На окружности последовательно взяты 5 точек

На окружности последовательно взяты 5 точек

Вопрос по геометрии:

На окружности последовательно взяты пять точек: A, B, C, D и E, которые делят окружность на равные части. Найдите градусную меру угла ACD.

Трудности с пониманием предмета? Готовишься к экзаменам, ОГЭ или ЕГЭ?

Воспользуйся формой подбора репетитора и занимайся онлайн. Пробный урок — бесплатно!

Ответы и объяснения 1

Довольно просто,решение прикреплено

На окружности последовательно взяты 5 точек

Знаете ответ? Поделитесь им!

Как написать хороший ответ?

Чтобы добавить хороший ответ необходимо:

  • Отвечать достоверно на те вопросы, на которые знаете правильный ответ;
  • Писать подробно, чтобы ответ был исчерпывающий и не побуждал на дополнительные вопросы к нему;
  • Писать без грамматических, орфографических и пунктуационных ошибок.

Этого делать не стоит:

  • Копировать ответы со сторонних ресурсов. Хорошо ценятся уникальные и личные объяснения;
  • Отвечать не по сути: «Подумай сам(а)», «Легкотня», «Не знаю» и так далее;
  • Использовать мат — это неуважительно по отношению к пользователям;
  • Писать в ВЕРХНЕМ РЕГИСТРЕ.
Есть сомнения?

Не нашли подходящего ответа на вопрос или ответ отсутствует? Воспользуйтесь поиском по сайту, чтобы найти все ответы на похожие вопросы в разделе Геометрия.

Трудности с домашними заданиями? Не стесняйтесь попросить о помощи — смело задавайте вопросы!

Геометрия — раздел математики, изучающий пространственные структуры и отношения, а также их обобщения.

Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

Делить окружность на пять точек

Видео:Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачиСкачать

Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачи

Деление окружности на 5 равных частей

Разделим окружность на пять равных частей циркулем. Для начала начертим окружность. От центра окружности проведём два радиуса, перпендикулярные друг другу.

На окружности последовательно взяты 5 точек

Горизонтальный радиус разделим пополам и от середины данного радиуса к верхней точки вертикального радиуса проведём отрезок.

На окружности последовательно взяты 5 точек

Получившийся отрезок будет являться радиусом новой, дополнительной окружности. Чертим окружность.

На окружности последовательно взяты 5 точек

В точках пересечения дополнительной окружности с основной, циркулем чертим ещё две окружности с таким же радиусом.

На окружности последовательно взяты 5 точек

В итоги получаем пять точек.

На окружности последовательно взяты 5 точек

Соединяем точки вдоль основной окружности между собой. Получаем правильный равносторонний пятиугольник.

На окружности последовательно взяты 5 точек

Соединяем точки с центром основной окружности и таким образом делим окружность на 5 равных частей.

На окружности последовательно взяты 5 точек

На окружности последовательно взяты 5 точек

Насколько публикация полезна?

Нажмите на звезду, чтобы оценить!

Средняя оценка 4.2 / 5. Количество оценок: 26

Видео:10 класс, 11 урок, Числовая окружностьСкачать

10 класс, 11 урок, Числовая окружность

Деление окружности на любое число равных частей

Как разделить окружность на заданное количество одинаковых частей, терминология при построении окружности, деление окружности на 3, 4, 5, 6, 8, 10 частей.

На окружности последовательно взяты 5 точек

Термины при построениях окружности

Окружностью называется замкнутая кривая линия, каждая точка которой расположена на одинаковом расстоянии от одной точки О, называемой центром.

На окружности последовательно взяты 5 точек

Прямые линии, соединяющие любую точку окружности с её центром, называют радиусами R.

Прямая АВ, соединяющая две точки окружности и проходящая через её центр О, называется диаметром D.

Части окружностей называются дугами.

Прямая СD, соединяющая две точки на окружности, называется хордой.

Прямая МN,которая имеет только одну общую точку с окружностью называется касательной.

Часть круга, ограниченная хордой СD и дугой, называется сигментом.

Часть круга, ограниченная двумя радиусами и дугой, называется сектором.

Две взаимно перпендикулярные горизонтальная и вертикальная линии, пересекающиеся в центре окружности, называются осями окружности.

Угол, образованный двумя радиусами КОА, называется центральным углом.

Два взаимно перпендикулярных радиуса составляют угол в 90 0 и ограничивают 1/4 окружности.

Видео:Точки на числовой окружностиСкачать

Точки на числовой окружности

Деление окружности на 4 и 8 одинаковых частей

На окружности последовательно взяты 5 точек

Проводим окружность с горизонтальной и вертикальной осями, которые делят её на 4-ре равные части. Проведённые с помощью циркуля или угольника под 45 0 , две взаимно перпендикулярные линии делят окружность на 8-мь равных частей.

Видео:Тригонометрическая окружность. Как выучить?Скачать

Тригонометрическая окружность. Как выучить?

Деление окружности на 3 и 6 равных частей (кратные 3 трём)

На окружности последовательно взяты 5 точек

Для деления окружности на 3, 6 и кратное им количество частей, проводим окружность заданного радиуса и соответствующие оси. Деление можно начинать от точки пересечения горизонтальной или вертикальной оси с окружностью. Заданный радиус окружности последовательно откладывается 6-ть раз. Затем полученные точки на окружности последовательно соединяются прямыми линиями и образуют правильный вписанный шести-угольник. Соединение точек через одну даёт равносторонний треугольник, и деление окружности на три равные части.

Видео:Стереометрия 10 класс. Часть 1 | МатематикаСкачать

Стереометрия 10 класс. Часть 1 | Математика

Деление окружности на 5 и 10 равных частей

На окружности последовательно взяты 5 точек

Построение правильного пятиугольника выполняется следующим образом. Проводим две взаимно перпендикулярные оси окружности равные диаметру окружности. Делим правую половину горизонтального диаметра пополам с помощью дуги R1. Из полученной точки «а» в середине этого отрезка радиусом R2 проводим дугу окружности до пересечения с горизонтальным диаметром в точке «b». Радиусом R3 из точки «1» проводят дугу окружности до пересечения с заданной окружностью (т.5) и получают сторону правильного пятиугольника. Расстояние «b-О» даёт сторону правильного десятиугольника.

Деление окружности на N-ное количество одинаковых частей (построение правильного многоугольника с N сторон)

На окружности последовательно взяты 5 точек

Выполняется следующим образом. Проводим горизонтальную и вертикальную взаимно перпендикулярные оси окружности. Из верхней точки «1» окружности проводим под произвольным углом к вертикальной оси прямую линию. На ней откладываем равные отрезки произвольной длины, число которых равно числу частей на которое мы делим данную окружность, например 9. Конец последнего отрезка соединяем с нижней точкой вертикального диаметра. Проводим линии, параллельные полученной, из концов отложенных отрезков до пересечения с вертикальным диаметром, разделив таким образом вертикальный диаметр данной окружности на заданное количество частей. Радиусом равным диаметру окружности, из нижней точки вертикальной оси проводим дугу MN до пересечения с продолжением горизонтальной оси окружности. Из точек M и N проводим лучи через чётные ( или нечётные) точки деления вертикального диаметра до пересечения с окружностью. Полученные отрезки окружности будут являться искомыми, т.к. точки 1, 2, …. 9 делят окружность на 9-ть ( N ) равных частей.

Видео:Отрезки касательных из одной точки до точек касания окружности равны | Окружность | ГеометрияСкачать

Отрезки касательных из одной точки до точек касания окружности равны | Окружность |  Геометрия

Нахождение центра дуги окружности

На окружности последовательно взяты 5 точек

Для нахождения центра дуги окружности нужно выполнить следующие построения: на данной дуге отмечаем четыре произвольные точки А, В, С, D и соединяем их попарно хордами АВ и СD. Каждую из хорд при помощи циркуля делим пополам, получив, таким образом, перпендикуляр, проходящий через середину соответствующей хорды. Взаимное пересечение этих перпендикуляров даёт центр данной дуги и соответствующей ей окружности.

Видео:Деление окружности на 5 равных частейСкачать

Деление окружности на 5 равных частей

Деление круга на равные части

Статья содержит два калькулятора, рассчитывающие параметры деления круга на равные по площади части радиусами и параллельными хордами

Ниже представлены два калькулятора, рассчитывающие параметры разделения круга на равные части. Сначала — традиционный калькулятор, который делит круг на равные части радиусами (примерно так, как режут пиццу или торт), под ним — нетрадиционный калькулятор, который делит круг на равные по площади части параллельными хордами. Оба калькулятора визуализируют результат рисунком. Методы расчета с формулами для обоих калькуляторов приведены ниже, под калькуляторами.

На окружности последовательно взяты 5 точек

Деление круга на равные по площади части радиусами

На окружности последовательно взяты 5 точек

Деление круга на равные по площади части параллельными хордами

Деление круга на равные части радиусами

Традиционный и очень простой метод деления круга — по факту, нарезка равных секторов. Метод и формулы очень просты:

  1. Определяем угловой размер каждого сектора в радианах, путем деления 360 градусов на нужное число секторов.
  1. Определяем размер дуги сектора, перемножая радиус на угол в радианах
  1. Определяем размер хорды по теореме косинусов (хорда является основанием равнобедренного треугольника с боковыми сторонами R и противолежащим углом альфа.

Собственно и всё — мы получили все характеристики для N равных секторов

Деление круга на равные части параллельными хордами

Этот способ более любопытен, чем предыдущий. Для простоты будем рассматривать верхнюю половину круга, так как с нижней все будет симметрично.

Задача состоит в определении x-вой координаты точек, через которые нужно проводить хорды (на рисунке это точки x1 и x2). Выведем для начала формулу площади куска, отсекаемого хордой слева.

Верхнюю полуокружность можно представить графиком функции y=f(x), где x — это координата вдоль оси абсцисс, а y — это функция, численно равная y координате соответствующей точки верхней полуокружности.

По теореме Пифагора получаем следующую функцию

Чтобы получить площадь фигуры, отсекаемой хордой слева, надо проинтегрировать эту функцию от -R до x. Первообразная функции равна:

Осталось определиться с константой. Нам надо, чтобы в точке с координатами -R площадь была равна нулю. Подставив -R вместо x в формулу выше, получаем

Итак, полное выражение

Теперь рассмотрим нахождение координат крайней левой точки. Нам известна площадь, которую она должна отсечь (напоминаю, речь идет о полуокружности)

Таким образом мы можем приравнять

Что дает нам такое финальное уравнение

Данное уравнение является трансцендентным, а поэтому находить координату первой точки придется численным методом, например, методом бисекции или методом Ньютона. Калькулятор использует метод Ньютона.

Вторая и последующие точки находится аналогично, путем изменения размера отсекаемой площади. Для второй точки это будет , для третьей и так далее.

Зная координаты точек, несложно рассчитать все остальные параметры, в частности, длину хорды.

Видео:Задача 6 №27867 ЕГЭ по математике. Урок 108Скачать

Задача 6 №27867 ЕГЭ по математике. Урок 108

Геометрия. 8 класс

Установите соответствие между углом и его градусной мерой.

На окружности последовательно взяты 5 точек

Впишите правильный ответ.

Вписанный угол CBA равен 80°, где AB – диаметр. Найдите угол CAB. Ответ дайте в градусах.

Выберите верный ответ.

На окружности с центром в точке O взяли последовательно точки A, B, C так, что ∠AOC = 150°. Найдите градусную меру угла ABC. Ответ дайте в градусах.

Выберите верный ответ.

Точки А, В и С лежат на окружности с центром О, ∠ВАС – вписанный угол. Про градусные меры
дуг известно, что ∪AB : ∪BC : ∪AC = 3 : 1 : 2. Найдите АВС. Ответ дайте в градусах.

Выберите верный ответ.

В окружности проведен диаметр AB и равные хорды AC и ADAD так, что ∠DAB = 40°. Найдите градусную меру угла CBD. Ответ дайте в градусах.

Выберите верный ответ.

Вписанный угол ВСD равен 25°, дуга ВС имеет градусную меру 80°. Найдите градусную меру
дуги CD. Ответ дайте в градусах.

Впишите правильный ответ.

На окружности взяли последовательно точки A, B, C, D так, что ∠ABC = 120°. Найдите градусную меру угла ADC. Ответ дайте в градусах.

Впишите правильный ответ.

На окружности с центром в точке О взяты точки K, М, N так, что MK – диаметр, а угол КОN
равен 80°. Найдите угол КМN. Ответ дайте в градусах.

💡 Видео

1 2 2 деление окружности на 5 равных частейСкачать

1 2 2  деление окружности на 5 равных частей

Деление окружности на пять равных частей. Урок 7. (Часть 1. ГЕОМЕТРИЧЕСКИЕ ПОСТРОЕНИЯ)Скачать

Деление окружности на пять равных частей. Урок 7. (Часть 1. ГЕОМЕТРИЧЕСКИЕ ПОСТРОЕНИЯ)

Задача 7 ЕГЭ по математике #5Скачать

Задача 7 ЕГЭ по математике #5

Координаты точек на числовой окружности, часть 5. Алгебра 10 класс.Скачать

Координаты точек на числовой окружности, часть 5. Алгебра 10 класс.

Уравнение окружности (1)Скачать

Уравнение окружности (1)

Математика без Ху!ни. Уравнение плоскости.Скачать

Математика без Ху!ни. Уравнение плоскости.

Построение окружности по трём точкам.Скачать

Построение окружности по трём точкам.

Деление окружности на 5 частейСкачать

Деление окружности на 5 частей

5 класс, 22 урок, Окружность и кругСкачать

5 класс, 22 урок, Окружность и круг

№968. Напишите уравнение окружности с центром в точке А(0; 6), проходящей через точку В (-3; 2).Скачать

№968. Напишите уравнение окружности с центром в точке А(0; 6), проходящей через точку В (-3; 2).

Пойми Этот Урок Геометрии и получай 5-ки — Касательная и ОкружностьСкачать

Пойми Этот Урок Геометрии и получай 5-ки — Касательная и Окружность
Поделиться или сохранить к себе: