр делит на две одинаковые части дугу, то этот же диаметр делит пополам отрезок, который эту дугу стягивает.
  5. Если диаметр строго перпендикулярен описываемой величине, то он делит на две половины каждую дугу, которую ограничивает эта линия.
  6. Если диаметр круга делит пополам отрезок кривой, то он располагается перпендикулярно оси, которая этот отрезок стягивает.

Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

Хорда и радиус

Между этими понятиями существуют следующие связи:

  1. Начертите окружность проведи в ней хорду радиус диаметрЕсли стягивающий отрезок не служит диаметром круга, и радиус разделяет её пополам, то такой радиус является перпендикулярным ей.
  2. Существует также обратная зависимость — радиус, который перпендикулярен оси, делит её на две одинаковые составные части.
  3. Если ось не выступает диаметром этого круга, и радиус делит её пополам, то этот же радиус делит пополам и дугу, которая стягивается.
  4. Радиус, который делит пополам дугу, также делит и отрезок, который эту дугу стягивает.
  5. Если радиус является перпендикулярным стягивающей линии, то он делит пополам часть кривой, которую она ограничивает.
  6. Если радиус окружности разделяет на две идентичные части дугу, то он является перпендикулярным линии, которая эту дугу стягивает.

Видео:Окружность. 7 класс.Скачать

Окружность. 7 класс.

Отношения со вписанными углами

Углы, вписанные в окружность, подчиняются следующим правилам:

  1. Начертите окружность проведи в ней хорду радиус диаметрЕсли углы, вписанные в окружность, опираются на одну и ту же линию, и их вершины расположены по одну сторону, то такие углы равны между собой.
  2. Если два вписанных в круг угла опираются на одну и ту же линию, но их вершины расположены по разные стороны этой прямой, то сумма таких углов будет равняться 180 градусам.
  3. Если два угла — центральный и вписанный — опираются на единую линию, и их вершины располагаются по одну сторону от неё, то величина вписанного угла будет равняться половине центрального.
  4. Вписанный угол, который опирается на диаметр круга, является прямым.
  5. Равные между собой по размеру отрезки стягивают равные центральные углы.
  6. Чем больше величина стягивающего отрезка, тем больше величина центрального угла, который она стягивает. И наоборот, меньшая по размеру линия стягивает меньший центральный угол.
  7. Чем больше центральный угол, тем больше величина отрезка прямой, который его стягивает.

Видео:5 класс, 22 урок, Окружность и кругСкачать

5 класс, 22 урок, Окружность и круг

Взаимодействия с дугой

Если два отрезка стягивают участки кривой, одинаковые по размеру, то такие оси равны между собой. Из этого правила вытекают следующие закономерности:

  1. Начертите окружность проведи в ней хорду радиус диаметрДве равные между собой хорды стягивают равные дуги.
  2. Если рассматривать две дуги, размер которых меньше половины окружности, то чем больше дуга, тем больше хорда, которая будет её стягивать. Напротив, меньшая дуга будет стягиваться меньшей по величине хордой.
  3. Если же дуга превышает половину окружности, то здесь присутствует обратная закономерность: чем меньше дуга, тем больше хорда, которая её стягивает. И чем больше дуга, тем меньше ограничивающая её хорда.

Хорда, которая стягивает ровно половину окружности, является её диаметром. Если две линии на одной окружности параллельны между собой, то будут равными и дуги, которые заключены между этими отрезками. Однако не следует путать заключённые дуги и стягиваемые теми же линиями.

🎥 Видео

Окружность. Круг. 5 класс.Скачать

Окружность. Круг. 5 класс.

Окружность. Радиус. Диаметр. Хорда. Дуга. #геометрия7класс #shorts #окружность #диаметр #радиусСкачать

Окружность. Радиус. Диаметр. Хорда. Дуга. #геометрия7класс #shorts #окружность #диаметр #радиус

Длина окружности. Математика 6 класс.Скачать

Длина окружности. Математика 6 класс.

Геометрия 8 класс (Урок№28 - Свойства хорд окружности.)Скачать

Геометрия 8 класс (Урок№28 - Свойства хорд окружности.)

Длина окружности. Площадь круга - математика 6 классСкачать

Длина окружности. Площадь круга - математика 6 класс

Геометрия. 7 класс. Окружность. Радиус, диаметр, хорда. Татьяна Николаевна. Profi-Teacher.ruСкачать

Геометрия. 7 класс. Окружность. Радиус, диаметр, хорда. Татьяна Николаевна. Profi-Teacher.ru

Как найти центр и радиус нарисованной окружности #математика #егэ2023 #школа #fyp #shortsСкачать

Как найти центр и радиус нарисованной окружности #математика #егэ2023 #школа #fyp #shorts
Поделиться или сохранить к себе: