Линейная оболочка векторов для чайников

Линейная зависимость системы векторов. Коллинеарные векторы

В данной статье мы расскажем:

  • что такое коллинеарные векторы;
  • какие существуют условия коллинеарности векторов;
  • какие существуют свойства коллинеарных векторов;
  • что такое линейная зависимость коллинеарных векторов.
Содержание
  1. Коллинеарные векторы
  2. Условия коллинеарности векторов
  3. Примеры задач на исследование коллинеарности векторов
  4. Критерии линейной зависимости и линейной независимости систем векторов
  5. Свойства линейно зависимых векторов
  6. Примеры решения задач на линейную зависимость или линейную независимость векторов
  7. Линейные и евклидовы пространства с примерами решения и образцами выполнения
  8. Линейные и евклидовы пространства
  9. Определение линейного пространства
  10. Примеры линейных пространств
  11. Простейшие свойства линейных пространств
  12. Линейные подпространства
  13. Примеры линейных подпространств
  14. Свойства линейного подпространства
  15. Сумма и пересечение линейных подпространств
  16. Свойства пересечения и суммы линейных подпространств
  17. Линейная оболочка
  18. Основные свойства линейной оболочки
  19. Линейная зависимость
  20. Базис. Размерность
  21. Замена базиса
  22. Свойства матрицы перехода
  23. Евклидовы пространства
  24. Метод ортогонализации
  25. Ортогональное дополнение
  26. Свойства ортогонального дополнения
  27. Унитарные пространства
  28. 🔥 Видео

Видео:Линейные комбинации, span и базисные вектора | Сущность Линейной Алгебры, глава 2Скачать

Линейные комбинации, span и базисные вектора | Сущность Линейной Алгебры, глава 2

Коллинеарные векторы

Коллинеарные векторы — это векторы, которые являются параллелями одной прямой или лежат на одной прямой.

Линейная оболочка векторов для чайников

Видео:Линал 2.2. Линейная оболочкаСкачать

Линал 2.2. Линейная оболочка

Условия коллинеарности векторов

Два векторы являются коллинеарными, если выполняется любое из следующих условий:

  • условие 1. Векторы a и b коллинеарны при наличии такого числа λ , что a = λ b ;
  • условие 2. Векторы a и b коллинеарны при равном отношении координат:

a = ( a 1 ; a 2 ) , b = ( b 1 ; b 2 ) ⇒ a ∥ b ⇔ a 1 b 1 = a 2 b 2

  • условие 3. Векторы a и b коллинеарны при условии равенства векторного произведения и нулевого вектора:

Условие 2 неприменимо, если одна из координат вектора равна нулю.

Условие 3 применимо только к тем векторам, которые заданы в пространстве.

Видео:Линейная оболочка. Базис и размерностьСкачать

Линейная оболочка. Базис и размерность

Примеры задач на исследование коллинеарности векторов

Исследуем векторы а = ( 1 ; 3 ) и b = ( 2 ; 1 ) на коллинеарность.

В данном случае необходимо воспользоваться 2-м условием коллинеарности. Для заданных векторов оно выглядит так:

Равенство неверное. Отсюда можно сделать вывод, что векторы a и b неколлинеарны.

Ответ: a | | b

Какое значение m вектора a = ( 1 ; 2 ) и b = ( — 1 ; m ) необходимо для коллинеарности векторов?

Используя второе условие коллинераности, векторы будут коллинеарными, если их координаты будут пропорциональными:

Отсюда видно, что m = — 2 .

Ответ: m = — 2 .

Видео:Высшая математика. Линейные пространства. Векторы. БазисСкачать

Высшая математика. Линейные пространства. Векторы. Базис

Критерии линейной зависимости и линейной независимости систем векторов

Система векторов векторного пространства линейно зависима только в том случае, когда один из векторов системы можно выразить через остальные векторы данной системы.

Пусть система e 1 , e 2 , . . . , e n является линейно зависимой. Запишем линейную комбинацию этой системы равную нулевому вектору:

a 1 e 1 + a 2 e 2 + . . . + a n e n = 0

в которой хотя бы один из коэффициентов комбинации не равен нулю.

Пусть a k ≠ 0 k ∈ 1 , 2 , . . . , n .

Делим обе части равенства на ненулевой коэффициент:

a k — 1 ( a k — 1 a 1 ) e 1 + ( a k — 1 a k ) e k + . . . + ( a k — 1 a n ) e n = 0

— a k — 1 a m , где m ∈ 1 , 2 , . . . , k — 1 , k + 1 , n

β 1 e 1 + . . . + β k — 1 e k — 1 + β k + 1 e k + 1 + . . . + β n e n = 0

или e k = ( — β 1 ) e 1 + . . . + ( — β k — 1 ) e k — 1 + ( — β k + 1 ) e k + 1 + . . . + ( — β n ) e n

Отсюда следует, что один из векторов системы выражается через все остальные векторы системы. Что и требовалось доказать (ч.т.д.).

Пусть один из векторов можно линейно выразить через все остальные векторы системы:

e k = γ 1 e 1 + . . . + γ k — 1 e k — 1 + γ k + 1 e k + 1 + . . . + γ n e n

Переносим вектор e k в правую часть этого равенства:

0 = γ 1 e 1 + . . . + γ k — 1 e k — 1 — e k + γ k + 1 e k + 1 + . . . + γ n e n

Поскольку коэффициент вектора e k равен — 1 ≠ 0 , у нас получается нетривиальное представление нуля системой векторов e 1 , e 2 , . . . , e n , а это, в свою очередь, означает, что данная система векторов линейно зависима. Что и требовалось доказать (ч.т.д.).

  • Система векторов является линейно независимой, когда ни один из ее векторов нельзя выразить через все остальные векторы системы.
  • Система векторов, которая содержит нулевой вектор или два равных вектора, линейно зависима.

Видео:Линейная зависимость и линейная независимость векторов.Скачать

Линейная зависимость и  линейная независимость  векторов.

Свойства линейно зависимых векторов

  1. Для 2-х и 3-х мерных векторов выполняется условие: два линейно зависимых вектора — коллинеарны. Два коллинеарных вектора — линейно зависимы.
  2. Для 3-х мерных векторов выполняется условие: три линейно зависимые вектора — компланарны. (3 компланарных вектора — линейно зависимы).
  3. Для n-мерных векторов выполняется условие: n + 1 вектор всегда линейно зависимы.

Видео:Линейные оболочки. ТемаСкачать

Линейные оболочки. Тема

Примеры решения задач на линейную зависимость или линейную независимость векторов

Проверим векторы a = 3 , 4 , 5 , b = — 3 , 0 , 5 , c = 4 , 4 , 4 , d = 3 , 4 , 0 на линейную независимость.

Решение. Векторы являются линейно зависимыми, поскольку размерность векторов меньше количества векторов.

Проверим векторы a = 1 , 1 , 1 , b = 1 , 2 , 0 , c = 0 , — 1 , 1 на линейную независимость.

Решение. Находим значения коэффициентов, при которых линейная комбинация будет равняться нулевому вектору:

x 1 a + x 2 b + x 3 c 1 = 0

Записываем векторное уравнение в виде линейного:

x 1 + x 2 = 0 x 1 + 2 x 2 — x 3 = 0 x 1 + x 3 = 0

Решаем эту систему при помощи метода Гаусса:

1 1 0 | 0 1 2 — 1 | 0 1 0 1 | 0

Из 2-ой строки вычитаем 1-ю, из 3-ей — 1-ю:

1 1 0 | 0 1 — 1 2 — 1 — 1 — 0 | 0 — 0 1 — 1 0 — 1 1 — 0 | 0 — 0

1 1 0 | 0 0 1 — 1 | 0 0 — 1 1 | 0

Из 1-й строки вычитаем 2-ю, к 3-ей прибавляем 2-ю:

1 — 0 1 — 1 0 — ( — 1 ) | 0 — 0 0 1 — 1 | 0 0 + 0 — 1 + 1 1 + ( — 1 ) | 0 + 0

0 1 0 | 1 0 1 — 1 | 0 0 0 0 | 0

Из решения следует, что у системы множество решений. Это значит, что существует ненулевая комбинация значения таких чисел x 1 , x 2 , x 3 , при которых линейная комбинация a , b , c равняется нулевому вектору. Следовательно, векторы a , b , c являются линейно зависимыми. ​​​​​​​

Видео:Как разложить вектор по базису - bezbotvyСкачать

Как разложить вектор по базису - bezbotvy

Линейные и евклидовы пространства с примерами решения и образцами выполнения

Евклидово пространство — это вещественное линейное пространство, в котором зафиксирована симметричная положительно определенная билинейная форма. Значение билинейной формы на паре элементов называется скалярным произведением этих векторов.

Линейная оболочка векторов для чайников

Видео:Что такое вектора? | Сущность Линейной Алгебры, глава 1Скачать

Что такое вектора? | Сущность Линейной Алгебры, глава 1

Линейные и евклидовы пространства

Определение линейного пространства

Определение:

Множество V элементов х, у, z,… называется линейным пространством (действительным или комплексным), если по некоторому правилу

I. любым двум элементам х и у из V поставлен в соответствие элемент из V, обозначаемый х + у и называемый суммой элементов х и у;

II. любому элементу х из V и каждому числу а (вещественному или комплексному) поставлен в соответствие элемент из V, обозначаемый ах и называемый произведением элемента х на число а, и эти правила сложения и умножения на число удовлетворяют следующим аксиомам:

  1. (х + у) + z = х + (у + z) (ассоциативность);
  2. х + у = у + х (коммутативность)-,
  3. во множестве V существует элемент θ такой, что для любого элемента х из V выполняется равенство х + θ = х;
  4. для любого элемента х из V во множестве V существует элемент (-х) такой, что х + (-х) = θ;
  5. а(х + у) = ах + ау;
  6. (а + β)х = ах + βх;
  7. а( β х) = (а β )х;
  8. 1х = х.

Элемент θ называется нулевым элементом, а элемент (-х) — противоположным элементу х.
Элементы х, у, z,… линейного пространства часто называют векторами. Поэтому линейное пространство называют также векторным пространством.

Примеры линейных пространств

  1. Совокупность свободных геометрических векторов V3 в пространстве с введенными операциями сложения векторов и умножения вектора на число (рис. 1).

Этим же свойством обладают: совокупность V1 векторов на прямой и совокупность V2 векторов на плоскости.

Линейная оболочка векторов для чайников

2, Совокупность упорядоченных наборов (Линейная оболочка векторов для чайников) из n действительных чисел.

Операции — сложение и умножение на действительное число — вводятся так:

Линейная оболочка векторов для чайников

б) умножение на число —

Линейная оболочка векторов для чайников

Обозначение: Rn (n -мерное вещественное координатное пространство).

Линейная оболочка векторов для чайников

3. Совокупность всевозможных матриц Rmxn размера m х n с введенными правилами сложения матриц,

Линейная оболочка векторов для чайников

и умножения матрицы на число,

Линейная оболочка векторов для чайников

В частности, совокупность n-строк, R1xn и совокупность столбцов высоты m, Rmx1, являются линейными пространствами.

4. Множество С(-1, 1) вещественных функций, непрерывных на интервале (-1, I), с естественными операциями сложения функций и умножения функции на число.

Во всех приведенных примерах требования 1-8 проверяются непосредственно.

Простейшие свойства линейных пространств

  1. Нулевой элемент θ определен однозначно.

Пусть θ1 и θ2 — нулевые элементы пространства V. Рассмотрим их сумму θ1 + θ2. Вследствие того, что θ2 — нулевой элемент, из аксиомы 3 получаем, что θ1+ θ2 = θ1, а так как элемент θ1 — также нулевой, то θ1 + θ2 = θ2 + θ1 = θ2 , т. е. θ1 = θ2 .

2. Для любого элемента х противоположный ему элемент (—х) определен однозначно.

Пусть x и х_ — элементы, противоположные элементу х. Покажем, что они равны.

Рассмотрим сумму х_ + х + x . Пользуясь аксиомой 1 и тем, что элемент x противоположен элементу х, получаем:

Линейная оболочка векторов для чайников

Аналогично убеждаемся в том, что

Линейная оболочка векторов для чайников

Нетрудно убедится также в справедливости следующих свойств:

  1. Для любого элемента х выполняется равенство 0х = θ.
  2. Для любого элемента х выполняется равенство —х = (- 1)х.
  3. Для любого числа а выполняется равенство аθ = θ.
  4. Из того, что ах = θ, следует, что либо а = 0, либо х = θ.

Видео:ПРОСТОЙ СПОСОБ, как запомнить Векторы за 10 минут! (вы будете в шоке)Скачать

ПРОСТОЙ СПОСОБ, как запомнить Векторы за 10 минут! (вы будете в шоке)

Линейные подпространства

Непустое подмножество W линейного пространства V называется линейным подпространством пространства V, если для любых элементов х и у из W и любого числа а выполняются следующие условия:

Линейная оболочка векторов для чайников

Иногда говорят: «множество W замкнуто относительно указанных операций».

Примеры линейных подпространств

1.Множество векторов на плоскости V2 является линейным подпространством линейного пространства V3.

2. Совокупность решений однородной системы m линейных уравнений с n неизвестными

Линейная оболочка векторов для чайников

образует линейное подпространство линейного пространства Rnx1. В самом деле, сумма решений однородной системы () является решением этой же системы и произведение решения системы (*) на число также является ее решением.

3. Совокупность всех вещественнозначных функций, непрерывных на интервале (-1, 1) и обращающихся в нуль при t = 0, образует линейное подпространство линейного пространства С(— 1,1).

Сумма f(t) + g(t) функций f(t) и g(t), обращающихся в нуль при t = 0, t(0) = f(0) = 0, и произведение af(t) функции f(t), обращающейся в нуль при t = 0, f(0) = 0, на число а равны нулю при t = 0.

Свойства линейного подпространства

  1. Если x1, …, хq — элементы линейного подпространства W, то любая их линейная комбинация Линейная оболочка векторов для чайниковтакже лежит в W.
  2. Линейное подпространство W само является линейным пространством.

Достаточно убедиться лишь в том, что нулевой элемент 0 и элемент, противоположный произвольному элементу из W, лежат в W. Указанные векторы получаются умножением произвольного элемента х ∈ W на 0 и на -1: θ = 0х, -х = (- 1)х.

Сумма и пересечение линейных подпространств

Пусть V — линейное пространство, W1 w W2 — его линейные подпространства. Суммой W1 + W2 линейных подпространств W1 и W2 называется совокупность всевозможных элементов х пространства V, которые можно представить в следующем виде

Линейная оболочка векторов для чайников

где x1 лежит в W1, а х2 — в W2. Коротко это можно записать так:

Линейная оболочка векторов для чайников

Сумма линейных подпространств W1 и W2 нaзывается прямой, если для каждого элемента х этой суммы разложение (1) единственно (рис. 3).

Линейная оболочка векторов для чайников

Обозначение: W1⊕W2

Пересечением W1 ∩ W2 линейных подпространств W1 и W2 линейного пространства V называется совокупность элементов, которые принадлежат одновременно и линейному подпространству W1, и линейному подпространству W2.

Свойства пересечения и суммы линейных подпространств

  1. Сумма W1 + W2 является линейным подпространством пространства V.

Возьмем в W1 + W2 два произвольных элемента х и у. По определению суммы подпространств найдутся элементы х1, у1, из W1 и х2, у2, из W2 такие, что

Линейная оболочка векторов для чайников

Это позволяет записать сумму х + у в следующем виде

Линейная оболочка векторов для чайников

Так как Линейная оболочка векторов для чайниковто сумма х + у лежит в W1 + W2.

Аналогично доказывается включение ах ∈ W1 + W2.

2. Пересечение W1 ∩ W2 является линейным подпространством пространства V.

3. Если нулевой элемент является единственным общим вектором подпространств W1 й W2 линейного пространства V, то их сумма является прямой — W1 ⊕ W2.

Видео:Линейная комбинация векторовСкачать

Линейная комбинация векторов

Линейная оболочка

Линейной оболочкой L(X) подмножества X линейного пространства V называется совокупность всевозможных линейных комбинаций элементов из X,

Линейная оболочка векторов для чайников

Последнее читается так: «линейная оболочка L(X) состоит из всевозможных элементов у, представимых в виде линейных комбинаций элементов множества X».

Основные свойства линейной оболочки

  1. Линейная оболочка L(X) содержит само множество X.
  2. L(X) — линейное подпространство пространства V.

Сумма линейных комбинаций элементов множества X и произведение линейной комбинации элементов на любое число снова являются линейными комбинациями элементов множества X.

3. L(X) — наименьшее линейное подпространство, содержащее множество X.

Это свойство следует понимать так: если линейное подпространство W содержит множество X , то W содержит и его линейную оболочку L(X).

Пусть W — линейное подпространство, содержащее заданное множество X. Тогда произвольная линейная комбинация Линейная оболочка векторов для чайниковэлементов множества X — элемент линейной оболочки L(X) — содержится и в подпространстве W.

Пример:

Рассмотрим в линейном пространстве R3 две тройки ξ = (1,1,0) и η = (1,0, I) (рис.4). Множество решений уравнения

Линейная оболочка векторов для чайников

является линейной оболочкой L(ξ , η) троек ξ и η.
Действительно, тройки (I, 1, 0) и (1, 0, I) образуют фундаментальную систему решений однородного уравнения (2), и значит, любое решение этого уравнения является их линейной комбинацией.

Линейная оболочка векторов для чайников

Пример:

Рассмотрим в линейном пространстве С(- ∞, ∞) вещественнозначных функций, непрерывных на всей числовой оси, набор X одночленов 1, х,…, хn:

Линейная оболочка векторов для чайников

Линейная оболочка L(X) представляет собой совокупность многочленов с вещественными коэффициентами, степени которых не превосходят n.

Обозначение: Линейная оболочка векторов для чайников

Видео:18+ Математика без Ху!ни. Скалярное произведение векторов. Угол между векторами.Скачать

18+ Математика без Ху!ни. Скалярное произведение векторов. Угол между векторами.

Линейная зависимость

Определение. Система элементов х1 . .. , хq линейного пространства V называется линейно зависимой, если найдутся числа a1,… , аq, не все равные нулю и такие, что
(1)

Линейная оболочка векторов для чайников

Если равенство (1) выполняется только при а1 = … = аq = 0, то система элементов x1,…, хq называется линейно независимой.

Справедливы следующие утверждения.

Теорема:

Система элементов x1,…, хq (q2) линейно зависима в том и только в том случае, если хотя бы один из ее элементов можно представить в виде линейной комбинации остальных.

Предположим сначала, что система элементов x1,…, xq линейно зависима. Будем Считать для определенности, что в равенстве (1) отличен от нуля коэффициент аq. Перенося все слагаемые, кроме последнего, в правую часть, после деления на аq ≠ 0 получим, что элемент хq является линейной комбинацией элементов х1 …, хq:

Линейная оболочка векторов для чайников

Обратно, если один из элементов равен линейной комбинации остальных,

Линейная оболочка векторов для чайников

то, перенося его в левую часть, получим линейную комбинацию

Линейная оболочка векторов для чайников

в которой есть отличные от нуля коэффициенты (-1 ≠ 0). Значит, система элементов x1,…., хq линейно зависима.

Теорема:

Пусть система элементов х1,…,хq линейно независима и y=Линейная оболочка векторов для чайников. Тогда коэффициенты a1 ,… ,аq определяются по элементу у единственным образом.
Пусть

Линейная оболочка векторов для чайников

Линейная оболочка векторов для чайников

Линейная оболочка векторов для чайников

Из линейной независимости элементов x1…, xq вытекает, что a1 — β1 = … = аq — βq = 0 и, значит, Линейная оболочка векторов для чайников

Теорема:

Система элементов, содержащая линейно зависимую подсистему, линейно зависима.
Пусть первые q элементов системы х1 … , хq, xq+1… , xm линейно зависимы. Тогда найдется линейная комбинация этих элементов такая, что

Линейная оболочка векторов для чайников

и не все коэффициенты а1 … ,аq равны нулю. Добавляя элементы xq+1… , xm с нулевыми множителями, получаем, что и в линейной комбинации

Линейная оболочка векторов для чайников

равны нулю не все коэффициенты.

Пример. Векторы из V2 линейно зависимы тогда и только тогда, когда они компланарны (рис.5).

Линейная оболочка векторов для чайников

Базис. Размерность

Упорядоченная система элементов e1,…, еn линейного пространства V называется базисом этого линейного пространства, если элементы e1,…, еn линейно независимы и каждый элемент из V можно представить в виде их линейной комбинации. Упорядоченность означает здесь, что каждому элементу приписан определенный (порядковый) номер. Из одной системы п элементов можно построить n! упорядоченных систем.

Линейная оболочка векторов для чайников

Пример:

Пусть a, b, с — тройка некомпланарных векторов из Vз (рис.6). Тогда упорядоченные тройки а, b, с; b, с, а; с, а, b; b, а, с; а, с, b и с, b, а — различные базисы V3.

Пусть с = (e1 … еn) — базис пространства V.

Тогда для любого элемента х из V найдется набор чисел Линейная оболочка векторов для чайниковтакой, что

Линейная оболочка векторов для чайников

В силу теоремы 2 числа Линейная оболочка векторов для чайниковкоординаты элемента х в базисе с — определены однозначно.

Посмотрим, что происходит с координатами элементов при простейших действиях с ними.

Линейная оболочка векторов для чайников

Линейная оболочка векторов для чайников

и для любого числа а

Линейная оболочка векторов для чайников

Таким образом, при сложении элементов их соответствующие координаты складываются, а при умножении элемента на число все его координаты умножаются на это число.

Координаты элемента часто удобно записывать в виде столбца. Например,

Линейная оболочка векторов для чайников

— координатный столбец элемента Линейная оболочка векторов для чайниковв базисе e.

Разложим произвольную систему элементов x1,…, хq по базису e,

Линейная оболочка векторов для чайников

ли рассмотрим координатные столбцы элементов ч1,…, хq в этом базисе:

Линейная оболочка векторов для чайников

Теорема:

Система элементов х1,… ,хq линейно зависима тогда и только тогда, когда линейно зависима система их координатных столбцов в каком-нибудь базисе.

Линейная оболочка векторов для чайников

причем хотя бы один из коэффициентов λk отличен от нуля. Запишем это подробнее

Линейная оболочка векторов для чайников

Отсюда в силу единственности разложения элемента по базису вытекает, что

Линейная оболочка векторов для чайников

Линейная оболочка векторов для чайников

Таким образом, линейная комбинация координатных столбцов элементов x1,…, xq равна нулевому столбцу (с теми же коэффициентами λ1,…, λg). Это и означает, что система координатных столбцов линейно зависима.

Если же выполняется равенство (2), то, проводя рассуждения в обратном порядке, получаем формулу (1).

Тем самым, обращение в нуль некоторой нетривиальной (хотя бы один из коэффициентов отличен от нуля) линейной комбинации элементов линейного пространства равносильно тому, что нетривиальная линейная комбинация их координатных столбцов (с теми же коэффициентами) равна нулевому столбцу.

Теорема:

Пусть базис с линейного пространства V состоит из п элементов. Тогда всякая система из то элементов, где т > п, линейно зависима.

4 В силу теоремы 3 достаточно рассмотреть случай m = п + 1.

Пусть x1. . ,хп+1 — произвольные элементы пространства V. Разложим каждый элемент по базису e = (е1 …, еп):

Линейная оболочка векторов для чайников

и запишем координаты элементов х1 …, xn+1 в виде матрицы, отводя j-й столбец координатам элемента xj, j = 1,…, п + 1. Получим матрицу из п строк и п + 1 столбцов —

Линейная оболочка векторов для чайников

Ввиду того, что ранг матрицы К не превосходит числа п ее строк, столбцы матрицы К (их п + 1) линейно зависимы. А так как это координатные столбцы элементов x1…..хп+1, то согласно теореме 4 система элементов x1…..хп+1 также линейно зависима.

Следствие:

Все базисы линейного пространства V состоят из одинакового числа элементов.
Пусть базис e состоит из п элементов, а базис e’ из п‘ элементов. В силу только что доказанной теоремы из линейной независимости системы е’1,…, е’n заключаем, что п’п. Меняя базисы e и e’ местами, в силу этой же теоремы получаем, что пп’.

Тем самым, п = п’.
Размерностью линейного пространства V называется число элементов базиса этого пространства.

Пример:

Базис координатного пространства R» образуют элементы

Линейная оболочка векторов для чайников

Система элементов e1,e2, …,еп линейно независима: из равенства

Линейная оболочка векторов для чайников

Линейная оболочка векторов для чайников

и значит, a1 = … = an = 0.

Кроме того, любой элемент Линейная оболочка векторов для чайниковиз R» можно записать в виде линейной комбинации элементов e1…..еп: ‘

Линейная оболочка векторов для чайников

Тем самым, размерность пространства R» равна п.

Пример:

Однородная линейная система

Линейная оболочка векторов для чайников

имеющая ненулевые решения, обладает фундаментальной системой решений (ФСР). ФСР является базисом линейного пространства решений однородной системы. Размерность этого линейного пространства равна числу элементов ФСР, т.е. п — r, где r — ранг матрицы коэффициентов однородной системы, an — число неизвестных.

Пример:

Размерность линейного пространства Мп многочленов степени не выше п равна п + I.

Так как всякий многочлен P(t) степени не выше п имеет вид

Линейная оболочка векторов для чайников

то достаточно показать линейную независимость элементов

Линейная оболочка векторов для чайников

Линейная оболочка векторов для чайников

где t произвольно. Полагая t = 0, получаем, что ао = 0.

Продифференцируем равенство (3) по t:

Линейная оболочка векторов для чайников

Вновь положив t = 0, получим, что a1 = 0.

Продолжая этот процесс, последовательно убеждаемся в том, что a0 = a1 = … = ап = 0. Это означает, что система элементов e1 = I,… ,en+1 = t» линейно независима. Следовательно, искомая размерность равна n + 1.

Линейное пространство, размерность которого равна п, называется п-мерным.

Обозначение: dim V = п.

Соглашение. Далее в этой главе всюду считается, если не оговорено противное, что размерность линейного пространства V равна п.

Ясно, что если W — подпространство n-мерного линейного пространства V, то dim W ≤ п.

Покажем, что в п-мерном линейном пространстве V есть линейные подпространства любой размерности kп.

Пусть e = (е1 … еn) — базис пространства V. Легко убедиться в том, что линейная оболочка

Линейная оболочка векторов для чайников

имеет размерность k.

По определению dim = 0.

Теорема:

О пополнении базиса. Пусть система элементов а1.. , аk линейного пространства V размерности п линейно независима и к Линейная оболочка векторов для чайников

так как в нетривиальной линейной комбинации

Линейная оболочка векторов для чайников

коэффициент μ ≠ 0 вследствие линейной независимости системы а1…., аk.

Если бы разложение вида (4) можно было бы написать для любого элемента b пространства V, то исходная система a1…, аk была бы базисом согласно определению. Но в силу условия k Линейная оболочка векторов для чайников

строками которой являются координаты векторов а1, а2, а3, а4, равен четырем. Это означает, что строки матрицы А, а, значит, и векторы а1, а2, а3, а4 линейно независимы.

Подобный подход используется и в общем случае: чтобы дополнить систему k линейно независимых элементов

Линейная оболочка векторов для чайников

до базиса пространства R» , матрица

Линейная оболочка векторов для чайников

элементарными преобразованиями строк приводится к трапециевидной форме, а затем дополняется п — k строками вида

(0 … 1 … 0)

так, чтобы ранг получаемой матрицы был равен п. Справедливо следующее утверждение.

Теорема:

Пусть W1 и W2 — линейные подпространства линейного пространства V. Тогда

Линейная оболочка векторов для чайников

Замена базиса

Пусть e = (e1 … еn) и e’ = (е’1, … е’n) — базисы линейного пространства V. Разложим элементы базиса e’ по базису с. Имеем

Линейная оболочка векторов для чайников

Эти соотношения удобно записать в матричной форме
(2)

Линейная оболочка векторов для чайников

Линейная оболочка векторов для чайников

называется матрицей перехода от базиса e к базису e’.

Свойства матрицы перехода

  1. det S ≠ 0.

Доказательство этого свойства проводится от противного.

Из равенства detS = 0 вытекает линейная зависимость столбцов матрицы S. Эти столбцы являются координатными столбцами элементов е’1,…, е’n в базисе e. Поэтому (и вследствие теоремы 4) элементы е’1…..с’n должны быть линейно зависимыми.

Последнее противоречит тому, что e’ — базис. Значит, допущение, что det S = 0, неверно.

2. Если и Линейная оболочка векторов для чайников— координаты элемента х в базисах e и e’ соответственно, то:
(3)

Линейная оболочка векторов для чайников

Заменяя в формуле

Линейная оболочка векторов для чайников

e’j их выражениями (1), получаем, что

Линейная оболочка векторов для чайников

Отсюда в силу единственности разложения элемента по базису имеем

Линейная оболочка векторов для чайников

Переходя к матричной записи найденных равенств, убеждаемся в справедливости свойства 2.

3. S -1 — матрица перехода от базиса e’ к базису e.

Свойство 3 доказывается умножением обеих частей матричного равенства (2) на матрицу S -1 справа.

Видео:Линейная зависимость векторов на примерахСкачать

Линейная зависимость векторов на примерах

Евклидовы пространства

Вещественное линейное пространство V называется (вещественным) евклидовым пространством, если любым двум элементам х и у из V ставится в соответствие число, обозначаемое через (х,у), такое, что для любых элементов х, y,z и произвольного вещественного числа а выполняются следующие условия:

Линейная оболочка векторов для чайников

4. (х, х) ≥ 0; причем равенство нулю возможно в том и только в том случае, если х = θ.

Число (х, у) называется скалярным произведением элементов х и у. Примеры евклидовых пространств.

  1. В пространстве свободных векторов К] скалярное произведение векторов а и b определяется так:

Линейная оболочка векторов для чайников

2. Скалярное произведение произвольных элементов Линейная оболочка векторов для чайниковиз координатного пространства R» можно определить формулой

Линейная оболочка векторов для чайников

3, Линейное подпространство евклидова пространства само является евклидовым пространством.

Пользуясь определением евклидова пространства, нетрудно доказать следующие свойства:

Линейная оболочка векторов для чайников

Теорема:

Неравенство Коши—Буняковского. Для любых двух элементов х и у евклидова пространства V справедливо неравенство

Линейная оболочка векторов для чайников

Если (х, х) = θ , то х = θ и неравенство выполняется вследствие того, что ( θ , у) = 0.

Обратимся к случаю (х, х) ≠ 0. Тогда (х, х) > 0. По определению скалярного произведения неравенство

Линейная оболочка векторов для чайников

справедливо для любых элементов х и у из пространства V и любого вещественного числа t. Запишем неравенство (1) подробнее:

Линейная оболочка векторов для чайников

Левую часть последнего неравенства можно рассматривать как квадратный трехчлен относительно t. Из того, что знак этого квадратного трехчлена не изменяется при любых t, заключаем, что его дискриминант неположителен,

Линейная оболочка векторов для чайников

Перенося вычитаемое в правую часть, получаем требуемое неравенство.

Замечание:

Часто доказанное неравенство записывают в равносильной форме,

Линейная оболочка векторов для чайников

Следует подчеркнуть, что слева в этом неравенстве стоит абсолютная величина (модуль) скалярного произведения, а в правой части — нормы векторов х и у.

Определение:

Длиной (нормой) элемента х называется число |х|, вычисляемое по правилу

Линейная оболочка векторов для чайников

Ясно, что |х| ≥ 0 для любого х, причем равенство |х| = 0 возможно лишь в случае, если х = θ.

Рассмотрим цепочку равенств:

Линейная оболочка векторов для чайников

Заменяя второе слагаемое на 2|(х, у)| ≥ 2(х, у) и применяя неравенство Коши—Буняковского |(х,у)| ≤ |х| • |у|, получаем, что

Линейная оболочка векторов для чайников

После извлечения квадратного корня приходим к неравенству треугольника:
|х + у| ≤ |х| + |у|
(рис.7).

Линейная оболочка векторов для чайников

Углом между ненулевыми элементами х и у евклидова пространства называется число φ, подчиненное следующим двум условиям:

Линейная оболочка векторов для чайников

Определение угла корректно, так как согласно теореме 8 имеем

Линейная оболочка векторов для чайников

для любых ненулевых элементов х и у.

Элементы х и у называются ортогональными, если (х, у) = 0. Для ортогональных элементов из соотношения (2) вытекает равенство

Линейная оболочка векторов для чайников

являющееся обобщением известной теоремы Пифагора’, квадрат длины суммы ортогональных элементов равен сумме квадратов их длин (рис. 8).

Линейная оболочка векторов для чайников

Система элементов f1…..f k называется ортогональной, если (fi, fj) =0′ при i ≠ j, и ортонормированной, если

Линейная оболочка векторов для чайников

Определение:

Линейная оболочка векторов для чайников

называют символом Кронекера.

Теорема:

Ортонормированная система элементов линейно независима.

Умножая обе части равенства

Линейная оболочка векторов для чайников

скалярно на элемент fj, j = 1 ,… ,k, получаем, что

Линейная оболочка векторов для чайников

И так как (fj, fj) = 1,то aj = 0, j = 1,…, k.

Метод ортогонализации

Покажем, как, пользуясь заданной системой линейно независимых элементов f1,… ,fk евклидова пространства Е, построить в нем ортонормированную систему из к элементов.

Для того, чтобы элемент

Линейная оболочка векторов для чайников

был ортогонален элементу g1, необходимо выполнение следующего равенства:

Линейная оболочка векторов для чайников

Линейная оболочка векторов для чайников

Тем самым, элемент

Линейная оболочка векторов для чайников

ортогонален элементу g1 (рис. 9 а).

Линейная оболочка векторов для чайников

Пользуясь построенными элементами g1, g2 и заданным элементом fз, построим элемент

Линейная оболочка векторов для чайников

ортогональный как элементу g1, так и элементу g2. Для этого коэффициенты β1 и β2 должны удовлетворять следующим условиям:

Линейная оболочка векторов для чайников

Линейная оболочка векторов для чайников

Таким образом, элемент
, (f3,g|) (f3,g2)

Линейная оболочка векторов для чайников

ортогонален элементам g1 и g2 (рис. 9 6).

Аналогичными рассуждениями можно показать, что элемент

Линейная оболочка векторов для чайников

ортогонален элементам Линейная оболочка векторов для чайников

Делением каждого элемента gi (i = 1…..k) на его длину |g Линейная оболочка векторов для чайников

Линейная оболочка векторов для чайников

Базис e = (e1 … еn) евклидова пространства называется ортонормированным, или ортобазисом, если

Линейная оболочка векторов для чайников

Суммируя вышеизложенное, получаем следующий результат.

Теорема:

В любом евклидовом пространстве существует о ртонормированный базис.
Пример:

Методом ортогонализации построить ортоиормированный базис евклидова пространства Е по его базису

Линейная оболочка векторов для чайников

Полагаем b1 = a1 и b2 = а2 — ab1. Для того, чтобы вектор

Линейная оболочка векторов для чайников

был ортогонален вектору b1, необходимо выполнение неравенства

Линейная оболочка векторов для чайников

Линейная оболочка векторов для чайников

Линейная оболочка векторов для чайников

Для того, чтобы вектор

Линейная оболочка векторов для чайников

был ортогонален векторам b1 и b2, необходимо выполнение равенств

Линейная оболочка векторов для чайников

Линейная оболочка векторов для чайников

Тем самым, вектор

Линейная оболочка векторов для чайников

Система векторов b1, b2, b3 ортогональна. Поделив каждый вектор на его длину, получим

Линейная оболочка векторов для чайников

— ортонормированный базис пространства Е.

При помощи ортонормированного базиса скалярное произведение элементов вычисляется особенно просто. Пусть e = (e1 … еn) — ортонормированный базис пространства Е. Вычислим скалярное произведение элементов х и у, предварительно разложив их по базису e

Линейная оболочка векторов для чайников

Линейная оболочка векторов для чайников

Линейная оболочка векторов для чайников

Линейная оболочка векторов для чайников

Видео:Лекция 16. Понятие вектора и векторного пространства. Базис векторного пространства.Скачать

Лекция 16. Понятие вектора и векторного пространства. Базис векторного пространства.

Ортогональное дополнение

Пусть W — линейное подпространство евклидова пространства V. Совокупность W⊥ элементов у пространства V, обладающих свойством

(y. х) = 0,

где х — произвольный элемент из W, называется ортогональным дополнением подпространства W. Другими словами, ортогональное дополнение W⊥ состоит из всех элементов у, ортогональных всем элементам подпространства W.

Свойства ортогонального дополнения

  1. W⊥ — линейное подпространство пространства V. Пусть элементы y1, у2 лежат в W⊥ , т. е.

Линейная оболочка векторов для чайников

для любого элемента х из W. Складывая эти равенства и пользуясь свойствами скалярного произведения, получаем,что

Линейная оболочка векторов для чайников

для любого элемента х из W. Это означает, что

Линейная оболочка векторов для чайников

Из того, что (у, х) = 0 для любого элемента х из W, вытекает равенство (ау, х) = а(у, х) и, значит, включение ay ∈ W⊥ .

Свойство 2 означает, что любой элемент х пространства V можно представить, причем единственным образом, в виде суммы элементов из W и W⊥ :

x = y+z. ‘ (*)

Элемент у ∈ W называется ортогональной проекцией элемента х на линейное подпространство W, а элемент z ∈ W⊥его ортогональной составляющей (рис. 11).

Линейная оболочка векторов для чайников

Покажем, как по заданным элементу х и линейному подпространству W найти его ортогональную проекцию у и ортогональную составляющую г.

Можно считать, что в линейном подпространстве W задан ортонормированный базис e1…..еk. Запишем искомый элемент у в виде линейной комбинации

Линейная оболочка векторов для чайников

Подставляя это выражение в формулу (*):

Линейная оболочка векторов для чайников

и умножая обе части полученного равенства последовательно на элементы e1,…, еk, в предположении z ⊥ W приходим к соотношениям

Линейная оболочка векторов для чайников

Линейная оболочка векторов для чайников

обладают требуемыми свойствами. *

Пример:

Найти ортогональную проекцию вектора х = (4, 2, 3, 5) на линейное подпространство W ⊂ R4, заданное системой уравнений

Линейная оболочка векторов для чайников

Векторы a1 = (1,0,0,-1) и а2 = (0,1,-1,0) образуют фундаментальную систему решений и, следовательно, базис подпространства W. Кроме того, векторы a1 и а2 ортогональны. Для того, чтобы построить ортонормированный базис подпространства W, достаточно разделить эти векторы на иx длины. В результате получим

Линейная оболочка векторов для чайников

Линейная оболочка векторов для чайников

является ортогональной проекцией вектора х = (4,2, 3, 5), на подпространство W, а вектор

Линейная оболочка векторов для чайников

— его ортогональной составляющей.

Унитарные пространства

Унитарным пространством называется линейное комплексное пространство U, в котором каждой упорядоченной паре элементов х и у из U ставится в соответствие число — скалярное произведение (х, у) так, что для любых элементов х, у и z из U и любого комплексного числа а выполняются следующие соотношения:

  1. (у, х) = (х, у) (черта в правой части указывает на операцию комплексного сопряжения);
  2. (x + y,z) = (x,z) + (y,z);
  3. (ах, у) = а(х, у);
  4. (х, х) ≥ 0, причем равенство (х, х) = 0 возможно лишь в случае, если х = θ.

Пример:

В координатном пространстве Сn, элементами которого являются всевозможные упорядоченные наборы п комплексных чисел, скалярное произведение можно ввести так

Линейная оболочка векторов для чайников

Линейная оболочка векторов для чайников

Решение заданий и задач по предметам:

Дополнительные лекции по высшей математике:

Линейная оболочка векторов для чайников

Линейная оболочка векторов для чайников Линейная оболочка векторов для чайников Линейная оболочка векторов для чайников Линейная оболочка векторов для чайников Линейная оболочка векторов для чайников Линейная оболочка векторов для чайников Линейная оболочка векторов для чайников Линейная оболочка векторов для чайников Линейная оболочка векторов для чайников Линейная оболочка векторов для чайников Линейная оболочка векторов для чайников Линейная оболочка векторов для чайников Линейная оболочка векторов для чайников Линейная оболочка векторов для чайников Линейная оболочка векторов для чайников Линейная оболочка векторов для чайников Линейная оболочка векторов для чайников Линейная оболочка векторов для чайников Линейная оболочка векторов для чайников Линейная оболочка векторов для чайников Линейная оболочка векторов для чайников Линейная оболочка векторов для чайников Линейная оболочка векторов для чайников Линейная оболочка векторов для чайников Линейная оболочка векторов для чайников Линейная оболочка векторов для чайников Линейная оболочка векторов для чайников Линейная оболочка векторов для чайников Линейная оболочка векторов для чайников Линейная оболочка векторов для чайников Линейная оболочка векторов для чайников Линейная оболочка векторов для чайников Линейная оболочка векторов для чайников Линейная оболочка векторов для чайников Линейная оболочка векторов для чайников Линейная оболочка векторов для чайников Линейная оболочка векторов для чайников Линейная оболочка векторов для чайников Линейная оболочка векторов для чайников Линейная оболочка векторов для чайников Линейная оболочка векторов для чайников Линейная оболочка векторов для чайников Линейная оболочка векторов для чайников Линейная оболочка векторов для чайников Линейная оболочка векторов для чайников Линейная оболочка векторов для чайников Линейная оболочка векторов для чайников Линейная оболочка векторов для чайников Линейная оболочка векторов для чайников Линейная оболочка векторов для чайников Линейная оболочка векторов для чайников Линейная оболочка векторов для чайников Линейная оболочка векторов для чайников

Образовательный сайт для студентов и школьников

Копирование материалов сайта возможно только с указанием активной ссылки «www.lfirmal.com» в качестве источника.

© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института

🔥 Видео

Линейная зависимость векторов. РангСкачать

Линейная зависимость векторов. Ранг

Линейные оболочки. ВопросыСкачать

Линейные оболочки. Вопросы

Примеры Линейная зависимость векторов Базис и ранг системы векторовСкачать

Примеры  Линейная зависимость векторов  Базис и ранг системы векторов

Линейная зависимость векторовСкачать

Линейная зависимость векторов
Поделиться или сохранить к себе: