Ковариационная и корреляционная матрицы случайного вектора

Ковариационная и корреляционная матрицы случайного вектора

В случае многомерной случайной величины (случайного вектора) характеристикой разброса ее составляющих и связей между ними является ковариационная матрица.

Ковариационная матрица определяется как математическое ожидание произведения центрированного случайного вектора на тот же, но транспонированный вектор:

Ковариационная и корреляционная матрицы случайного вектора

где Ковариационная и корреляционная матрицы случайного вектора

Ковариационная матрица имеет вид

Ковариационная и корреляционная матрицы случайного вектора

где по диагонали стоят дисперсии координат случайного вектора on=DXi, o22=DX2, окк = DXk, а остальные элементы представляют собой ковариации между координатами

Ковариационная матрица является симметрической матрицей, т.е. Ковариационная и корреляционная матрицы случайного вектора

Для примера рассмотрим ковариационную матрицу двумерного вектора

Ковариационная и корреляционная матрицы случайного вектора

Аналогично получается ковариационная матрица для любого /^-мерного вектора.

Дисперсии координат можно представить в виде

Ковариационная и корреляционная матрицы случайного вектора

где Gi,C2. 0? — средние квадратичные отклонения координат случайного вектора.

Коэффициентом корреляции называется, как известно, отношение ковариации к произведению средних квадратичных отклонений:

Ковариационная и корреляционная матрицы случайного вектора

После нормирования по последнему соотношению членов ковариационной матрицы получают корреляционную матрицу

Ковариационная и корреляционная матрицы случайного вектора

которая является симметрической и неотрицательно определенной.

Многомерным аналогом дисперсии случайной величины является обобщенная дисперсия, под которой понимается величина определителя ковариационной матрицы

Ковариационная и корреляционная матрицы случайного вектора

Другой общей характеристикой степени разброса многомерной случайной величины является след ковариационной матрицы

Ковариационная и корреляционная матрицы случайного вектора

где т — вектор-столбец математических ожиданий;

|Х| — определитель ковариационной матрицы X;

? -1 — обратная ковариационная матрица.

Матрица X -1 , обратная к матрице X размерности пх п, может быть получена различными способами. Одним из них является метод Жордана—Гаусса. В этом случае составляется матричное уравнение Ковариационная и корреляционная матрицы случайного вектора

где х — вектор-столбец переменных, число которых равно я; b — я-мерный вектор-столбец правых частей.

Умножим слева уравнение (6.21) на обратную матрицу ХГ 1 :

Ковариационная и корреляционная матрицы случайного вектора

Так как произведение обратной матрицы на данную дает единичную матрицу Е, то

Ковариационная и корреляционная матрицы случайного вектора

Если вместо b взять единичный вектор

Ковариационная и корреляционная матрицы случайного вектора

то произведение X -1 х дает первый столбец обратной матрицы. Если же взять второй единичный вектор

Ковариационная и корреляционная матрицы случайного вектора

то произведение Е 1 е2 дает первый столбец обратной матрицы и т.д. Таким образом, последовательно решая уравнения

Ковариационная и корреляционная матрицы случайного вектора

методом Жордана—Гаусса, получаем все столбцы обратной матрицы.

Другой метод получения матрицы, обратной к матрице Е, связан с вычислением алгебраических дополнений AtJ.= (/= 1, 2. п; j = 1, 2, . п) к элементам данной матрицы Е, подстановкой их вместо элементов матрицы Е и транспортированием такой матрицы:

Ковариационная и корреляционная матрицы случайного вектора

Обратная матрица получается после деления элементов В на определитель матрицы Е:

Ковариационная и корреляционная матрицы случайного вектора

Важной особенностью получения обратной матрицы в данном случае является то, что ковариационная матрица Е является слабо обусловленной. Это приводит к тому, что при обращении таких матриц могут возникать достаточно серьезные ошибки. Все это требует обеспечения необходимой точности вычислительного процесса или использования специальных методов при вычислении таких матриц.

Пример. Написать выражение плотности вероятности для нормально распределенной двумерной случайной величины <Xv Х2)

при условии, что математические ожидания, дисперсии и ковариации этих величин имеют следующие значения:

Ковариационная и корреляционная матрицы случайного вектора

Решение. Обратную ковариационную матрицу для матрицы (6.19) можно получить, используя следующее выражение обратной матрицы к матрице X:

Ковариационная и корреляционная матрицы случайного вектора

где А — определитель матрицы X.

Аи, Л12, А21, А22 — алгебраические дополнения к соответствующим элементам матрицы X.

Тогда для матрицы ]г- ! получаем выражение

Ковариационная и корреляционная матрицы случайного вектора

Так как а12 = 01О2Р и °2i =a 2 a iP> а a i2 a 2i = cyfст|р, то Ковариационная и корреляционная матрицы случайного вектора Значит,

Ковариационная и корреляционная матрицы случайного вектора

Ковариационная и корреляционная матрицы случайного вектора Ковариационная и корреляционная матрицы случайного вектора

Функция плотности вероятности запишется в виде

Ковариационная и корреляционная матрицы случайного вектора

Подставив исходные данные, получим следующее выражение для функции плотности вероятности

Видео:Ковариационная матрицаСкачать

Ковариационная матрица

Ковариационная и корреляционная матрицы случайного вектора

6.5.1 лПЧБТЙБГЙС. лПЬЖЖЙГЙЕОФ ЛПТТЕМСГЙЙ

рХУФШ ЪБДБОП ЧЕТПСФОПУФОПЕ РТПУФТБОУФЧП ( W , F, P) Й ДЧЕ УМХЮБКОЩЕ ЧЕМЙЮЙОЩ ξ Й η ОБ ОЕН.

пртедемеойе 6.5.1.1
лпчбтйбгйек ДЧХИ УМХЮБКОЩИ ЧЕМЙЮЙО ξ Й η ОБЪЩЧБЕФУС ЮЙУМП, ПРТЕДЕМСЕНПЕ РП ЖПТНХМЕ: M((ξ — Mξ)(η — Mη)).

пвпъобюеойе: cov(ξ, η) = M((ξ — Mξ)(η — Mη))(6.5.1.1)

пЮЕЧЙДОП, ЮФП cov(ξ, η) НПЦОП ОБКФЙ ФПМШЛП Ч ФПН УМХЮБЕ, ЛПЗДБ УХЭЕУФЧХАФ УППФЧЕФУФЧХАЭЙЕ НБФЕНБФЙЮЕУЛЙЕ ПЦЙДБОЙС.

ъбнеюбойе. жПТНХМБ (6.5.1.1) Ч ТБУЮЕФБИ ЙУРПМШЪХЕФУС ТЕДЛП. пРЙТБСУШ ОБ УЧПКУФЧБ НБФЕНБФЙЮЕУЛПЗП ПЦЙДБОЙС Й ДЙУРЕТУЙЙ, НПЦОП РПМХЮЙФШ ВПМЕЕ ХДПВОЩЕ ДМС ТБУЮЕФПЧ ЖПТНХМЩ.

M((ξ — Mξ)(η — Mη)) = M(ξη — ηMξ — ξMη + MξMη) =

= M(ξη) — MξMη — MξMη + MξMη = M(ξη) — MξMη. уМЕДПЧБФЕМШОП,

D(ξ + η) = Dξ + Dη + 2M(ξη) — 2MξMη = Dξ + Dη + 2cov(ξ, η) (уНПФТЙ 6.2.2).

D(ξ — η) = D(ξ + (-η)) = Dξ + D(-η) — 2M(ξ(-η)) — MξM(-η) =
= Dξ + D(-η) — 2(M(ξη) — MξMη) = Dξ + Dη — 2cov(ξ, η).

Ковариационная и корреляционная матрицы случайного вектора

фептенб 6.5.1.1 (уЧПКУФЧБ ЛПЧБТЙБГЙЙ ДЧХИ УМХЮБКОЩИ ЧЕМЙЮЙО)
1. еУМЙ ξ Й η — ОЕЪБЧЙУЙНЩЕ УМХЮБКОЩЕ ЧЕМЙЮЙОЩ, ФП cov(ξ, η) = 0.
2. cov(ξ, η) = cov(η, ξ).
3. cov(ξ, ξ) = Dξ.
4. cov(ξ, Cη) = Ccov(ξ, η),
cov(Cξ, η) = Ccov(ξ, η), » C п R.
5. cov(ξ1 + ξ2, η) = cov(ξ1, η) + cov(ξ2, η);
cov(ξ, η1 + η2) = cov(ξ, η1) + cov(ξ, η2).

уРТБЧЕДМЙЧПУФШ ХФЧЕТЦДЕОЙК 2-3 УМЕДХЕФ ЙЪ ЖПТНХМЩ (6.5.1.2). дМС ДПЛБЪБФЕМШУФЧБ ПУФБМШОЩИ ЧПУРПМШЪХЕНУС УППФЧЕФУФЧХАЭЙНЙ УЧПКУФЧБНЙ НБФЕНБФЙЮЕУЛПЗП ПЦЙДБОЙС.

1) cov(ξ, η) = M(ξη) — MξMη = MξMη — MξMη = 0, ФБЛ ЛБЛ ДМС ОЕЪБЧЙУЙНЩИ η, ξ M(ξη) = MξMη.

4) cov(ξ, Cη) = M(ξCη) — MξM(Cη) = CM(ξη) — CMξMη = Ccov(ξ, η).

уРТБЧЕДМЙЧПУФШ ЧФПТПК ЖПТНХМЩ НПЦОП ДПЛБЪБФШ МЙВП БОБМПЗЙЮОП, МЙВП, ЙУРПМШЪХС УЧПКУФЧП 2.

уРТБЧЕДМЙЧПУФШ ЧФПТПК ЖПТНХМЩ НПЦОП ДПЛБЪБФШ МЙВП БОБМПЗЙЮОП, МЙВП ЙУРПМШЪХС УЧПКУФЧП 2.

умедуфчйе 6.5.1.1
1. cov(ξ, C) = cov(C, ξ) = 0, » C п R.
2. cov(ξ, Aξ + B) = cov(Aξ+B, ξ) = ADξ, » A, B п R.

