1.
На чертеже изображено пять точек | Да | Нет |
Четыре точки принадлежит плоскости | Да | Нет |
Точка А лежит в плоскости, заданной параллельными прямыми | Да | Нет |
Точка Д лежит в плоскости, заданной параллельными прямыми | Да | Нет |
Точка F не лежит в плоскости, заданной параллельными прямыми | Да | Нет |
2.
Точка D не принадлежит плоскости, заданной параллельными прямыми | Да | Нет |
Прямая m лежит в плоскости, заданной параллельными прямыми | Да | Нет |
Точка F лежит в плоскости, заданной параллельными прямыми | Да | Нет |
Точка лежит в плоскости, если хотя бы одна проекция этой точки лежит в плоскости | Да | Нет |
На чертеже изображены шесть прямых | Да | Нет |
3. На каком чертеже прямая принадлежит плоскости, так как проходит через точку, принадлежащую этой плоскости параллельно прямой, лежащей в этой плоскости?
4. На каком чертеже задана профильная прямая плоскости?
5. На каком чертеже задана линия наибольшего ската плоскости?
6. На каком чертеже прямая не является главной линией плоскости?
7. На каком эпюре задана фронталь плоскости?
Отметьте неверное утверждение
1.Прямая m — принадлежит плоскости (ab) |
2. Прямая m — прямая общего положения |
3. Точка F -принадлежит плоскости (ab) |
4. Точка D -принадлежит плоскости (ab) |
5. Точка A -принадлежит плоскости (ab) |
9. На каком чертеже задана горизонталь плоскости?
10. На каком чертеже задана прямая, не принадлежащая плоскости?
11. На каком чертеже прямая общего положения принадлежит плоскости, так как проходит через две точки, принадлежащие этой плоскости?
12. На каком чертеже задана прямая, параллельная плоскости?
13. На каком чертеже задана прямая, пересекающая плоскость?
14. На каком чертеже плоскость задана главными линиями?
15. На каком чертеже изображена прямая, которая является главной линией плоскости?
16. На каком чертеже прямая принадлежит плоскости, заданной пересекающимися прямыми общего положения?
17. На каком чертеже задана прямая, параллельная плоскости?
18. Какая прямая изображена на эпюре?
1.Линия наибольшего наклона (ската) плоскости (hf) |
2. Фронталь плоскости (hf) |
3. Горизонталь плоскости (hf) |
4. Перпендикулярная плоскости (hf) |
5. Профильная прямая плоскости (hf) |
19. На каком чертеже прямая, принадлежащая плоскости, является её горизонталью?
20. На каком эпюре изображена прямая, не принадлежащая плоскости?
21. Какая прямая, принадлежащая плоскости, изображена на эпюре?
- Лекция 3. Плоскость
- 3.1. Способы задания плоскости на ортогональных чертежах
- 3.2. Плоскости частного положения
- 3.3. Точка и прямая в плоскости. Принадлежность точки и прямой плоскости
- Упражнение
- 3.4. Главные линии плоскости
- 3.5. Взаимное положение прямой и плоскости
- 3.5.1. Параллельность прямой плоскости
- 3.5.2. Пересечение прямой с плоскостью
- Упражнение
- Упражнение
- 3.6. Определение видимости методом конкурирующих точек
- 3.7. Перпендикулярность прямой плоскости
- 3.8. Взаимное положение двух плоскостей
- 3.8.1. Параллельность плоскостей
- Упражнение
- 3.8.2. Пересечение плоскостей
- Упражнение
- Упражнение
- Упражнение
- Упражнение
- 3.8.3. Взаимно перпендикулярные плоскости
- Упражнение
- Упражнение
- 3.9. Задачи для самостоятельного решения
- Взаимное положение прямой и плоскости с примерами
- Взаимное положение примой и плоскости, двух плоскостей
- Перпендикулярность примой и плоскости
- Перпендикулярности двух плоскостей
- Параллельность прямой и плоскости
- Параллельность двух плоскостей
- Пересечение двух плоскостей
- Пересечение многогранника проецирующей плоскостью
- Взаимное положение двух плоскостей
- Пересечение плоскости общего положения с плоскостью частного положения
- Пересечение двух плоскостей общего положения
- Плоскости параллельны
- Взаимное положение прямой линии и плоскости
- Пересечение прямой линии с плоскостью частного положения
- Определение видимости на эпюрах
- Пересечение прямой линии с плоскостью общего положения
- Прямая параллельна плоскости
- Прямая перпендикулярна плоскости
- Плоскости перпендикулярны
Видео:Лекция № 6 (1 часть)Основные позиционные задачи (принадлежность, параллельность)Скачать
Лекция 3. Плоскость
Видео:Построение параллельной плоскости на расстояние 30 мм.Скачать
3.1. Способы задания плоскости на ортогональных чертежах
Рисунок 3.1 – Способы задания плоскостей
Плоскость общего положения – это плоскость, которая не параллельна и не перпендикулярна ни одной из плоскостей проекций.
Следом плоскости называется прямая, полученная в результате пересечения заданной плоскости с одной из плоскостей проекций.
