Магнитное поле дуги окружности

Видео:Дуга в магнитном полеСкачать

Дуга в магнитном поле

Магнитное поле

Магнитное поле играет очень большую роль в электротехнике и электронике. Без магнитного поля не функционировали бы герконы, электромагнитные реле, соленоиды, катушки индуктивности, дроссели, трансформаторы, двигатели, динамики, генераторы электрической энергии да и вообще много чего.

Видео:Дуга в магнитном полеСкачать

Дуга в магнитном поле

Природа магнетизма

Согласно одной из легенд, когда-то давным-давно жил в Греции пастух по имени Магнес. И вот шел он как-то со своим стадом овец, присел на камень и обнаружил, что конец его посоха, сделанный из железа, стал притягиваться к этому камню. С тех пор стали называть этот камень магнетит в честь Магнеса. Этот камень представляет из себя оксид железа.

Магнитное поле дуги окружности

Если такой камень положить на деревянную доску на воду или подвесить на нитке, то он всегда выстраивался в определенном положении. Один его конец всегда показывал на СЕВЕР, а другой — на ЮГ.

Магнитное поле дуги окружности

Этим свойством камня пользовались древние цивилизации. Поэтому, это был своего рода первый компас. Потом уже стали обтачивать такой камень и делать из разные фигурки. Например, так выглядел китайский древний компас, ложка которого была сделана из того самого магнетита. Ручка у этой ложки всегда показывала на ЮГ.

Магнитное поле дуги окружности

Ну а далее дело шло за практичностью и маленькими габаритами. Из магнетита вытачивали маленькие стрелки, которые подвешивали на тонкую иглу посередине. Так стали появляться первые малогабаритные компасы.

Магнитное поле дуги окружности

Древние цивилизации, конечно, не знали еще что такое север и юг. Поэтому, одну сторону магнетита они назвали северным полюсом (North), а противоположный конец — южным (South). Названия на английском очень легко запомнить, если кто смотрел американский мультфильм «Южный парк», он же Сауз (South) парк).

Магнитное поле дуги окружности

Видео:Правило рук 👋 КАК ЛЕГКО определять НАПРАВЛЕНИЕ ЛИНИЙ МАГНИТНОГО ПОЛЯ??Скачать

Правило рук 👋 КАК ЛЕГКО определять НАПРАВЛЕНИЕ ЛИНИЙ МАГНИТНОГО ПОЛЯ??

Магнитные линии и магнитный поток

Вокруг магнита экспериментальным путем были обнаружены магнитные силовые линии. Эти магнитные линии создают так называемое магнитное поле.

Магнитное поле дуги окружности

Как вы могли заметить на рисунке, концентрация магнитных силовых линий на самых краях магнита намного больше, чем в его середине. Это говорит о том, что магнитное поле является более сильным именно на краях магнита, а в его середине практически равна нулю. Направлением магнитных силовых линий считается направление от севера к югу.

Ошибочно считать, что магнитные силовые линии начинают свое движение от северного полюса и заканчивают свой век на южном. Это не так. Магнитные линии — они замкнуты и непрерывны. В магните это будет выглядеть примерно так.

Магнитное поле дуги окружности

Если приблизить два разноименных полюса, то произойдет притягивание магнитов

Магнитное поле дуги окружности

Если же приблизить одноименными полюсами, то произойдет их отталкивание

Магнитное поле дуги окружности

Итак, ниже важные свойства магнитных силовых линий.

  • Магнитные линии не поддаются гравитации.
  • Никогда не пересекаются между собой.
  • Всегда образуют замкнутые петли.
  • Имеют определенное направление с севера на юг.
  • Чем больше концентрация силовых линий, тем сильнее магнитное поле.
  • Слабая концентрация силовых линий указывает на слабое магнитное поле.

Магнитные силовые линии, которые образуют магнитное поле, называют также магнитным потоком.

Итак, давайте рассмотрим два рисунка и ответим себе на вопрос, где плотность магнитного потока будет больше? На рисунке «а» или на рисунке «б»?

Магнитное поле дуги окружности

Видим, что на рисунке «а» мало силовых магнитных линий, а на рисунке «б» их концентрация намного больше. Отсюда можно сделать вывод, что плотность магнитного потока на рисунке «б» больше, чем на рисунке «а».

В физике формула магнитного потока записывается как

Магнитное поле дуги окружности

Ф — магнитный поток, Вебер

В — плотность магнитного потока, Тесла

а — угол между перпендикуляром n (чаще его зовут нормалью) и плоскостью S, в градусах

S — площадь, через которую проходит магнитный поток, м 2

Магнитное поле дуги окружности

Что же такое 1 Вебер? Один вебер — это магнитный поток, который создается полем индукцией 1 Тесла через площадку 1м 2 расположенной перпендикулярно направлению магнитного поля.

Видео:Физика - Магнитное полеСкачать

Физика - Магнитное поле

Напряженность магнитного поля

Формула напряженности

Слышали ли вы когда-нибудь такое выражение: «напряженность между ними все росла и росла». То есть по сути напряженность — это что-то невидимое, какая-то сдерживающая сила, энергия. Здесь почти все то же самое. Напряженностью магнитного поля также часто называют силой магнитного поля. Напряженность магнитного поля напрямую зависит от плотности магнитного потока и выражается формулой

Магнитное поле дуги окружности

H — напряженность магнитного поля, Ампер/метр

B — плотность магнитного потока, Тесла

μ0 — магнитная постоянная = 4π × 10 -7 Генри/метр или если написать по человечески 1,2566 × 10 -6 Генри/метр.

Эта формула работает только тогда, когда между витками катушки находится воздух, либо вакуум. Более крутая формула выглядит вот так.

Магнитное поле дуги окружности

μ — это относительная магнитная проницаемость.

У разных веществ она разная

Магнитное поле дуги окружности

Напряженность магнитного поля проводника с током

Итак, имеем какой-либо проводник, по которому течет электрический ток.

Магнитное поле дуги окружности

Для того, чтобы вычислить напряженность магнитного поля на каком-то расстоянии от проводника при условии, что проводник находится в воздушном пространстве либо в вакууме, достаточно воспользоваться формулой

Магнитное поле дуги окружности

H — напряженность магнитного поля, Ампер/метр

I — сила тока, текущая через проводник, Ампер

r — расстояние до точки, в которой измеряется напряженность, метр

Видео:МАГНИТНОЕ ПОЛЕ за 24 минуты. ЕГЭ Физика. Николай Ньютон. ТехноскулСкачать

МАГНИТНОЕ ПОЛЕ за 24 минуты. ЕГЭ Физика. Николай Ньютон. Техноскул

Магнитное поле проводника с током

Оказывается, если через какой-либо проводник пропустить электрический ток, то вокруг проводника образуется магнитное поле.

Магнитное поле дуги окружности

Здесь можно вспомнить знаменитое правило буравчика, но для наглядности я лучше буду использовать правило самореза, так как почти все хоть раз в жизни ввинчивали либо болт, либо саморез.

Магнитное поле дуги окружности

Ввинчиваем по часовой стрелке — саморез идет вниз. В нашем случае он показывает направление электрического тока. Движение наших рук показывает направление линий магнитного поля. Все то же самое, когда мы начинаем откручивать саморез. Он начинает вылазить вверх, то есть в нашем случае показывает направление электрического тока, а наша рука в этом время рисует в воздухе направление линий магнитного поля.

Также часто в учебниках физики можно увидеть, что направление электрического тока от нас рисуют кружочком с крестиком, а к нам — кружочком с точкой. В этом случае опять представляем себе саморез и уже в голове увидим направление магнитного поля.

Магнитное поле дуги окружности

Как думаете, что будет если мы сделаем вот такую петельку из провода? Что изменится в этом случае?

Магнитное поле дуги окружности

Давайте же рассмотрим этот случай более подробно. Так в этой плоскости оба проводника создают магнитное поле, то по идее они должны отталкиваться друг от друга. Но если они хорошо закреплены, то начинается самое интересное. Давайте рассмотрим вид сверху, как это выглядит.

Магнитное поле дуги окружности

Как вы можете заметить, в области, где суммируются магнитные силовые линии плотность магнитного потока прям зашкаливает.

Видео:Билет №15 "Магнитное поле"Скачать

Билет №15 "Магнитное поле"

Соленоид

А что если сделать много-много таких петелек? Взять какую-нибудь круглую бобину, намотать на нее провод и потом убрать бобину. У нас должно получится что-то типа этого.

Магнитное поле дуги окружности

Если подать постоянное напряжение на такую катушку, магнитные силовые линии будут выглядеть вот так.

Магнитное поле дуги окружности

Вы только посмотрите, какая бешеная плотность магнитного потока внутри такой катушки! Получается, что от каждой петельки магнитное поле суммируется, что в итоге дает такую плотность магнитного потока. Такую катушку также называют катушкой индуктивности или соленоидом.

Вот также схема, показывающая как магнитные силовые линии складываются в соленоиде.

Магнитное поле дуги окружности

Плотность магнитного потока зависит от того, какая сила тока проходит через соленоид. Чтобы увеличить плотность магнитного потока, достаточно поверх витков намотать еще больше витков и вставить сердечник из специального материала — феррита.

Магнитное поле дуги окружности

Если в электрических цепях есть такое понятие, как ЭДС — электродвижущая сила, то и в магнитных цепях есть свой аналог — МДС — магнитодвижущая сила. Магнитодвижущая сила выражается в виде тока, протекающего через катушку из N витков и выражается в Амперах-витках.

Магнитное поле дуги окружности

I — это сила тока в катушке, Амперы

N — количество витков катушки, штуки)

Также советую посмотреть очень простое и интересное видео про магнитное поле.

Похожие статьи по теме «магнитное поле»

Видео:Урок 281. Электромагнитная индукция. Магнитный поток. Правило ЛенцаСкачать

Урок 281. Электромагнитная индукция. Магнитный поток. Правило Ленца

Магнитное поле кругового тока

Вы будете перенаправлены на Автор24

Французские ученые Ж. Био и Ф. Савар изучали магнитные поля, создаваемые постоянными токами разной формы. Результаты их работы обобщил известный математик и физик П. Лаплас.

Видео:Дуга постоянного тока в магнитном полеСкачать

Дуга постоянного тока в магнитном поле

Применение закона Био – Савара – Лапласа к вычислению магнитного поля кругового тока

Закон Био-Савара–Лапласа описывает порождение магнитного поля током $I$ на элементе проводника длиной $dl$ в некоторой точке пространства ($mu$ — магнитная проницаемость вещества в котором локализовано поле):

где $d vec l ⃗$ — вектор, длина которого равна длине элемента проводника $dl$, направленный по току; $vec r$ – радиус-вектор, который проведен от элемента $dl$ в точку, в которой исследуется магнитное поле. Поскольку в правой части формулы (1) находится векторное произведение, очевидно, что индукция элементарного магнитного поля будет направлена перпендикулярно плоскости, в которой находятся векторы $vec r$ и $vec l$ и при этом является касательной к силовой линии поля.

Величину вектора $vec$ из выражения (1) найдем как:

где $ alpha $– угол между векторами $vec r$ и $vec l$ .

Конкретное направление $vec$ находят по правилу буравчика (правилу правой руки):

Если правый винт вращать так, что его поступательное движение будет совпадать с направлением течения тока в избранном элементе, то вращение его головки укажет направление $vec$.

Магнитные поля подчиняются принципу суперпозиции:

Суммарную магнитную индукцию поля, создаваемого несколькими источниками, находят как геометрическую сумму векторов магнитной индукции отдельных полей:

$vec=sumlimits_^N vec_ left( 3 right). $

Если распределение токов можно считать непрерывным, то принцип суперпозиции можно записать:

Вычисление магнитной индукции поля с применением закона Био-Савара-Лапласа довольно сложная процедура. Но при существовании определенной симметрии в распределении токов, используя, рассмотренный нами закон и принцип суперпозиции, рассчитать конкретные поля просто. В любом случае следует придерживаться следующей схемы действий:

Готовые работы на аналогичную тему

  1. Выделить на проводнике с током элементарный отрезок $dl$.
  2. Записать для исследуемой точки поля закон Био – Савара – Лапласа.
  3. Определить направление элементарного поля $vec$ в избранной точке.
  4. Воспользоваться принципом суперпозиции для магнитных полей (учесть, что суммируются векторы).

Видео:Математика это не ИсламСкачать

Математика это не Ислам

Магнитное поле кругового тока в его центре

Рисунок 1. Магнитное поле кругового тока в его центре. Автор24 — интернет-биржа студенческих работ

Рассмотрим круговой проводник, по которому течет постоянный ток $I$ (рис.1). Выделим на этом проводнике элемент $dl$, который можно считать прямолинейным. Если перейти к другому элементу этого же тока, затем к третьему и так далее, применить правило правого винта, то очевидно, что все магнитные поля, созданные этими элементами в центре, направлены вдоль одной прямой, перпендикуляру к плоскости кольца. Это означает, применяя принцип суперпозиции, мы векторное сложение заменим алгебраическим.

