Какие из следующих утверждений верны?
1) Все углы ромба равны.
2) Площадь квадрата равна произведению двух его смежных сторон.
3) Любые два равносторонних треугольника подобны.
В ответ запишите номера выбранных утверждений без пробелов, запятых и других дополнительных символов.
Рассмотрим каждое из утверждений:
1) «Все углы ромба равны» — неверно.
2) «Площадь квадрата равна произведению двух его смежных сторон» — верно, согласно формуле
3) «Любые два равносторонних треугольника подобны» — верно, согласно признаку подобия треугольников.
- Любви два равносторонних треугольника подобны
- Источник задания: Решение 2648. ОГЭ 2016 Математика, И.В. Ященко. 36 вариантов.
- Задание №20 ОГЭ по математике
- Анализ геометрических высказываний
- Разбор типовых вариантов задания №20 ОГЭ по математике
- Первый вариант задания
- Второй вариант задания
- Третий вариант задания
- Демонстрационный вариант ОГЭ 2019
- Четвертый вариант задания
- Пятый вариант задания
- 🎦 Видео
Видео:Задача на подобие треугольников. А ты сможешь решить? | TutorOnline | МатематикаСкачать
Любви два равносторонних треугольника подобны
Видео:Подобие треугольников. Вся тема за 9 минут | ОГЭ по математике | Молодой РепетиторСкачать
Источник задания: Решение 2648. ОГЭ 2016 Математика, И.В. Ященко. 36 вариантов.
Задание 13. Какие из следующих утверждений верны?
1) Любые два равносторонних треугольника подобны.
2) В любом прямоугольнике диагонали взаимно перпендикулярны.
3) Все диаметры окружности равны между собой.
В ответе запишите номера выбранных утверждений без пробелов, запятых и других дополнительных символов.
1) Верно. Равносторонние треугольники подобны, так как углы в нем все равны по 60 градусов, следовательно, они подобны по 2 углам (минимальное условие подобия треугольников).
2) Не верно. В прямоугольнике диагонали могут пересекаться под разными углами, в том числе и под прямым.
3) Верно. Диаметры окружности – это расстояния между двумя точками на окружности, расположенных по разные стороны от ее центра. Соответственно, при любом повороте диаметра, расстояние между такими точками всегда одно и то же.
Видео:Подобие треугольников. Признаки подобия треугольников (часть 1) | МатематикаСкачать
Задание №20 ОГЭ по математике
Видео:Подобие треугольников (ч.2) | Математика | TutorOnlineСкачать
Анализ геометрических высказываний
В 20 задании из приведенных утверждений необходимо выбрать одно или несколько правильных. Утверждения из общего теоретического курса геометрии, поэтому, какие-то определенные рекомендации здесь дать нельзя, кроме как полного повторения теоретического курса. Другое дело, что если вы точно не знаете какое-либо утверждение, то решить задачу можно наоборот — выбирая и отсеивая неправильные. Это задание не имеет какого либо подхода к решению, однако ниже я привел несколько разобранных задач.
Разбор типовых вариантов задания №20 ОГЭ по математике
Первый вариант задания
Какие из следующих утверждений верны?
- Все диаметры окружности равны между собой.
- Угол, вписанный в окружность, равен соответствующему центральному углу, опирающемуся на ту же дугу.
- Любые два равносторонних треугольника подобны.
Решение:
Все диаметры окружности всегда равны между собой — это даже интуитивно понятно. Что касается второго утверждения, то оно неверно — вписанный угол всегда в два раза меньше центрального. А вот третье утверждение тоже верно — треугольники могут быть подобны по трем углам, а у равносторонних треугольников они всегда равны.
Второй вариант задания
Какие из следующих утверждений верны?
- Все высоты равностороннего треугольники равны.
- Существуют три прямые, которые проходят через одну точку.
- Если диагонали параллелограмма равны, то он является ромбом.
Решение:
Первое утверждение верно, так как у равностороннего треугольника все стороны равнозначны, а значит и все элементы, проведенные к ним, тоже. Второе утверждение тоже верно, так как нет ограничений на количество произвольных прямых, проходящих через одну точку. Третье утверждение неверно — если диагонали равны, то это либо прямоугольник, либо квадрат.
Третий вариант задания
Какие из следующих утверждений верны?
- Длина гипотенузы прямоугольного треугольника меньше суммы длин его катетов.
- Любой прямоугольник можно вписать в окружность.
- Через заданную точку плоскости можно провести единственную прямую.
Решение:
Первое утверждение верно из общих свойств треугольника — сумма двух сторон всегда больше третьей. Второе утверждение тоже верно — действительно, любой прямоугольник можно вписать в окружность. Третье утверждение неверно, так как я писал уже чуть выше, что нет ограничений на количество произвольных прямых, проходящих через одну точку.
Демонстрационный вариант ОГЭ 2019
Укажите номера верных утверждений.
- Через точку, не лежащую на данной прямой, можно провести прямую, параллельную этой прямой.
- Треугольник со сторонами 1, 2, 4 существует.
- Если в ромбе один из углов равен 90° , то такой ромб — квадрат.
- В любом параллелограмме диагонали равны.
Решение:
Проанализируем каждое из утверждений:
1) Через точку, не лежащую на данной прямой, можно провести прямую, параллельную этой прямой.
Да, такое утверждение в геометрии есть, с дополнением » и только одну» :
«Через точку, не лежащую на данной прямой, можно провести прямую, параллельную этой прямой, и причем только одну.»
2) Треугольник со сторонами 1, 2, 4 существует.
Для существования треугольника должно выполняться следующее правило:
Сумма двух сторон всегда больше третьей. В данном случае это не так, так как 1 + 2
Четвертый вариант задания
Какое из следующих утверждений верно?
1) Если в параллелограмме диагонали равны и перпендикулярны, то этот параллелограмм является квадратом.
2) Смежные углы всегда равны.
3) Каждая из биссектрис равнобедренного треугольника является его высотой.
Решение:
Проанализируем каждое утверждение.
1) Это утверждение верно, поскольку равенство и перпендикулярность диагоналей является одним из свойств именно квадрата.
2) Это утверждение неверно. Основание – соответствующая теорема, которой утверждается, что смежные углы в сумме имеют 180 0 , т.е. дополняют друг друга до развернутого угла. Следовательно, равенство смежных углов может иметь место только в случае, если достоверно известно, что один из них прямой.
3) Утверждение неверно. Высотой является только биссектриса, опущенная на основание равнобедренного треугольника.
Пятый вариант задания
Какое из следующих утверждений верно?
1) Если угол острый, то смежный с ним угол также является острым.
2) Если диагонали параллелограмма перпендикулярны, то этот параллелограмм является ромбом.
3) Касательная к окружности параллельна радиусу, проведённому в точку касания.
Решение:
Выполняем анализ утверждений.
1) Согласно теореме о смежных углах, их сумма всегда равна 180 0 . Это означает, что любой из смежных углов является разностью 180 0 и величины 2-го смежного угла. Если первый смежный угол острый, значит, второй равен разности 180 0 и острого угла (т.е. угла, меньшего 90 0 ), которая в любом случае окажется больше 90 0 . А угол, больший 90 0 , по определению тупой. Итак, утверждение неверно.
2) Одно из свойств ромба заключается в том, что его диагонали перпендикулярны. Однако и диагонали квадрата тоже пересекаются под прямым углом. Но поскольку квадрат является частным случаем ромба, то и в этом противоречия заданному утверждению нет. Т.е. в целом утверждение верно.
3) Одно из основных св-в касательных к окружности заключается в том, что касательная всегда перпендикулярна к радиусу, проведенному из центра этой окружности в точку касания. Оно противоречит заданному утверждению, поэтому утверждение неверно.
🎦 Видео
8 класс, 22 урок, Первый признак подобия треугольниковСкачать
Все про прямоугольный треугольник. Решаем задачи | Математика | TutorOnlineСкачать
Звуковая волна основа мирозданияСкачать
Подобные треугольники с нуля до ОГЭ | Математика ОГЭ 2023 | УмскулСкачать
Компенсация любовью. Часть 2 | ОСТРОСЮЖЕТНЫЙ ФИЛЬМ | КИНО | СЕРИАЛСкачать
Компенсация любовью. Часть 1 | ОСТРОСЮЖЕТНЫЙ ФИЛЬМ | КИНО 2023 | СЕРИАЛСкачать
✓ Все сюжеты по планиметрии из ЕГЭ за 50 минут | ЕГЭ. Задание 16. Профильный уровень | Борис ТрушинСкачать
Любовный треугольник. Как покончить с этим?! Психолог Алиса СлудковскаяСкачать
ЧТО НАДО ГОВОРИТЬ ЕСЛИ НЕ СДЕЛАЛ ДОМАШКУ!Скачать
Вся геометрия 7–9 класс с нуля | ОГЭ МАТЕМАТИКА 2023Скачать
ВСЕ правила и формулы ПЛАНИМЕТРИИСкачать
Все типы 15 задания ОГЭ 2022 математика | Геометрия на ОГЭСкачать
Задачи на признаки подобия треугольников. Часть 2. Геометрия 8-9 классСкачать
Любовный треугольникСкачать
Сложная геометрия ЕГЭСкачать
Гомотетия преобразование подобия. Свойства преобразования подобия. Геометрия 8-9 классСкачать