Плоскость общего положения может иметь три следа: горизонтальный – απ1, фронтальный – απ2 и профильный – απ3, которые она образует при пересечении с известными плоскостями проекций: горизонтальной π1, фронтальной π2 и профильной π3 (Рисунок 3.2).
Рисунок 3.2 – Следы плоскости общего положения
Видео:Параллельность прямой к плоскостиСкачать
3.2. Плоскости частного положения
Плоскость частного положения – плоскость, перпендикулярная или параллельная плоскости проекций.
Плоскость, перпендикулярная плоскости проекций, называется проецирующей и на эту плоскость проекций она будет проецироваться в виде прямой линии.
Свойство проецирующей плоскости : все точки, линии, плоские фигуры, принадлежащие проецирующей плоскости, имеют проекции на наклонном следе плоскости (Рисунок 3.3).
Рисунок 3.3 – Фронтально-проецирующая плоскость, которой принадлежат: точки А, В, С; линии АС, АВ, ВС; плоскость треугольника АВС
Фронтально-проецирующая плоскость – плоскость, перпендикулярная фронтальной плоскости проекций (Рисунок 3.4, а).
Горизонтально-проецирующая плоскость – плоскость, перпендикулярная горизонтальной плоскости проекций (Рисунок 3.4, б).
Профильно-проецирующая плоскость – плоскость, перпендикулярная профильной плоскости проекций.
Плоскости, параллельные плоскостям проекций, называются плоскостями уровня или дважды проецирующими плоскостями.
Фронтальная плоскость уровня – плоскость, параллельная фронтальной плоскости проекций (Рисунок 3.4, в).
Горизонтальная плоскость уровня – плоскость, параллельная горизонтальной плоскости проекций (Рисунок 3.4, г).
Профильная плоскость уровня – плоскость, параллельная профильной плоскости проекций (Рисунок 3.4, д).
Рисунок 3.4 – Эпюры плоскостей частного положения
Видео:Стереометрия 10 класс. Часть 1 | МатематикаСкачать
3.3. Точка и прямая в плоскости. Принадлежность точки и прямой плоскости
Точка принадлежит плоскости, если она принадлежит какой-либо прямой, лежащей в этой плоскости (Рисунок 3.5). Прямая принадлежит плоскости, если она имеет с плоскостью хотя бы две общие точки (Рисунок 3.6).
Рисунок 3.5 – Принадлежность точки плоскости
Рисунок 3.6 – Принадлежность прямой плоскости
left.beginalpha=mparallel n,\Dinalpha\Cinalpha\endright> Longrightarrow CDinalpha
Видео:Пересечение плоскостей, заданных параллельными и пересекающимися прямымиСкачать
Упражнение
Рисунок 3.7 – Решение задачи
Решение :
- ABCD – плоский четырехугольник, задающий плоскость.
- Проведём в нём диагонали AC и BD (Рисунок 3.7, б), которые являются пересекающимися прямыми, также задающими ту же плоскость.
- Согласно признаку пересекающихся прямых, построим фронтальную проекцию точки пересечения этих прямых — K: A2C2 ∩ B2D2=K2.
- Восстановим линию проекционной связи до пересечения с горизонтальной проекцией прямой BD: на проекции диагонали B1D1 строим К1.
- Через А1К1 проводим проекцию диагонали А1С1.
- Точку С1 получаем, посредством линии проекционной связи до пересечения её с горизонтальной проекцией продолженной диагонали А1К1.
Видео:Определение кратчайшего расстояние между скрещивающимися прямыми методом замены плоскостей проекцииСкачать
3.4. Главные линии плоскости
В плоскости можно построить бесконечное множество прямых, но есть особые прямые, лежащие в плоскости, называемые главными линиями плоскости (Рисунок 3.8 – 3.11).
Прямой уровня или параллелью плоскости называется прямая, лежащая в данной плоскости и параллельная одной из плоскостей проекций.
Горизонталь или горизонтальная прямая уровня h (первая параллель) – это прямая, лежащая в данной плоскости и параллельная горизонтальной плоскости проекций (π1) (Рисунок 3.8, а; 3.9).
Фронталь или фронтальная прямая уровня f (вторая параллель) – это прямая лежащая в данной плоскости и параллельная фронтальной плоскости проекций (π2) (Рисунок 3.8, б; 3.10).
Профильная прямая уровня p (третья параллель) – это прямая лежащая в данной плоскости и параллельная профильной плоскости проекций (π3) (Рисунок 3.8, в; 3.11).
Интерактивная модель Горизонталь плоскости |
Рисунок 3.8 а – Горизонтальная прямая уровня в плоскости, заданной треугольником
Интерактивная модель Фронталь плоскости |
Рисунок 3.8 б – Фронтальная прямая уровня в плоскости, заданной треугольником
Интерактивная модель Профильная прямая плоскости |
Рисунок 3.8 в – Профильная прямая уровня в плоскости, заданной треугольником
Рисунок 3.9 – Горизонтальная прямая уровня в плоскости, заданной следами
Рисунок 3.10 – Фронтальная прямая уровня в плоскости, заданной следами
Рисунок 3.11 – Профильная прямая уровня в плоскости, заданной следами
Видео:Следы прямой Взаимное положение двух прямыхСкачать
3.5. Взаимное положение прямой и плоскости
Прямая по отношению к заданной плоскости может быть параллельной и может с ней иметь общую точку, то есть пересекаться.
3.5.1. Параллельность прямой плоскости
Признак параллельности прямой плоскости : прямая параллельна плоскости, если она параллельна какой-либо прямой, принадлежащей этой плоскости (Рисунок 3.12).
alpha=mcap n\left.begina_2parallel m_2\a_1parallel m_1\endright> Rightarrow aparallelalpha
Рисунок 3.12 – Параллельность прямой плоскости
3.5.2. Пересечение прямой с плоскостью
Для построения точки пересечения прямой с плоскостью общего положения (Рисунок 3.13), необходимо:
- Заключить прямую а во вспомогательную плоскость β (в качестве вспомогательной плоскости следует выбирать плоскости частного положения);
- Найти линию пересечения вспомогательной плоскости β с заданной плоскостью α;
- Найти точку пересечения заданной прямой а с линией пересечения плоскостей MN.
Рисунок 3.13 – Построение точки встречи прямой с плоскостью
Видео:Параллельность прямой и плоскости. 10 класс.Скачать
Упражнение
Заданы: прямая АВ общего положения, плоскость σ⊥π1. (Рисунок 3.14). Построить точку пересечения прямой АВ с плоскостью σ.
Решение :
- Точка К должна принадлежать прямой АВ ⇒ К1∈А1В и заданной плоскости σ ⇒ К1∈σ, следовательно, К1 находится в точке пересечения проекций А1В1 и σ1;
- Плоскость σ – горизонтально-проецирующая, следовательно, горизонтальной проекцией плоскости σ является прямая σ1 (горизонтальный след плоскости);
- Фронтальную проекцию точки К находим посредством линии проекционной связи: К2∈А2В2.
Рисунок 3.14 – Пересечение прямой общего положения с плоскостью частного положения
Видео:Пересечение двух плоскостей. Плоскости в виде треугольникаСкачать
Упражнение
Заданы: плоскость σ = ΔАВС – общего положения, прямая EF (Рисунок 3.15).
Требуется построить точку пересечения прямой EF с плоскостью σ.
Рисунок 3.15 – Пересечение прямой с плоскостью
Решение:
- Заключим прямую EF во вспомогательную плоскость, в качестве которой воспользуемся горизонтально-проецирующей плоскостью α (Рисунок 3.15, а);
- Если α⊥π1, то на плоскость проекций π1 плоскость α проецируется в прямую (горизонтальный след плоскости απ1 или α1), совпадающую с E1F1;
- Найдём прямую пересечения (1-2) проецирующей плоскости α с плоскостью σ (решение подобной задачи будет рассмотрено ниже);
- Прямая (1-2) и заданная прямая EF лежат в одной плоскости α и пересекаются в точке K.
Алгоритм решения задачи (Рисунок 3.15, б): Через EF проведем вспомогательную плоскость α:
- left.beginalpha perp pi_1\alphain EF\endright> Longrightarrow alpha_1in E_1F_1
- alphacapsigma=(1-2)left.begin|alpha_1cap A_1C_1=1_1longrightarrow 1_2\|alpha_1cap A_1B_1=2_1longrightarrow 2_2\endright.
- (1_2-2_2)cap E_2F_2=K_2\left.beginKin EF\Kin (1-2)Rightarrow Kinsigma\endright>Longrightarrow K=EFcap (sigma =triangle ABC)
Видео:Построение следов плоскостиСкачать
3.6. Определение видимости методом конкурирующих точек
При оценке положения данной прямой, необходимо определить – точка какого участка прямой расположена ближе (дальше) к нам, как к наблюдателям, при взгляде на плоскость проекций π1 или π2.
Точки, которые принадлежат разным объектам, а на одной из плоскостей проекций их проекции совпадают (то есть, две точки проецируются в одну), называются конкурирующими на этой плоскости проекций.
Необходимо отдельно определить видимость на каждой плоскости проекций.
Видимость на π2 (рис. 3.15)
Выберем точки, конкурирующие на π2 – точки 3 и 4. Пусть точка 3∈ВС∈σ, точка 4∈EF.
Чтобы определить видимость точек на плоскости проекций π2 надо определить расположение этих точек на горизонтальной плоскости проекций при взгляде на π2.
Направление взгляда на π2 показано стрелкой.
По горизонтальным проекциям точек 3 и 4, при взгляде на π2, видно, что точка 41 располагается ближе к наблюдателю, чем 31.
41∈E1F1 ⇒ 4∈EF ⇒ на π2 будет видима точка 4, лежащая на прямой EF, следовательно, прямая EF на участке рассматриваемых конкурирующих точек расположена перед плоскостью σ и будет видима до точки K – точки пересечения прямой с плоскостью σ.
Видимость на π1.
Для определения видимости выберем точки, конкурирующие на π1 – точки 2 и 5.
Чтобы определить видимость точек на плоскости проекций π1 надо определить расположение этих точек на фронтальной плоскости проекций при взгляде на π1.
Направление взгляда на π1 показано стрелкой.
По фронтальным проекциям точек 2 и 5, при взгляде на π1, видно, что точка 22 располагается ближе к наблюдателю, чем 52.
22∈А2В2 ⇒ 2∈АВ ⇒ на π1 будет видима точка 2, лежащая на прямой АВ, следовательно, прямая EF на участке рассматриваемых конкурирующих точек расположена под плоскостью σ и будет невидима до точки K – точки пересечения прямой с плоскостью σ.
Видимой из двух конкурирующих точек будет та, у которой координата «Z» или(и) «Y» больше.
Видео:Проецирование прямой общего положенияСкачать
3.7. Перпендикулярность прямой плоскости
Признак перпендикулярности прямой плоскости : прямая перпендикулярна плоскости, если она перпендикулярна двум пересекающимся прямым, лежащим в данной плоскости.
Рисунок 3.16 – Задание прямой, перпендикулярной плоскости
Теорема. Если прямая перпендикулярна плоскости, то на эпюре: горизонтальная проекции прямой перпендикулярна горизонтальной проекции горизонтали плоскости, а фронтальная проекция прямой перпендикулярна фронтальной проекции фронтали (Рисунок 3.16, б)
Теорема доказывается через теорему о проецировании прямого угла в частном случае.
Если плоскость задана следами, то проекции прямой перпендикулярной плоскости перпендикулярны соответствующим следам плоскости (Рисунок 3.16, а).
Пусть прямая p перпендикулярна плоскости σ=ΔАВС и проходит через точку K.
Видео:Параллельные прямые | Математика | TutorOnlineСкачать
3.8. Взаимное положение двух плоскостей
3.8.1. Параллельность плоскостей
Две плоскости могут быть параллельными и пересекающимися между собой.
Признак параллельности двух плоскостей : две плоскости взаимно параллельны, если две пересекающиеся прямые одной плоскости соответственно параллельны двум пересекающимся прямым другой плоскости.
Видео:Следы прямойСкачать
Упражнение
Задана плоскость общего положения α=ΔАВС и точка F∉α (Рисунок 3.17).
Через точку F провести плоскость β, параллельную плоскости α.
Рисунок 3.17 – Построение плоскости, параллельной заданной
Решение : В качестве пересекающихся прямых плоскости α возьмем, например, стороны треугольника АВ и ВС.
- Через точку F проводим прямую m, параллельную, например, АВ.
- Через точку F, или же через любую точку, принадлежащую m, проводим прямую n, параллельную, например, ВС, причём m∩n=F.
- β = m∩n и β//α по определению.
Интерактивная модель Параллельность двух плоскостей |
3.8.2. Пересечение плоскостей
Результатом пересечения 2-х плоскостей является прямая. Любая прямая на плоскости или в пространстве может быть однозначно задана двумя точками. Поэтому для того, чтобы построить линию пересечения двух плоскостей, следует найти две точки, общие для обеих плоскостей, после чего соединить их.
Рассмотрим примеры пересечения двух плоскостей при различных способах их задания: следами; тремя точками, не лежащими на одной прямой; параллельными прямыми; пересекающимися прямыми и др.
Видео:Математика без Ху!ни. Взаимное расположение прямой и плоскости.Скачать
Упражнение
Рисунок 3.18 – Пересечение плоскостей общего положения, заданных следами
Порядок построения линии пересечения плоскостей:
- Найти точку пересечения горизонтальных следов — это точка М (её проекции М1 и М2, при этом М1=М, т.к. М – точка частного положения, принадлежащая плоскости π1).
- Найти точку пересечения фронтальных следов — это точка N (её проекции N1 и N2, при этом N2=N, т.к. N – точка частного положения, принадлежащая плоскости π2).
- Построить линию пересечения плоскостей, соединив одноименные проекции полученных точек: М1N1 и М2N2.
МN – линия пересечения плоскостей.
Видео:22. Взаимное расположение прямой и плоскости в пространствеСкачать
Упражнение
Решение:
Так как плоскость α пересекает стороны АВ и АС треугольника АВС, то точки пересечения K и L этих сторон с плоскостью α являются общими для обеих заданных плоскостей, что позволит, соединив их, найти искомую линию пересечения.
Точки могут быть найдены как точки пересечения прямых с проецирующей плоскостью: находим горизонтальные проекции точек K и L, то есть K1 и L1 , на пересечении горизонтального следа (α1) заданной плоскости α с горизонтальными проекциями сторон ΔАВС: А1В1 и A1C1. После чего посредством линий проекционной связи находим фронтальные проекции этих точек K2 и L2 на фронтальных проекциях прямых АВ и АС. Соединим одноимённые проекции: K1 и L1; K2 и L2. Линия пересечения заданных плоскостей построена.
Алгоритм решения задачи :
left.beginABcapsigma=K\ACcapsigma=L\endright> left.beginRightarrow A_1B_1capsigma_1=K_1 rightarrow K_2\Rightarrow A_1C_1cap sigma_1=L_1 rightarrow L_2\endright.
KL – линия пересечения ΔАВС и σ (α∩σ = KL).
Рисунок 3.19 – Пересечение плоскостей общего и частного положения
Видео:Линия пересечения плоскостейСкачать
Упражнение
Рисунок 3.20 – Пересечение двух плоскостей общего положения (общий случай)
Алгоритм решения задачи :
left.beginalphacapsigma=(4-5)\betacapsigma=(3-2)\endright>\left.beginalphacaptau=(6-7)\betacaptau=(1-8)\endright>left.begin(4_1-5_1)cap(3_1-2_1)=M_1rightarrow M_2\(6_1-7_1)cap(1_1-8_1)=N_1rightarrow N_2\endright>rightarrow\left.beginM_1N_1\M_2N_2\endright>Rightarrowalphacapbeta=MN
Видео:Задача 3.3. Через точку М провести горизонталь и фронталь.Скачать
Упражнение
Заданы плоскости α = ΔАВС и β = a//b. Построить линию пересечения заданных плоскостей (Рисунок 3.21).
Рисунок 3.21 Решение задачи на пересечение плоскостей
Решение: Воспользуемся вспомогательными секущими плоскостями частного положения. Введём их так, чтобы сократить количество построений. Например, введём плоскость σ⊥π2, заключив прямую a во вспомогательную плоскость σ (σ∈a). Плоскость σ пересекает плоскость α по прямой (1-2), а σ∩β=а. Следовательно (1-2)∩а=K. Точка К принадлежит обеим плоскостям α и β. Следовательно, точка K, является одной из искомых точек, через которые проходит прямая пересечения заданных плоскостей α и β. Для нахождения второй точки, принадлежащей прямой пересечения α и β, заключим прямую b во вспомогательную плоскость τ⊥π2 (τ∈b). Соединив точки K и L, получим прямую пересечения плоскостей α и β.
Видео:Точка встречи прямой с плоскостьюСкачать
3.8.3. Взаимно перпендикулярные плоскости
Плоскости взаимно перпендикулярны, если одна из них проходит через перпендикуляр к другой.
Видео:Построение недостающей проекции плоскости. Принадлежность прямой к плоскостиСкачать
Упражнение
Задана плоскость σ⊥π2 и прямая общего положения – DE (Рисунок 3.22)
Требуется построить через DE плоскость τ⊥σ.
Рисунок 3.22 – Построение плоскости, перпендикулярной к заданной плоскости
По теореме о проецировании прямого угла C1D1 должна быть параллельна оси проекций. Пересекающиеся прямые CD∩DE задают плоскость τ. Итак, τ⊥σ. Аналогичные рассуждения, в случае плоскости общего положения.
Видео:Геометрия 10 класс (Урок№6 - Параллельность плоскостей.)Скачать
Упражнение
Рисунок 3.23 – Построение плоскости, перпендикулярной к заданной ΔАВС
3.9. Задачи для самостоятельного решения
1. Задана плоскость α = m//n (Рисунок 3.24). Известно, что K∈α.
Постройте фронтальную проекцию точки К.
2. Постройте следы прямой, заданной отрезком CB, и определите квадранты, через которые она проходит (Рисунок 3.25).
3. Постройте проекции квадрата, принадлежащего плоскости α⊥π2, если его диагональ MN //π2 (Рисунок 3.26).
4. Построить прямоугольник ABCD с большей стороной ВС на прямой m, исходя из условия, что отношение его сторон равно 2 (Рисунок 3.27).
5. Задана плоскость α=a//b (Рисунок 3.28). Построить плоскость β параллельную плоскости α и удаленную от нее на расстоянии 20 мм.
6. Задана плоскость α=∆АВС и точка D вне плоскости. Построить через точку D плоскость β⊥α и β⊥π1.
7. Задана плоскость α=∆АВС и точка D вне плоскости. Построить через точку D прямую DE//α и DE//π1.
Взаимное положение прямой и плоскости с примерами
Содержание:
Проекции прямого угла:
Величина угла между двумя пересекающимися прямыми в общем случае на проекциях искажается. В натуральную величину этот угол будет проецироваться в том случае, если плоскость угла параллельна одной из плоскостей проекций. Тогда другие проекции сторон угла совпадают и параллельны оси проекций (рисунок 2.1).
Прямой угол проецируется в натуральную величину, если одна из его сторон параллельна одной из плоскостей проекций (рисунок 2.2).
Взаимное положение примой и плоскости, двух плоскостей
Прямая относительно плоскости может занимать следующие положения: лежать в плоскости (что рассматривалось ранее); быть ей параллельна; пересекать плоскость; быть перпендикулярной плоскости (т.е. пересекать под прямым углом).
Две плоскости могут быть:
- взаимно параллельными,
- пересекающимися;
- взаимно перпендикулярными.
Перпендикулярность примой и плоскости
Условие перпендикулярности прямой и плоскости:
Прямая перпендикулярна плоскости, если она перпендикулярна двум пересекающимся прямым лежащим в этой плоскости.
Так как прямой угол между прямыми линиями проецируется на плоскость проекций без искажения, если одна из прямых параллельна этой плоскости проекций, то пересекающимися прямыми плоскости, которые нужно взять для построения перпендикуляра, могут быть только ее горизонталь и фронталь.
Следовательно, прямая перпендикулярна плоскости, если ее фронтальная проекция перпендикулярна фронтальной проекции фронгали плоскости, а горизонтальная проекция прямой перпендикулярна горизонтальной проекции горизонтали плоскости.
На рисунке 2.3 через точку проведена прямая, перпендикулярная плоскости
В плоскости проведены горизонталь и фронталь, затем через проведена горизонтальная проекция перпендикуляра под прямым углом к а через точку фронтальная проекция перпендикуляра иод прямым углом к Прямые есть проекции искомого перпендикуляра р.
Перпендикулярности двух плоскостей
Две плоскости взаимно перпендикулярны, если одна из них содержи! перпендикуляр к другой.
Пусть через данную прямую т необходимо провести плоскость, перпендикулярную плоскости а. заданной треугольником (рисунок 2.4).
Для решения задачи достаточно на прямой т взять произвольную точку А и провести через нее прямую р, перпендикулярную данной плоскости .
Пересекающиеся прямые m и р образуют плоскость которая содержит прямую р, перпендикулярную плоскости следовательно, плоскости (i и взаимно перпендикулярны.
Параллельность прямой и плоскости
Условие параллельности прямой и плоскости:
Прямая параллельна плоскости, если она параллельна любой прямой, принадлежащей этой плоскости.
Рассмотрим пример решения задачи на параллельности прямой и плоскости.
Задача: построить фронтальную проекцию прямой n, проходящей через точку А и параллельной
Для решения задачи:
Проводим горизонтальную проекцию прямой в плоскости
Строим фронтальную проекцию
Через точку проводим параллельную Таким образом получим:
Параллельность двух плоскостей
Условие параллельности двух плоскостей:
- две плоскости параллельны, если две пересекающиеся прямые одной плоскости соответственно параллельны двум пересекающимся прямым другой плоскости.
Изображенные на рисунке 2.6 плоскости взаимнопараллельныe, т.к. Пересечение прямой и плоскости
Задача на нахождение точки пересечения прямой линии с плоскостью является первой основной позиционной задачей курса начертательной геометрии.
Алгоритм решения задачи (рисунок 2.7):
1. Прямую заключаем во вспомогательную плоскость (удобнее всего в проецирующую);
2. Находим линию пересечения (1-2) вспомогательной плоскости с заданной
3. Отмечаем точку пересечения К найденной линии пересечения (1-2) с заданной прямой
4. Определяем видимость прямой На основании данного алгоритма определим точку пересечения прямой с плоскостью (рисунок 2.8) и с плоскостью
Пересечение двух плоскостей
Две плоскости пересекаются по прямой линии, поэтому для её построения достаточно найти две точки одновременно принадлежащие двум плоскостям.
Рассмотрим несколько случаев построения линии пересечения двух плоскостей.
1-й случай — пластины непрозрачные заданы с нахлёстом (рисунок 2.10).
Задача сводится к нахождению точек пересечения прямых m и n с плоскостью а. Соединив точки пересечения К и М получим линию пересечения плоскости с плоскостью Видимость определяется по конкурирующим точкам.
2-й случай — плоскости заданы на некотором расстоянии, что не дает возможность определить линии пересечения двух плоскостей первым способом. В этом случае используется метод плоскостей-посредников.
Алгоритм решения задачи (рисунок 2.11):
- Заданные плоскости рассекаем вспомогательной плоскостью посредником
- Определяем линию пересечения 1-2 плоскости а с плоскостью а и линию пересечения 3-4 плоскости с плоскостью
- Определяем точку К — точку пересечения линий 1-2 и 3-4, принадлежащую плоскостям
- Аналогичным образом находим точку L с помощью плоскости посредника
- Соединив две точки К и М, получим линию пересечения двух плоскостей
Видимость при этом не определяется.
3-й случай — пересекающиеся плоскости общего положения заданы следами пересекающимися в пределах чертежа (рисунок 2.12).
В данном случае в качестве плоскостей-посредников могут быть использованы плоскость проекций.
Пересечение многогранника проецирующей плоскостью
Так как секущая плоскость горизонтально-проецирующая, то фронтальную проекцию сечения можно построить, определив точку пересечения каждого ребра с плоскостью о (рисунок 2.13)
Взаимное положение двух плоскостей
Две плоскости могут принадлежать одна другой; быть параллельны или пересекаться.
Пересечение плоскостей. Линия пересечения двух плоскостей -прямая. Положение прямой в пространстве определяют две точки. Чтобы найти линию пересечения плоскостей, достаточно знать две точки, принадлежащие двум плоскостям одновременно.
Пересечение плоскости общего положения с плоскостью частного положения
На рис. 27 показано построение линии пересечения фронтально-проецирующей плоскости Р с плоскостью треугольника AВС.
Так как линия пересечения двух плоскостей принадлежит фронтально-проецирующей плоскости Р, то ее фронтальная проекция совпадает с фронтальным следом плоскости Р. Горизонтальная проекция искомой линии пройдет через точки и расположенные на горизонтальных проекциях AВ и АС соответствующих сторон треугольника (рис. 27).
Пересечение двух плоскостей общего положения
Задача. Построить линию пересечения двух плоскостей общего положения
Алгоритм решения задачи (рис. 28)
- Вводим вспомогательную секущую плоскость Q общего положения
- Находим линии пересечения вспомогательной плоскости Q с двумя заданными Р и Т:
- Определяем точку пересечения построенных линий: Точка М принадлежит одновременно плоскостям Р и Т, следовательно, она принадлежит линии их пересечения.
- Для нахождения второй общей точки вводим еще одну секущую плоскость и повторяем построения (п.2, п.З). Решение этой задачи на эпюре показано на рис. 29:
Согласно алгоритму решения задачи проводим вспомогательные секущие плоскости частного положения — их фронтальные следы). Вспомогательные плоскости пересекают заданные плоскости по линиям А-1, 2-3 и 4-5, 6-7. В пересечении этих линий будут точки принадлежащие линии пересечения двух плоскостей. На рис. 30, а плоскости общего положения Р и Q заданы следами. Линия их пересечения MN пройдет через точки пересечения одноименных следов плоскостей. В точке N пересекаются фронтальные следы плоскостей, в точке М -горизонтальные. Проекциями линии пересечения будут прямые и На рис. 30,6 показано построение линии пересечения плоскостей на эпюре.
Плоскости параллельны
Плоскости параллельны, если две пересекающиеся прямые одной плоскости соответственно параллельны двум пересекающимся прямым, лежащим в другой плоскости.
Изображенные на рис. 31 плоскости и параллельны, т.к.
Плоскости общего положения также параллельны, если два любых одноименных следа параллельны между собой.
Изображенные на рис. 32 плоскости Р и Q параллельны, т.к.
Взаимное положение прямой линии и плоскости
Прямая может лежать в плоскости, пересекать плоскость и быть параллельной плоскости.
Пересечение прямой линии с плоскостью частного положения
Если заданная плоскость перпендикулярна к какой-либо плоскости проекций (рис.33, а), то она проецируется на эту плоскость проекций в виде прямой линии, на которой обязательно будут находиться соответствующие проекции всех точек, принадлежащих данной плоскости, в том числе и проекции точки пересечения какой-то прямой с заданной плоскостью (точка встречи прямой с плоскостью). Поэтому точка встречи прямой с плоскостью частного положения находится па эпюре без дополнительных построений (рис. 33,6).
На рис. 34 точка встречи прямой EF с горизонтально-проецирующей плоскостью, заданной треугольником ABC, является точкой пересечения горизонтальных проекций и прямой и треугольника. Фронтальная проекция точки пересечения лежит на линии проекционной связи, проведенной из точки до пересечения с фронтальной проекций прямой EF. Принято считать, что всякая плоскость (в том числе и плоскость проекций) непрозрачна. Поэтому часть прямой, которая находится за плоскостью, является невидимой и показана на эпюрах (рис. 33,6; 34) штриховой линией.
Определение видимости на эпюрах
Вопрос о видимости линий или поверхностей всегда может быть сведен к вопросу о видимости точек. Если несколько точек находятся на общей для них линии связи, то видимой будет только одна из них — наиболее удаленная от той плоскости проекций, по отношению к которой определяется видимость.
Точки, расположенные на одной линии связи, называются конкурирующими. Точки А, В и С, D — конкурирующие (рис. 35).
Относительно плоскости проекций видимой будет точка А; относительно плоскости проекций видимой будет точка D, т. е. относительно плоскости видимой будет та точка, фронтальная проекция которой находится дальше от оси а относительно плоскости видимой будет та точка, горизонтальная проекция которой находится дальше от оси Аналогично: относительно плоскости видимой будет та точка, горизонтальная проекция которой будет находиться дальше от оси
Пересечение прямой линии с плоскостью общего положения
Точку пересечения прямой линии АВ с плоскостью общего положения Р (рис. 36) находят следующим образом:
- а) через заданную прямую АВ проводим некоторую вспомогательную плоскость Q, обычно плоскость частного положения;
- б) строим линию пересечения 1-2 заданной плоскости Р и вспомогательной Q;
- в) находим положение точки пересечения данной прямой АВ и линии пересечения 1-2 плоскостей (точки К).
- г) определяем видимость прямой АВ по отношению к плоскости Р.
Пошаговые построения по определению точки пересечения прямой АВ с плоскостью треугольника CDE на эпюре приведены на рис. 37 (а-в).
Видимость прямой АВ относительно плоскости Р (рис. 37,г) определяем с помощью двух пар конкурирующих точек и Рассматривая пару точек 1 и 1′ , конкурирующих относительно горизонтальной плоскости проекций, видим, что точка выше. Точка следовательно, прямая АВ расположена выше плоскости, поэтому относительно плоскости часть прямой видима, а ее часть закрыта плоскостью.
Аналогично, используя конкурирующие точки и определяем видимость прямой АВ и плоскости по отношению к фронтальной плоскости проекций.
Задачи, на построение линии пересечения плоскостей, заданных пересекающимися прямыми, можно решать подобно задаче на пересечение прямой с плоскостью.
Одна из изображенных на рис. 38 плоскостей задана треугольником AВС, а вторая — двумя параллельными прямыми с и f.
Линия пересечения этих плоскостей (линия MN) определена при помощи построения точек встречи прямых с и f с плоскостью треугольника. Для этого через прямую с проведена фронтально — проецирующая плоскость S. Прямая 1-2 — линия пересечения плоскости треугольника с вспомогательной фронтально-проектирующей плоскостью S. Точка М — точка встречи прямой с с плоскостью треугольника AВС.
Точка N найдена аналогично. Прямая MN — искомая. Видимость на рис. 86 определена из условия, что заданные плоскости ограничены треугольником и двумя параллельными прямыми, определяющими их.
Прямая параллельна плоскости
Если прямая линия параллельна какой-либо прямой, находящейся в плоскости, то она параллельна этой плоскости. Следовательно, для построения прямой, параллельной заданной плоскости, надо взять в этой плоскости какую — либо прямую и построить ей параллельную.
На рис. 39 через точку С проведена прямая d, параллельная плоскости Р, заданной пересекающимися прямыми т и п.
Прямая d параллельна прямой n, принадлежащей плоскости следовательно, прямая d параллельна этой плоскости:
Прямая перпендикулярна плоскости
Прямая перпендикулярна плоскости, если она перпендикулярна двум пересекающимся прямым, лежащим в этой плоскости.
Чтобы построить перпендикуляр из точки D на плоскость треугольника AВС (рис.40) необходимо предварительно построить
горизонталь и фронталь плоскости Горизонтальная проекция перпендикуляра пройдет через точку перпендикулярно к горизонтальной проекции горизонтали а фронтальная проекция — перпендикулярно к фронтальной проекции фронтали
Если же плоскость задана следами, то, учитывая, что фронтальная проекция любой фронтали в этой плоскости всегда параллельна фронтальному следу плоскости, а горизонтальная проекция любой горизонтали параллельна горизонтальному следу плоскости, легко видеть (рис. 41), что проекции перпендикуляра к плоскости должны быть перпендикулярны соответствующим следам плоскости.
Плоскости перпендикулярны
Две плоскости взаимно перпендикулярны, если одна из них проходит через перпендикуляр к другой. На рис. 42 через прямую АВ проведена плоскость, перпендикулярная плоскости треугольника CDE. Для этого из точки В прямой АВ восстановлен перпендикуляр ВК к плоскости треугольника — фронталь и горизонталь плоскости треугольника CDЕ ). Плоскость, определяемая пересекающимися прямыми АВ и ВК— искомая.
Если возникает необходимость в построении взаимно перпендикулярных прямых общего положения, необходимо построить плоскость, перпендикулярную заданной прямой, и взять в ней любую прямую.
Задача.
Через точку М провести прямую, перпендикулярную прямой
Для построения взаимно перпендикулярных прямых (рис. 43), одна из которых задана, а вторая (чтобы задача имела единственное решение) должна проходить через какую-либо определенную точку М, надо выполнить следующее:
- а) через заданную точку M проводим плоскость перпендикулярную заданной прямой
- б) находим точку пересечения заданной прямой с построенной плоскостью Q — точку К (для этого прямую заключаем во вспомогательную фронтально -проецирующую плоскость Р);
- в) соединяем заданную точку М с найденной точкой К прямой линией. Эта линия МК и будет искомой.
Задача:
Определить расстояние от точки до плоскости, заданной треугольником ABC (рис.44)
Расстояние от точки до плоскости определяется длиной перпендикуляра, опущенного из точки на плоскость. Поэтому решение этой задачи выполняем в следующей последовательности:
1. Из точки D опускаем перпендикуляр на плоскость треугольника AВС (рис.44, а), для этого в плоскости треугольника проводим горизонталь и фронталь затем из точки опускаем перпендикуляр на — получаем фронтальную проекцию перпендикуляра; а из точки -на — получаем горизонтальную проекцию перпендикуляра к плоскости
2. Находим точку пересечения перпендикуляра с плоскостью заключаем перпендикуляр во вспомогательную секущую плоскость Р; строим линию пересечения плоскости с плоскостью Р; определяем искомую точку К в пересечении перпендикуляра и построенной линии пересечения 3-4 (рис. 44,6).
3. Методом прямоугольного треугольника определяем натуральную величину отрезка DK, для чего в плоскости (рис. 44,в) строим прямоугольный треугольник один катет которого является горизонтальной проекций перпендикуляра, а второй равен разности высот точек D и К. Гипотенуза построенного треугольника определяет искомое расстояние от точки D до плоскости треугольника ABC.
Рекомендую подробно изучить предметы: |
|
Ещё лекции с примерами решения и объяснением: |
- Решение метрических задач
- Тени в ортогональных проекциях
- Кривые поверхности
- Пересечения криволинейных поверхностей
- Образование и задание поверхности на чертеже
- Пересечение поверхности плоскостью и прямой
- Развертки поверхностей
- Способы преобразования проекций
При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org
Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи
Сайт пишется, поддерживается и управляется коллективом преподавателей
Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.
Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.