Запишем закон Био-Савара-Лапласа для модуля вектора индукции поля, создаваемого элементом d$l_1$:

Из рис.1 мы видим:

  1. что расстояние от элементарного тока до центра витка равно его радиусу ($R$) и будет одинаковым для всех элементов на этом витке,
  2. элемент $dl$ (как и все остальные элементы) будут нормальны к радиус-вектору $vec r$.

Учитывая сказанное выражение (5) представим в виде:

Обезличивая витки с током, положим далее $dl_1=dl$.

Поскольку наш ток является непрерывным, то для нахождения полного поля в его центре, мы проинтегрируем (6), имеем:

$L=2πR$ — длина окружности витка.

Индукция магнитного поля кругового тока на его оси

Найдем индукцию магнитного поля на оси кругового тока, если ток, текущий по нему равен $I$, радиус витка — $R$ (рис.2).

Рисунок 2. Индукция магнитного поля кругового тока на его оси. Автор24 — интернет-биржа студенческих работ

Как основу для выполнения поставленной задачи возьмем закон Био-Савара-Лапласа (1), где из рис.2 мы видим, что:

$dvectimes vec=dvectimes vec+dvectimes vec(9).$

Используя принцип суперпозиции закон (1) для нашего тока и формулы (8-9) запишем:

В выражении (10) при записи интеграла, мы учли, что величина вектора $vec$ не изменяется. Кроме этого вектор $vec h$, определяющий положение точки, в которой мы ищем поле, не изменяется при движении по нашему контуру, поэтому:

$ointlimits_L <dvectimes vec> =(ointlimits_L <dvec)timesvec> =0, left( 11 right),$

так как ( $ointlimits_L <dvec)=0.>$

Вычислим интеграл: $ointlimits_L <dvectimes vec.>$ Введем единичный вектор ($vec n$), нормальный к плоскости витка с током.

$ointlimits_L <dvectimes vec=ointlimits_L <vecRdl=vecR>> ointlimits_L <dl=vecR> 2pi R=2pi R^vecleft( 12 right)$.

Подставляем результаты интегрирования из (12) в (10), имеем:

где при записи окончательного результата мы учли, что:

Видео:Билет №16 "Теорема о циркуляции и теорема Гаусса для магнитного поля"Скачать

Билет №16 "Теорема о циркуляции и теорема Гаусса для магнитного поля"

Кольца Гельмгольца

Кольцами Гельмгольца считают пару проводников в виде колец одного радиуса, расположенных в параллельных плоскостях (рис.3) на одной оси. Расстояние между плоскостями колец равно их радиусу.

Рисунок 3. Кольца Гельмгольца. Автор24 — интернет-биржа студенческих работ

Рассмотрим магнитное поле на оси этих колец.

Декартову систему координат разместим так, что ее начало совпадает с центром нижнего кольца с током. Ось Z нашей системы будет направлена по оси колец (рис.3).

Запишем индукцию магнитного поля в точке с координатой $z$ на оси колец. Используем формулу (13):

Исследуем полученное поле. Считается, что магнитное поле на оси колец Гельмгольца на посередине между ними является однородным.

Неоднородность в первом приближении характеризуют первой производной:

Если $z=fracquad$ , подставим в (15), имеем:

По условию для колец Гельмгольца, имеем: $d=R.$

На середине их общей оси ($z=frac)$, получаем:

Равенство нулю второй производной от $B_z$ по координате $z$, показывает, что в на середине оси колец магнитное поле является однородным с высокой степенью точности.

Получи деньги за свои студенческие работы

Курсовые, рефераты или другие работы

Автор этой статьи Дата последнего обновления статьи: 28 03 2022

Видео:Сварка дугой, отклоняемой собственным магнитным полемСкачать

Сварка дугой, отклоняемой собственным магнитным полем

Магнитное поле дуги окружности

Магнитное поле постоянных токов различной конфигурации изучалось экспериментально французскими учеными Ж. Био и Ф. Саваром (1820 г.). Они пришли к выводу, что индукция магнитного поля токов, текущих по проводнику, определяется совместным действием всех отдельных участков проводника. Магнитное поле подчиняется принципу суперпозиции :

Если магнитное поле создается несколькими проводниками с током, то индукция результирующего поля есть векторная сумма индукций полей, создаваемых каждым проводником в отдельности.

Индукцию Магнитное поле дуги окружностипроводника с током можно представить как векторную сумму элементарных индукций Магнитное поле дуги окружностисоздаваемых отдельными участками проводника. На опыте невозможно выделить отдельный участок проводника с током, так как постоянные токи всегда замкнуты. Можно измерить только суммарную индукцию магнитного поля, создаваемого всеми элементами тока. Закон Био–Савара определяет вклад Магнитное поле дуги окружностив магнитную индукцию Магнитное поле дуги окружностирезультирующего магнитного поля, создаваемый малым участком Δ проводника с током .

Магнитное поле дуги окружности

Здесь – расстояние от данного участка Δ до точки наблюдения, α – угол между направлением на точку наблюдения и направлением тока на данном участке, μ0 – магнитная постоянная. Направление вектора Магнитное поле дуги окружностиопределяется правилом буравчика: оно совпадает с направлением вращения рукоятки буравчика при его поступательном перемещении вдоль тока. Рис. 1.17.1 иллюстрирует закон Био–Савара на примере магнитного поля прямолинейного проводника с током. Если просуммировать (проинтегрировать) вклады в магнитное поле всех отдельных участков прямолинейного проводника с током, то получится формула для магнитной индукции поля прямого тока:

Магнитное поле дуги окружности

которая уже приводилась в § 1.16.

Магнитное поле дуги окружности
Рисунок 1.17.1.

Закон Био–Савара позволяет рассчитывать магнитные поля токов различных конфигураций. Нетрудно, например, выполнить расчет магнитного поля в центре кругового витка с током. Этот расчет приводит к формуле

Магнитное поле дуги окружности

где – радиус кругового проводника. Для определения направления вектора Магнитное поле дуги окружноститакже можно использовать правило буравчика, только теперь его рукоятку нужно вращать в направлении кругового тока, а поступательное перемещение буравчика укажет направление вектора магнитной индукции.

Расчеты магнитного поля часто упрощаются при учете симметрии в конфигурации токов, создающих поле. В этом случае можно пользаоваться теоремой о циркуляции вектора магнитной индукции , которая в теории магнитного поля токов играет ту же роль, что и теорема Гаусса в электростатике.

Поясним понятие циркуляции вектора Магнитное поле дуги окружностиПусть в пространстве, где создано магнитное поле, выбран некоторый условный замкнутый контур (не обязательно плоский) и указано положительное направление его обхода. На каждом отдельном малом участке Δ этого контура можно определить касательную составляющую Магнитное поле дуги окружностивектора Магнитное поле дуги окружностив данном месте, то есть определить проекцию вектора Магнитное поле дуги окружностина направление касательной к данному участку контура (рис. 1.17.2).

Магнитное поле дуги окружности
Рисунок 1.17.2.

Циркуляцией вектора Магнитное поле дуги окружностиназывают сумму произведений Магнитное поле дуги окружностиΔ, взятую по всему контуру :

Магнитное поле дуги окружности

Некоторые токи, создающие магнитное поле, могут пронизывать выбранный контур в то время, как другие токи могут находиться в стороне от контура.

Теорема о циркуляции утверждает, что циркуляция вектора Магнитное поле дуги окружностимагнитного поля постоянных токов по любому контуру всегда равна произведению магнитной постоянной μ0 на сумму всех токов, пронизывающих контур:

Магнитное поле дуги окружности

В качестве примера на рис. 1.17.2 изображены несколько проводников с токами, создающими магнитное поле. Токи 2 и 3 пронизывают контур в противоположных направлениях, им должны быть приписаны разные знаки – положительными считаются токи, которые связаны с выбранным направлением обхода контура правилом правого винта (буравчика). Следовательно, , а . Ток 1 не пронизывает контур .

Теорема о циркуляции в данном примере выражается соотношением:

Магнитное поле дуги окружности

Теорема о циркуляции в общем виде следует из закона Био–Савара и принципа суперпозиции.

Простейшим примером применения теоремы о циркуляции является вывод формулы для магнитной индукции поля прямолинейного проводника с током. Учитывая симметрию в данной задаче, контур целесообразно выбрать в виде окружности некоторого радиуса , лежащей в перпендикулярной проводнику плоскости. Центр окружности находится в некоторой точке проводника. В силу симметрии вектор Магнитное поле дуги окружностинаправлен по касательной Магнитное поле дуги окружности, а его модуль одинаков во всех точках окружности. Применение теоремы о циркуляции приводит к соотношению:

Магнитное поле дуги окружности

откуда следует формула для модуля магнитной индукции поля прямолинейного проводника с током, приведенная ранее.

Этот пример показывает, что теорема о циркуляции вектора магнитной индукции Магнитное поле дуги окружностиможет быть использована для расчета магнитных полей, создаваемых симметричным распределением токов, когда из соображений симметрии можно «угадать» общую структуру поля.

Имеется немало практически важных примеров расчета магнитных полей с помощью теоремы о циркуляции. Одним из таких примеров является задача вычисления поля тороидальной катушки (рис. 1.17.3).

Магнитное поле дуги окружности
Рисунок 1.17.3.

Предполагается, что катушка плотно, то есть виток к витку, намотана на немагнитный тороидальный сердечник. В такой катушке линии магнитной индукции замыкаются внутри катушки и представляют собой концентрические окружности. Они направлены так, что глядя вдоль них, мы увидели бы ток в витках, циркулирующим по часовой стрелке. Одна из линий индукции некоторого радиуса изображена на рис. 1.17.3. Применим теорему о циркуляции к контуру в виде окружности, совпадающей с изображенной на рис. 1.17.3 линией индукции магнитного поля. Из соображений симметрии ясно, что модуль вектора Магнитное поле дуги окружностиодинаков вдоль всей этой линии. По теореме о циркуляции можно записать:

∙ 2π = μ0,

где – полное число витков, а – ток, текущий по виткам катушки. Следовательно,

Магнитное поле дуги окружности

Таким образом, модуль вектора магнитной индукции в тороидальной катушке зависит от радиуса . Если сердечник катушки тонкий, то есть , то магнитное поле внутри катушки практически однородно. Величина = представляет собой число витков на единицу длины катушки. В этом случае

.

В это выражение не входит радиус тора, поэтому оно справедливо и в предельном случае . Но в пределе каждую часть тороидальной катушки можно рассматривать как длинную прямолинейную катушку. Такие катушки называют соленоидами . Вдали от торцов соленоида модуль магнитной индукции выражается тем же соотношением, что и в случае тороидальной катушки.

На рис. 1.17.4 изображено магнитное поле катушки конечной длины. Следует обратить внимание на то, что в центральной части катушки магнитное поле практически однородно и значительно сильнее, чем вне катушки. На это указывает густота линий магнитной индукции. В предельном случае бесконечно длинного соленоида однородное магнитное поле целиком сосредоточено внутри него.

Магнитное поле дуги окружности
Рисунок 1.17.4.

В случае бесконечно длинного соленоида выражение для модуля магнитной индукции можно получить непосредственно с помощью теоремы о циркуляции, применив ее к прямоугольному контуру, показанному на рис. 1.17.5.

Магнитное поле дуги окружности
Рисунок 1.17.5.

Вектор магнитной индукции имеет отличную от нуля проекцию на направление обхода контура только на стороне . Следовательно, циркуляция вектора Магнитное поле дуги окружностипо контуру равна , где – длина стороны . Число витков соленоида, пронизывающих контур , равно , где – число витков на единицу длины соленоида, а полный ток, пронизывающий контур, равен . Согласно теореме о циркуляции,

= μ0,

откуда

= μ0 .

Это выражение совпадает с полученной ранее формулой для магнитного поля тонкой тороидальной катушки.

🔍 Видео

Котика ударило током, 10 т. ВольтСкачать

Котика ударило током, 10 т. Вольт

вращение электрической дуги в магнитном полеСкачать

вращение электрической дуги в магнитном поле

Вращение дугиСкачать

Вращение дуги

Урок 270. Магнитное поле и его характеристикиСкачать

Урок 270. Магнитное поле и его характеристики

Урок 276. Сила Лоренца. Движение заряженных частиц в магнитном полеСкачать

Урок 276. Сила Лоренца. Движение заряженных частиц в магнитном поле

Урок 178 (осн). Рамка с током в магнитном поле. ЭлектродвигательСкачать

Урок 178 (осн). Рамка с током в магнитном поле. Электродвигатель

Урок 277. Масс-спектрограф. Циклотрон. Магнитный щит ЗемлиСкачать

Урок 277. Масс-спектрограф. Циклотрон. Магнитный щит Земли

Вращение дуги в магнитном поле3Скачать

Вращение дуги в магнитном поле3

Сварка дугой управляемой магнитны полемСкачать

Сварка дугой управляемой магнитны полем
Поделиться или сохранить к себе: