Определение 1. Система векторов называется линейно зависимой, если один из векторов системы можно представить в виде линейной комбинации остальных векторов системы, и линейно независимой — в противном случае.
Определение 1´. Система векторов называется линейно зависимой, если найдутся числа с 1 , с 2 , …, с k , не все равные нулю, такие, что линейная комбинация векторов с данными коэффициентами равна нулевому вектору: = , в противном случае система называется линейно независимой.
Покажем, что эти определения эквивалентны.
Пусть выполняется определение 1, т.е. один из векторов системы равен линейной комбинации остальных:
,
.
Линейная комбинация системы векторов равна нулевому вектору, причем не все коэффициенты этой комбинации равны нулю, т.е. выполняется определение 1´.
Пусть выполняется определение 1´. Линейная комбинация системы векторов равна , причем не все коэффициенты комбинации равны нулю, например, коэффициенты при векторе .
,
,
.
Один из векторов системы мы представили в виде линейной комбинации остальных, т.е. выполняется определение 1.
Определение 2. Единичным вектором, или ортом, называется n -мерный вектор , у которого i -я координата равна единице, а остальные — нулевые.
. (1, 0, 0, …, 0),
(0, 1, 0, …, 0),
(0, 0, 0, …, 1).
Теорема 1. Различные единичные векторы n -мерного пространства линейно независимы.
Доказательство. Пусть линейная комбинация этих векторов с произвольными коэффициентами равна нулевому вектору.
= .
Из этого равенства следует, что все коэффициенты равны нулю. Получили противоречие.
Каждый вектор n -мерного пространства ā(а 1 , а 2 , . а n ) может быть представлен в виде линейной комбинации единичных векторов с коэффициентами, равными координатам вектора
.
Теорема 2. Если системы векторов содержит нулевой вектор, то она линейно зависима.
Доказательство. Пусть дана система векторов и один из векторов является нулевым, например = . Тогда с векторами данной системы можно составить линейную комбинацию, равную нулевому вектору, причем не все коэффициенты будут нулевыми:
= .
Следовательно, система линейно зависима.
Теорема 3. Если некоторая подсистема системы векторов линейно зависима, то и вся система линейно зависима.
Доказательство. Дана система векторов . Предположим, что система линейно зависима, т.е. найдутся числа с 1 , с 2 , …, с r , не все равные нулю, такие, что = . Тогда
= .
Получилось, что линейная комбинация векторов всей системы равна , причем не все коэффициенты этой комбинации равны нулю. Следовательно, система векторов линейно зависима.
Следствие. Если система векторов линейно независима, то и любая ее подсистема также линейно независима.
Предположим противное, т.е. некоторая подсистема линейно зависима. Из теоремы следует, что вся система линейно зависима. Мы пришли к противоречию.
Теорема 4 (теорема Штейница). Если каждый из векторов является линейной комбинацией векторов и m > n , то система векторов линейно зависима.
Следствие. В любой системе n -мерных векторов не может быть больше чем n линейно независимых.
Доказательство. Каждый n -мерный вектор выражается в виде линейной комбинации n единичных векторов. Поэтому, если система содержит m векторов и m > n , то, по теореме, данная система линейно зависима.
- Линейная зависимость системы векторов. Коллинеарные векторы
- Коллинеарные векторы
- Условия коллинеарности векторов
- Примеры задач на исследование коллинеарности векторов
- Критерии линейной зависимости и линейной независимости систем векторов
- Свойства линейно зависимых векторов
- Примеры решения задач на линейную зависимость или линейную независимость векторов
- 10. Линейная зависимость и независимость векторов
- 🎬 Видео
Видео:Как разложить вектор по базису - bezbotvyСкачать
Линейная зависимость системы векторов. Коллинеарные векторы
В данной статье мы расскажем:
- что такое коллинеарные векторы;
- какие существуют условия коллинеарности векторов;
- какие существуют свойства коллинеарных векторов;
- что такое линейная зависимость коллинеарных векторов.
Видео:Линейная оболочка. Базис и размерностьСкачать
Коллинеарные векторы
Коллинеарные векторы — это векторы, которые являются параллелями одной прямой или лежат на одной прямой.
Видео:Высшая математика. Линейные пространства. Векторы. БазисСкачать
Условия коллинеарности векторов
Два векторы являются коллинеарными, если выполняется любое из следующих условий:
- условие 1. Векторы a и b коллинеарны при наличии такого числа λ , что a = λ b ;
- условие 2. Векторы a и b коллинеарны при равном отношении координат:
a = ( a 1 ; a 2 ) , b = ( b 1 ; b 2 ) ⇒ a ∥ b ⇔ a 1 b 1 = a 2 b 2
- условие 3. Векторы a и b коллинеарны при условии равенства векторного произведения и нулевого вектора:
Условие 2 неприменимо, если одна из координат вектора равна нулю.
Условие 3 применимо только к тем векторам, которые заданы в пространстве.
Видео:Базис линейного пространства (01)Скачать
Примеры задач на исследование коллинеарности векторов
Исследуем векторы а = ( 1 ; 3 ) и b = ( 2 ; 1 ) на коллинеарность.
В данном случае необходимо воспользоваться 2-м условием коллинеарности. Для заданных векторов оно выглядит так:
Равенство неверное. Отсюда можно сделать вывод, что векторы a и b неколлинеарны.
Ответ: a | | b
Какое значение m вектора a = ( 1 ; 2 ) и b = ( — 1 ; m ) необходимо для коллинеарности векторов?
Используя второе условие коллинераности, векторы будут коллинеарными, если их координаты будут пропорциональными:
Отсюда видно, что m = — 2 .
Ответ: m = — 2 .
Видео:Решение "базисной системы векторов" (2)Скачать
Критерии линейной зависимости и линейной независимости систем векторов
Система векторов векторного пространства линейно зависима только в том случае, когда один из векторов системы можно выразить через остальные векторы данной системы.
Пусть система e 1 , e 2 , . . . , e n является линейно зависимой. Запишем линейную комбинацию этой системы равную нулевому вектору:
a 1 e 1 + a 2 e 2 + . . . + a n e n = 0
в которой хотя бы один из коэффициентов комбинации не равен нулю.
Пусть a k ≠ 0 k ∈ 1 , 2 , . . . , n .
Делим обе части равенства на ненулевой коэффициент:
a k — 1 ( a k — 1 a 1 ) e 1 + ( a k — 1 a k ) e k + . . . + ( a k — 1 a n ) e n = 0
— a k — 1 a m , где m ∈ 1 , 2 , . . . , k — 1 , k + 1 , n
β 1 e 1 + . . . + β k — 1 e k — 1 + β k + 1 e k + 1 + . . . + β n e n = 0
или e k = ( — β 1 ) e 1 + . . . + ( — β k — 1 ) e k — 1 + ( — β k + 1 ) e k + 1 + . . . + ( — β n ) e n
Отсюда следует, что один из векторов системы выражается через все остальные векторы системы. Что и требовалось доказать (ч.т.д.).
Пусть один из векторов можно линейно выразить через все остальные векторы системы:
e k = γ 1 e 1 + . . . + γ k — 1 e k — 1 + γ k + 1 e k + 1 + . . . + γ n e n
Переносим вектор e k в правую часть этого равенства:
0 = γ 1 e 1 + . . . + γ k — 1 e k — 1 — e k + γ k + 1 e k + 1 + . . . + γ n e n
Поскольку коэффициент вектора e k равен — 1 ≠ 0 , у нас получается нетривиальное представление нуля системой векторов e 1 , e 2 , . . . , e n , а это, в свою очередь, означает, что данная система векторов линейно зависима. Что и требовалось доказать (ч.т.д.).
- Система векторов является линейно независимой, когда ни один из ее векторов нельзя выразить через все остальные векторы системы.
- Система векторов, которая содержит нулевой вектор или два равных вектора, линейно зависима.
Видео:Что такое вектора? | Сущность Линейной Алгебры, глава 1Скачать
Свойства линейно зависимых векторов
- Для 2-х и 3-х мерных векторов выполняется условие: два линейно зависимых вектора — коллинеарны. Два коллинеарных вектора — линейно зависимы.
- Для 3-х мерных векторов выполняется условие: три линейно зависимые вектора — компланарны. (3 компланарных вектора — линейно зависимы).
- Для n-мерных векторов выполняется условие: n + 1 вектор всегда линейно зависимы.
Видео:Линейная зависимость и линейная независимость векторов.Скачать
Примеры решения задач на линейную зависимость или линейную независимость векторов
Проверим векторы a = 3 , 4 , 5 , b = — 3 , 0 , 5 , c = 4 , 4 , 4 , d = 3 , 4 , 0 на линейную независимость.
Решение. Векторы являются линейно зависимыми, поскольку размерность векторов меньше количества векторов.
Проверим векторы a = 1 , 1 , 1 , b = 1 , 2 , 0 , c = 0 , — 1 , 1 на линейную независимость.
Решение. Находим значения коэффициентов, при которых линейная комбинация будет равняться нулевому вектору:
x 1 a + x 2 b + x 3 c 1 = 0
Записываем векторное уравнение в виде линейного:
x 1 + x 2 = 0 x 1 + 2 x 2 — x 3 = 0 x 1 + x 3 = 0
Решаем эту систему при помощи метода Гаусса:
1 1 0 | 0 1 2 — 1 | 0 1 0 1 | 0
Из 2-ой строки вычитаем 1-ю, из 3-ей — 1-ю:
1 1 0 | 0 1 — 1 2 — 1 — 1 — 0 | 0 — 0 1 — 1 0 — 1 1 — 0 | 0 — 0
1 1 0 | 0 0 1 — 1 | 0 0 — 1 1 | 0
Из 1-й строки вычитаем 2-ю, к 3-ей прибавляем 2-ю:
1 — 0 1 — 1 0 — ( — 1 ) | 0 — 0 0 1 — 1 | 0 0 + 0 — 1 + 1 1 + ( — 1 ) | 0 + 0
0 1 0 | 1 0 1 — 1 | 0 0 0 0 | 0
Из решения следует, что у системы множество решений. Это значит, что существует ненулевая комбинация значения таких чисел x 1 , x 2 , x 3 , при которых линейная комбинация a , b , c равняется нулевому вектору. Следовательно, векторы a , b , c являются линейно зависимыми.
Видео:Разложение вектора по базису. 9 класс.Скачать
10. Линейная зависимость и независимость векторов
Рассмотрим далее основополагающие в линейной алгебре понятие о линейной зависимости и независимости векторов, а также определение базиса системы векторов.
Любую конечную последовательность векторов Будем называть системой векторов, а любую ее подпоследовательность – подсистемой векторов. Линейной комбинацией векторов назовем вектор , равный сумме произведений произвольных чисел на векторы системы, т. е. .
Система векторов называется линейно независимой, если их линейная комбинация равна нулевому вектору только в том случае, когда все числа равны нулю. В обратном случае система векторов называется линейно зависимой. Отсюда, система векторов является линейно зависимой в том случае, когда линейная комбинация векторов равна нулевому вектору, а хотя бы один числовой коэффициент отличен от нуля.
Линейная зависимость и независимость есть свойства системы векторов. Однако часто соответствующие прилагательные относят и к самим векторам. Поэтому вместо «линейно независимая система векторов» допустимо говорить «линейно независимые векторы».
Например, двумерные арифметические векторы И Линейно независимы. Их линейная комбинация равна вектору , который обращается в нулевой вектор Только тогда, когда и .
Если взять векторы И , то они являются линейно зависимыми, так как их линейная комбинация равна нулевому вектору при И , не равных нулю.
Из определения линейной зависимости (независимости) системы векторов вытекают следующие утверждения.
1) Если некоторая система векторов содержит нулевой вектор, то она является линейно зависимой.
Пусть для определенности первый вектор системы является нулевым, т. е.
Тогда линейная комбинация векторов вида равна нулевому вектору, что и доказывает наше утверждение.
2) Если среди векторов системы есть такие, которые сами образуют линейно зависимую подсистему, то вся система также линейно зависима.
Так как исходная подсистема линейно зависима, то среди коэффициентов линейной комбинации векторов подсистемы имеется хотя бы один отличный от нуля. Добавим к этой линейной комбинацию линейную комбинацию векторов, не вошедших в исходную подсистему, с числовыми коэффициентами, равными нулю. Мы получим линейную комбинацию из векторов полной системы, которая равна нулевому вектору, причем имеется хотя бы один коэффициент отличный от нуля. Таким образом, наше утверждение доказано.
3) Если система векторов линейно независима, то и любая ее подсистема также линейно независима.
Если предположить обратное, т. е. существование некоторой линейно зависимой подсистемы, то по предыдущему утверждению отсюда следует зависимость исходной системы, что противоречит условию доказываемой теоремы. Полученное противоречие доказывает сформулированное утверждение.
4) Для того чтобы система из Ненулевых векторов была линейно зависима необходимо и достаточно, чтобы хотя бы один из векторов системы мог быть представлен как линейная комбинация предшествующих векторов.
Необходимость. Пусть система векторов линейно зависима. Тогда равенство выполняется при том условии, что хотя бы одно из чисел в левой части равенства отлично от нуля. Будем перебирать эти числа, начиная с большего номера, и остановимся на некотором номере таком, что соответствующий коэффициент отличен от нуля, т. е. . Номер не может быть равен единице, так как иначе из условий И теоремы о нулевом произведении следовало бы равенство , что противоречит правилу выбора номера и условию теоремы. Таким образом , и справедливо равенство. Отсюда находим вектор Таким образом, чтобы он является линейной комбинацией предшествующих ему векторов, а именно .
Достаточность. Пусть имеется некоторый вектор , который представлен в виде линейной комбинации предшествующих ему векторов . Тогда выполняется условие , что по определению означает линейную независимость исходной системы векторов.
По аналогичной схеме доказывается следующее утверждение.
5) Система векторов линейно зависима тогда и только тогда, когда хотя бы один из векторов системы может быть представлен в виде линейной комбинации остальных векторов.
🎬 Видео
Базис. Разложение вектора по базису.Скачать
Линейные комбинации, span и базисные вектора | Сущность Линейной Алгебры, глава 2Скачать
Лекция 16. Понятие вектора и векторного пространства. Базис векторного пространства.Скачать
Неравномерная темперация и биения центра объектовСкачать
Вектор. Сложение и вычитание. 9 класс | МатематикаСкачать
Скалярное произведение векторов. 9 класс.Скачать
Урок 3. Произведение векторов и загадочный угол между векторами. Высшая математика | TutorOnlineСкачать
Математика без Ху!ни. Метод Гаусса. Совместность системы. Ранг матрицы.Скачать
Национализм и марксистский вопросСкачать
18+ Математика без Ху!ни. Скалярное произведение векторов. Угол между векторами.Скачать
Линейная зависимость векторовСкачать
Линейная зависимость и независимость систем векторовСкачать