1) рПУФПСООХА у НПЦОП ТБУУНБФТЙЧБФШ ЛБЛ УМХЮБКОХА ЧЕМЙЮЙОХ η, РТЙОЙНБАЭХА ПДОП ЪОБЮЕОЙЕ у У ЧЕТПСФОПУФША 1. пЮЕЧЙДОП, ЮФП Ч ЬФПН УМХЮБЕ УМХЮБКОЩЕ ЧЕМЙЮЙОЩ ξ Й η — ОЕЪБЧЙУЙНЩЕ УМХЮБКОЩЕ ЧЕМЙЮЙОЩ Й, УМЕДПЧБФЕМШОП, cov(ξ, η) = 0.

2) cov(ξ, Aξ + B) = cov(ξ, Aξ) + cov(ξ, B) = Acov(ξ, ξ) + 0 = ADξ.

ъбнеюбойе. уМЕДХЕФ РПНОЙФШ, ЮФП ЙЪ cov(ξ, η) = 0 ОЕ УМЕДХЕФ ОЕЪБЧЙУЙНПУФЙ УМХЮБКОЩИ ЧЕМЙЮЙО ξ, η.

оБРТЙНЕТ, РХУФШ ξ — УМХЮБКОБС ЧЕМЙЮЙОБ ДЙУЛТЕФОПЗП ФЙРБ, ЙНЕАЭБС УМЕДХАЭЙК ЪБЛПО ТБУРТЕДЕМЕОЙС:

xk-2-112
pk1/41/41/41/4

Mξ = (1/4)ћ(-2) + (1/4)ћ(-1) + (1/4)ћ2 + (1/4)ћ1 = 0.

тБУУНПФТЙН η = ξ 2 (η Й ξ Ч ФБЛПН УМХЮБЕ ЪБЧЙУЙНЩЕ УМХЮБКОЩЕ ЧЕМЙЮЙОЩ!) ъБЛПО ТБУРТЕДЕМЕОЙС УМХЮБКОПК ЧЕМЙЮЙОЩ η ЙНЕЕФ ЧЙД:

xk14
pk1/21/2

Mη = (1/2)ћ1 + (1/2)ћ4 = 5/2.

cov(ξ, η) = M(ξη) — MξMη = M(ξћξ 2 ) — 0ћ(5/2) = M(ξ 3 ).

уМХЮБКОБС ЧЕМЙЮЙОБ ξ 3 ЙНЕЕФ ЪБЛПО ТБУРТЕДЕМЕОЙС:

xk-8-118
pk1/41/41/41/4

Mξ 3 = (1/4)ћ(-8) + (1/4)ћ(-1) + (1/4)ћ1 + (1/4)ћ8 = 0. уМЕДПЧБФЕМШОП, cov (ξ, η) = 0, Б УМХЮБКОЩЕ ЧЕМЙЮЙОЩ СЧМСАФУС ЪБЧЙУЙНЩНЙ.

пртедемеойе 6.5.1.2
лПЬЖЖЙГЙЕОФПН лпттемсгйй ДЧХИ УМХЮБКОЩИ ЧЕМЙЮЙО ξ Й η ОБЪЩЧБЕФУС ЮЙУМП, ПРТЕДЕМСЕНПЕ РП ЖПТНХМЕ:

Ковариационная и корреляционная матрицы случайного вектора

пвпъобюеойе:Ковариационная и корреляционная матрицы случайного вектора(6.5.1.5)

ъбнеюбойе. пЮЕЧЙДОП, ЮФП ЛПЬЖЖЙГЙЕОФ ЛПТТЕМСГЙЙ ДЧХИ УМХЮБКОЩИ ЧЕМЙЮЙО НПЦОП ПРТЕДЕМЙФШ МЙЫШ Ч ФПН УМХЮБЕ, ЛПЗДБ УХЭЕУФЧХАФ УППФЧЕФУФЧХАЭЙЕ НБФЕНБФЙЮЕУЛЙЕ ПЦЙДБОЙС Й Dξ Ковариационная и корреляционная матрицы случайного вектора0, Dη Ковариационная и корреляционная матрицы случайного вектора0.

пРЙТБСУШ ОБ УЧПКУФЧБ ЛПЧБТЙБГЙЙ Й ДЙУРЕТУЙЙ (6.2.2), НПЦОП РПМХЮЙФШ ЕЭЕ ФТЙ ДПРПМОЙФЕМШОЩЕ ЖПТНХМЩ ДМС ЧЩЮЙУМЕОЙС ЛПЬЖЖЙГЙЕОФБ ЛПТТЕМСГЙЙ.

Ковариационная и корреляционная матрицы случайного вектора

(уНПФТЙ ЖПТНХМХ 6.5.1.3). уМЕДПЧБФЕМШОП,

уПЧЕТЫЕООП БОБМПЗЙЮОП, ПРЙТБСУШ ОБ ЖПТНХМХ 6.5.1.4, НПЦОП ДПЛБЪБФШ, ЮФП:

фептенб 6.5.1.2 (уЧПКУФЧБ ЛПЬЖЖЙГЙЕОФБ ЛПТТЕМСГЙЙ)
1. еУМЙ ξ Й η — ОЕЪБЧЙУЙНЩЕ УМХЮБКОЩЕ ЧЕМЙЮЙОЩ, ФП ρ(ξ, η) = 0.
2. ρ(ξ, η) = ρ(η, ξ).
3. ρ(Cξ, η) = ρ(ξ, Cη) = signC ρ(Cξ, η), » C п R (C Ковариационная и корреляционная матрицы случайного вектора0).
4. |ρ(ξ, η)| ≤ 1.
5. |ρ(ξ, η)| = 1 щ $ A, B п R (A Ковариационная и корреляционная матрицы случайного вектора0): η = Aξ + B.

уЧПКУФЧБ 1-2 УМЕДХАФ ЙЪ УЧПКУФЧ ЛПЧБТЙБГЙЙ.

Ковариационная и корреляционная матрицы случайного вектора

4) фБЛ ЛБЛ ДЙУРЕТУЙС МАВПК УМХЮБКОПК ЧЕМЙЮЙОЩ (ЕУМЙ ПОБ УХЭЕУФЧЕФ) — ЧЕМЙЮЙОБ ОЕПФТЙГБФЕМШОБС, ФП ЙЪ ЖПТНХМ (6.5.1.7 Й 6.5.1.8) УМЕДХЕФ:

Ковариационная и корреляционная матрицы случайного вектора

5) ( а ) (ОЕПВИПДЙНПУФШ)

Ковариационная и корреляционная матрицы случайного вектора

Б) ρ(ξ, η) = 1 а ЙЪ ЖПТНХМЩ 6.5.1.8 УМЕДХЕФ, ЮФП Ковариационная и корреляционная матрицы случайного вектора.

ч ФБЛПН УМХЮБЕ, $ C п R: Ковариационная и корреляционная матрицы случайного вектора

Ковариационная и корреляционная матрицы случайного вектора

фБЛЙН ПВТБЪПН, η = Aξ + B, ЗДЕ Ковариационная и корреляционная матрицы случайного вектора

ъБНЕФЙН, ЮФП Ковариационная и корреляционная матрицы случайного вектора.

В) ρ(ξ, η) = -1. тБУУХЦДБС БОБМПЗЙЮОП Й ЙУРПМШЪХС ЖПТНХМХ 6.5.1.7, НПЦОП ДПЛБЪБФШ, ЮФП

Ковариационная и корреляционная матрицы случайного вектора

( ш ) η = Aξ + B; A, B п R Й A Ковариационная и корреляционная матрицы случайного вектора0. (дПУФБФПЮОПУФШ.)

Ковариационная и корреляционная матрицы случайного вектора

умедуфчйе 6.5.1.2
ρ(ξ, ξ) = 1.

ъбнеюбойе. уМЕДХЕФ РПНОЙФШ, ЮФП ЙЪ ρ(ξ, η) = 0 ОЕ УМЕДХЕФ ОЕЪБЧЙУЙНПУФШ УМХЮБКОЩИ ЧЕМЙЮЙО ξ Й η. (фБЛ ЛБЛ ρ(ξ, η) = 0 щ cov(ξ,η)=0; Б ЙЪ cov(ξ,η)=0 ОЕ УМЕДХЕФ, ЮФП ξ Й η ОЕЪБЧЙУЙНЩЕ УМХЮБКОЩЕ ЧЕМЙЮЙОЩ).

пртедемеойе 6.5.1.3
еУМЙ ρ(ξ, η) = 0, ФП УМХЮБКОЩЕ ЧЕМЙЮЙОЩ ξ Й η ОБЪЩЧБАФУС оелпттемйтхенщнй.

ъбнеюбойе. еУМЙ ρ(ξ, η) Ковариационная и корреляционная матрицы случайного вектора0, ФП УМХЮБКОЩЕ ЧЕМЙЮЙОЩ ξ Й η СЧМСАФУС ЪБЧЙУЙНЩНЙ (РТЙ ρ(ξ, η) = 0 ПОЙ НПЗХФ ВЩФШ ЛБЛ ЪБЧЙУЙНЩНЙ, ФБЛ Й ОЕЪБЧЙУЙНЩНЙ).

Ковариационная и корреляционная матрицы случайного вектора

еУМЙ ρ(ξ, η) Ковариационная и корреляционная матрицы случайного вектора Ковариационная и корреляционная матрицы случайного вектора1, ФП ОБЙМХЮЫЕЕ МЙОЕКОПЕ РТЙВМЙЦЕОЙЕ ДМС η Ковариационная и корреляционная матрицы случайного вектораЙНЕЕФ ЧЙД:

Ковариационная и корреляционная матрицы случайного вектора

ьФП РТЙВМЙЦЕОЙЕ СЧМСЕФУС ОБЙМХЮЫЕН Ч УНЩУМЕ:

Ковариационная и корреляционная матрицы случайного вектора

рХУФШ ОБ ЧЕТПСФОПУФОПН РТПУФТБОУФЧЕ ( W , F, P) ЪБДБО УМХЮБКОЩК ЧЕЛФПТ (ξ1, ξ2, . , ξn).

Ковариационная и корреляционная матрицы случайного вектора

фБЛ ЛБЛ kij = cov(ξi, ξj) = cov(ξj, ξi) = kji, » i, j, ФП НБФТЙГБ K — УЙННЕФТЙЮОБС НБФТЙГБ (ПФОПУЙФЕМШОП ЗМБЧОПК ДЙБЗПОБМЙ); kii = Dξi, i= 1, . , n.

пртедемеойе 6.5.1.5
пРТЕДЕМЙФЕМШ ЛПЧБТЙБГЙПООПК НБФТЙГЩ ОБЪЩЧБЕФУС пвпвэеоопк дйуретуйек УМХЮБКОПЗП ЧЕЛФПТБ.

еУМЙ ξ1, ξ2, . , ξn РПРБТОП ОЕЪБЧЙУЙНЩ ЙМЙ cov(ξi, ξj) = 0, i Ковариационная и корреляционная матрицы случайного вектораj, ФП НБФТЙГБ K СЧМСЕФУС ДЙБЗПОБМШОПК::

Ковариационная и корреляционная матрицы случайного вектора

фептенб 6.5.1.3
еУМЙ ЙЪЧЕУФОБ ЛПЧБТЙБГЙПООБС НБФТЙГБ л = (kij)n УМХЮБКОПЗП ЧЕЛФПТБ (ξ1, ξ2, . , ξn) Й ηi = ci1ξ1 + ci2ξ2 + . + cinξn, i = 1, . , n; ФП ЕУФШ
Ковариационная и корреляционная матрицы случайного вектора
ФП ЛПЧБТЙБГЙПООБС НБФТЙГБ H = (hij), hij = cov(ηi, ηj) УМХЮБКОПЗП ЧЕЛФПТБ (η1, η2, . , ηn) НПЦЕФ ВЩФШ ОБКДЕОБ РП ЖПТНХМЕ:
H = CћKћC T .

Ковариационная и корреляционная матрицы случайного вектора

уМЕДПЧБФЕМШОП, ЛПТТТЕМСГЙПООБС НБФТЙГБ R СЧМСЕФУС УЙННЕФТЙЮОПК.

еУМЙ УМХЮБКОЩЕ ЧЕМЙЮЙОЩ ξ1, ξ2, . , ξn РПРБТОП ОЕЪБЧЙУЙНЩ ЙМЙ ОЕЛПТТЕМЙТХЕНЩ, ФП ЛПТТЕМСГЙПООБС НБФТЙГБ R СЧМСЕФУС ЕДЙОЙЮОПК:

Ковариационная и корреляционная матрицы случайного вектора

ъбнеюбойе. уМЕДХЕФ РПНОЙФШ, ЮФП ЮФП ЪОБС ЪБЛПО ТБУРТЕДЕМЕОЙС УМХЮБКОПЗП ЧЕЛФПТБ (ξ1, ξ2, . , ξn), НПЦОП ОБКФЙ ЮЙУМПЧЩЕ ИБТБЛФЕТЙУФЙЛЙ ЛПНРБОЕФ (ЕУМЙ ПОЙ УХЭЕУФЧХАФ).

оБРТЙНЕТ, ЕУМЙ ЧЕЛФПТ — УМХЮБКОБС ЧЕМЙЮЙОБ БВУПМАФОП ОЕРТЕТЧЩОПЗП ФЙРБ У РМПФОПУФША ТБУРТЕДЕМЕОЙС Ковариационная и корреляционная матрицы случайного вектора, ФП

Ковариационная и корреляционная матрицы случайного вектора

ъБРЙЫЙФЕ УБНПУФПСФЕМШОП УППФЧЕФУФЧХАЭЙЕ ЖПТНХМЩ ДМС УМХЮБКОПЗП ЧЕЛФПТБ ДЙУЛТЕФОПЗП ФЙРБ.

ъбдбюб 6.5.1.1 йЪЧЕУФОП, ЮФП Mξ = 1, Dξ = 2; η = 5ξ + 7. оБКФЙ cov(ξ, η).

cov(ξ, η) = cov(ξ, 5ξ + 7) = 5Dξ = 10.

ъбдбюб 6.5.1.2 йЪЧЕУФОП, ЮФП Mξ = 3, Dξ = 8. оБКФЙ ρ(ξ, η), ЕУМЙ η = — 15ξ + 2.

ъбдбюб 6.5.1.3 дБО ЪБЛПО ТБУРТЕДЕМЕОЙС УМХЮБКОПЗП ЧЕЛФПТБ (ξ1, ξ2) ДЙУЛТЕФОПЗП ФЙРБ:

Ковариационная и корреляционная матрицы случайного вектора567
00,200
0,10,10,150
0,20,050,150,1
0,30,050,10,1

оБКФЙ: ЛПЧБТЙБГЙПООХА Й ЛПТТЕМСГЙПООХА НБФТЙГЩ УМХЮБКОПЗП ЧЕЛФПТБ (ξ1, ξ2).

1) рТЕЦДЕ ЧУЕЗП ОБКДЕН ЪБЛПО ТБУРТЕДЕМЕОЙС ЛБЦДПК ЛПНРПОЕОФЩ (БМЗПТЙФН УНПФТЙ 4.4.2)

ξ1567
0,40,40,2

1 2 = 25ћ0,4 + 36ћ0,4 + 49ћ0,2 = 34,2;

ξ200,10,20,3
0,20,250,30,25

2 = 0ћ0,2 + 0,1ћ0,25 + 0,2ћ0,3 + 0,3ћ0,25 = 0,16;

2 2 = 0ћ0,1 + 0,01ћ0,25 + 0,04ћ0,3 + 0,09ћ0,25 = 0,037;

ъБНЕФЙН, ЮФП УМХЮБКОБС ЧЕМЙЮЙОБ ξ1ћξ2 РТЙОЙНБЕФ УМЕДХАЭЙЕ ЪОБЮЕОЙС Ч ЪБЧЙУЙНПУФЙ ПФ ЪОБЮЕОЙК ЛПНРПОЕОФ:

Ковариационная и корреляционная матрицы случайного вектора567
0000
0,10,50,60,7
0,211,21,4
0,31,51,82,1

уМЕДПЧБФЕМШОП, ЪБЛПО ТБУРТЕДЕМЕОЙС УМХЮБКОПК ЧЕМЙЮЙОЩ ξ1ћξ2 ЙНЕЕФ УМЕДХАЭЙК ЧЙД:

xk00,50,60,711,21,41,51,82,1
pk0,20,10,1500,050,150,10,050,10,1

M(ξ1ξ2) = 0ћ0,2 + 0,1ћ0,5 + 0,6ћ0,15 + 0,7ћ0 + 0,05ћ1 + 0,15ћ1,2 +
+ 1,4ћ0,1 + 1,5ћ0,05 + 0,1ћ1,8 + 0,1ћ2,1 = 0,975.

Ковариационная и корреляционная матрицы случайного вектора

12 = 0,56ћ0,0114 = 0,006384 а ρ12 = ρ21 = Ковариационная и корреляционная матрицы случайного вектора0,588.

Ковариационная и корреляционная матрицы случайного вектора

ъбдбюб 6.5.1.4 йЪЧЕУФЕО ЪБЛПО ТБУРТЕДЕМЕОЙС УМХЮБКОПЗП ЧЕЛФПТБ:

Ковариационная и корреляционная матрицы случайного вектора01
-10,10,2
00,20,3
100,2

оБКФЙ НБФЕНБФЙЮЕУЛПЕ ПЦЙДБОЙЕ Й ДЙУРЕТУЙА УМХЮБКОПК ЧЕМЙЮЙОЩ q = 2ξ1 + ξ 2 2.

уМЕДПЧБФЕМШОП, РТЕЦДЕ ЧУЕЗП ПРТЕДЕМЙН ЪБЛПОЩ ТБУРТЕДЕМЕОЙС ξ1 Й ξ2.

ξ1xk01
pk0,30,7

ξ2xk-101
pk0,30,50,2

ξ2 2xk01
pk0,50,5

ξ1ξ2 2xk01
pk0,60,4

cov(ξ1, ξ2 2 ) = 0,4 — 0,7 ћ 0,5 = 0,05. фБЛЙН ПВТБЪПН,

M q = 2ћ0,7 + 0,5 = 1,9;

D q = 4ћ0,21 + 0,25 + 2ћ0,05 = 0,84 + 0,25 + 0,1 = 1,29.

ъбдбюб 6.5.1.5 йЪЧЕУФОБ РМПФОПУФШ ТБУРТЕДЕМЕОЙС УМХЮБКОПЗП ЧЕЛФПТБ (ξ, η):

Ковариационная и корреляционная матрицы случайного вектора

оБКФЙ ЛПЧБТЙБГЙА УМХЮБКОЩИ ЧЕМЙЮЙО ξ, η.

Ковариационная и корреляционная матрицы случайного вектора

Cov(ξ, η) = π/2 — 1 — π 2 /16.

(чУЕ ЧЩЮЙУМЕОЙС РТПЧЕТШФЕ!)

Ковариационная и корреляционная матрицы случайного вектора

ъБДБЮЙ ДМС УБНПУФПСФЕМШОПЗП ТЕЫЕОЙС.

ъбдбюб 6.5.1.1(у) дБО ЪБЛПО ТБУРТЕДЕМЕОЙС УМХЮБКОПЗП ЧЕЛФПТБ (ξ1, ξ2):

Ковариационная и корреляционная матрицы случайного вектора025
10,100,2
200,30
40,10,30

уПУФБЧЙФШ ЛПЧБТЙБГЙПООХА Й ЛПТТЕМСГЙПООХА НБФТЙГЩ.

ъбдбюб 6.5.1.2(у) ъБДБО УМХЮБКОЩК ЧЕЛФПТ (ξ, η). йЪЧЕУФОП, ЮФП Mξ = 0, Mη = 2, Dξ = 2, Dη = 1, ρ(ξ, η) = — Ковариационная и корреляционная матрицы случайного вектора. оБКФЙ НБФЕНБФЙЮЕУЛПЕ ПЦЙДБОЙЕ Й ДЙУРЕТУЙА УМХЮБКОПК ЧЕМЙЮЙОЩ q = 2ξ — 3η.

ъбдбюб 6.5.1.3(у) йЪЧЕУФОБ РМПФОПУФШ ТБУРТЕДЕМЕОЙС УМХЮБКОПЗП ЧЕЛФПТБ (ξ, η):

Ковариационная и корреляционная матрицы случайного вектора

D — ФТЕХЗПМШОЙЛ, ПЗТБОЙЮЕООЩК РТСНЩНЙ x + y = 1, x = 0, y = 0. оБКФЙ ЛПЬЖЖЙГЙЕОФ ЛПТТЕМСГЙЙ.

© гЕОФТ ДЙУФБОГЙПООПЗП ПВТБЪПЧБОЙС пзх, 2000-2002

Видео:Теория вероятностей #19: ковариация, корреляция, зависимость двух случайных величинСкачать

Теория вероятностей #19: ковариация, корреляция, зависимость двух случайных величин

Корреляция, ковариация и девиация (часть 3)

Ковариационная и корреляционная матрицы случайного вектора

В первой части показано, как на основе матрицы расстояний между элементами получить матрицу Грина. Ее спектр образует собственную систему координат множества, центром которой является центроид набора. Во второй рассмотрены спектры простых геометрических наборов.

В данной статье покажем, что матрица Грина и матрица корреляции — суть одно и то же.

Видео:Корреляция и ковариация двумерной случайной величиныСкачать

Корреляция и ковариация двумерной случайной величины

7. Векторизация и нормирование одномерных координат

Пусть значения некой характеристики элементов заданы рядом чисел Ковариационная и корреляционная матрицы случайного вектора. Для того, чтобы данный набор можно было сравнивать с другими характеристиками, необходимо его векторизовать и обезразмерить (нормировать).
Для векторизации находим центр (среднее) значений

Ковариационная и корреляционная матрицы случайного вектора

и строим новый набор как разность между исходными числами и их центроидом (средним):

Ковариационная и корреляционная матрицы случайного вектора

Получили вектор. Основной признак векторов состоит в том, что сумма их координат равна нулю. Далее нормируем вектор, — приведем сумму квадратов его координат к 1. Для выполнения данной операции нам нужно вычислить эту сумму (точнее среднее):

Ковариационная и корреляционная матрицы случайного вектора

Теперь можно построить ССК исходного набора как совокупность собственного числа S и нормированных координат вектора:

Ковариационная и корреляционная матрицы случайного вектора

Квадраты расстояний между точками исходного набора определяются как разности квадратов компонент собственного вектора, умноженные на собственное число. Обратим внимание на то, что собственное число S оказалось равно дисперсии исходного набора (7.3).

Итак, для любого набора чисел можно определить собственную систему координат, то есть выделить значение собственного числа (она же дисперсия) и рассчитать координаты собственного вектора путем векторизации и нормирования исходного набора чисел. Круто.

Упражнение для тех, кто любит «щупать руками». Построить ССК для набора .

Видео:Оценка ковариационной матрицыСкачать

Оценка ковариационной матрицы

8. Векторизация и ортонормирование многомерных координат

Что, если вместо набора чисел нам задан набор векторов — пар, троек и прочих размерностей чисел. То есть точка (узел) задается не одной координатой, а несколькими. Как в этом случае построить ССК? Стандартный путь следующий.

Введем обозначение характеристик (компонент) набора. Нам заданы точки (элементы) Ковариационная и корреляционная матрицы случайного вектораи каждой точке соответствует числовое значение характеристики Ковариационная и корреляционная матрицы случайного вектора. Обращаем внимание, что второй индекс Ковариационная и корреляционная матрицы случайного вектора— это номер характеристики (столбцы матрицы), а первый индекс Ковариационная и корреляционная матрицы случайного вектора— номер точки (элемента) набора (строки матрицы).

Далее векторизуем характеристики. То есть для каждой находим центроид (среднее значение) и вычитаем его из значения характеристики:

Ковариационная и корреляционная матрицы случайного вектора

Ковариационная и корреляционная матрицы случайного вектора

Получили матрицу координат векторов (МКВ) Ковариационная и корреляционная матрицы случайного вектора.
Следующим шагом как будто бы надо вычислить дисперсию для каждой характеристики и их нормировать. Но хотя таким образом мы действительно получим нормированные векторы, нам-то нужно, чтобы эти векторы были независимыми, то есть ортонормированными. Операция нормирования не поворачивает вектора (а лишь меняет их длину), а нам нужно развернуть векторы перпендикулярно друг другу. Как это сделать?

Правильный (но пока бесполезный) ответ — рассчитать собственные вектора и числа (спектр). Бесполезный потому, что мы не построили матрицу, для которой можно считать спектр. Наша матрица координат векторов (МКВ) не является квадратной — для нее собственные числа не рассчитаешь. Соответственно, надо на основе МКВ построить некую квадратную матрицу. Это можно сделать умножением МКВ на саму себя (возвести в квадрат).

Но тут — внимание! Неквадратную матрицу можно возвести в квадрат двумя способами — умножением исходной на транспонированную. И наоборот — умножением транспонированной на исходную. Размерность и смысл двух полученных матриц — разный.

Умножая МКВ на транспонированную, мы получаем матрицу корреляции:

Ковариационная и корреляционная матрицы случайного вектора

Из данного определения (есть и другие) следует, что элементы матрицы корреляции являются скалярными произведениями векторов (грамиан на векторах). Значения главной диагонали отражают квадрат длины данных векторов. Значения матрицы не нормированы (обычно их нормируют, но для наших целей этого не нужно). Размерность матрицы корреляции совпадает с количеством исходных точек (векторов).

Теперь переставим перемножаемые в (8.1) матрицы местами и получим матрицу ковариации (опять же опускаем множитель 1/(1-n), которым обычно нормируют значения ковариации):

Ковариационная и корреляционная матрицы случайного вектора

Здесь результат выражен в характеристиках. Соответственно, размерность матрицы ковариации равна количеству исходных характеристик (компонент). Для двух характеристик матрица ковариации имеет размерность 2×2, для трех — 3×3 и т.д.

Почему важна размерность матриц корреляции и ковариации? Фишка в том, что поскольку матрицы корреляции и ковариации происходят из произведения одного и того же набора векторов, то они имеют один и тот же набор собственных чисел, один и тот же ранг (количество независимых размерностей) матрицы. Как правило, количество векторов (точек) намного превышает количество компонент. Поэтому о ранге матриц судят по размерности матрицы ковариации.

Диагональные элементы ковариации отражают дисперсию компонент. Как мы видели выше, дисперсия и собственные числа тесно связаны. Поэтому можно сказать, что в первом приближении собственные числа матрицы ковариации (а значит, и корреляции) равны диагональным элементам (а если межкомпонентная дисперсия отсутствует, то равны в любом приближении).

Если стоит задача найти просто спектр матриц (собственные числа), то удобнее ее решать для матрицы ковариации, поскольку, как правило, их размерность небольшая. Но если нам необходимо найти еще и собственные вектора (определить собственную систему координат) для исходного набора, то необходимо работать с матрицей корреляции, поскольку именно она отражает скалярное произведение векторов.

Отметим, что метод главных компонент как раз и состоит в расчете спектра матрицы ковариации/корреляции для заданного набора векторных данных. Найденные компоненты спектра располагаются вдоль главных осей эллипсоида данных. Из нашего рассмотрения это вытекает потому, что главные оси — это и есть те оси, дисперсия (разброс) данных по которым максимален, а значит, и максимально значение спектра.

Правда, могут быть и отрицательные дисперсии, и тогда аналогия с эллипсоидом уже не очевидна.

Видео:Теория вероятностей #25: Ковариация и корреляция / ковариационная матрицаСкачать

Теория вероятностей #25: Ковариация и корреляция / ковариационная матрица

9. Матрица Грина — это матрица корреляции векторов

Рассмотрим теперь ситуацию, когда нам известен не набор чисел, характеризующих точки (элементы), а набор расстояний между точками (причем между всеми). Достаточно ли данной информации для определения ССК (собственной системы координат) набора?

Ответ дан в первой части — да, вполне. Здесь же мы покажем, что построенная по формуле (1.3′) матрица Грина и определенная выше матрица корреляции векторов (8.1) — это одна и та же матрица.

Как такое получилось? Сами в шоке. Чтобы в этом убедиться, надо подставить выражение для элемента матрицы квадратов расстояний

Ковариационная и корреляционная матрицы случайного вектора

в формулу преобразования девиации:

Ковариационная и корреляционная матрицы случайного вектора

Отметим, что среднее значение матрицы квадратов расстояний отражает дисперсию исходного набора (при условии, что расстояния в наборе — это сумма квадратов компонент):

Ковариационная и корреляционная матрицы случайного вектора

Подставляя (9.1) и (9.3) в (9.2), после несложных сокращений приходим к выражению для матрицы корреляции (8.1):

Ковариационная и корреляционная матрицы случайного вектора

Итак, матрица Грина и матрица корреляции векторов — суть одно и то же. Ранг матрицы корреляции совпадает с рангом матрицы ковариации (количеством характеристик — размерностью пространства). Это обстоятельство позволяет строить спектр и собственную систему координат для исходных точек на основе матрицы расстояний.

Для произвольной матрицы расстояний потенциальный ранг (количество измерений) на единицу меньше количества исходных векторов. Расчет спектра (собственной системы координат) позволяет определить основные (главные) компоненты, влияющие на расстояния между точками (векторами).

Таким образом можно строить собственные координаты элементов либо на основании их характеристик, либо на основании расстояний между ними. Например, можно определить собственные координаты городов по матрице расстояний между ними.

🎦 Видео

Теория вероятностей #12: случайная величина, плотность и функция распределенияСкачать

Теория вероятностей #12: случайная величина, плотность и функция распределения

c23 2, Корреляционная система уравнений: векторный случайный процессСкачать

c23 2, Корреляционная система уравнений: векторный случайный процесс

Случайный вектор двумерной случайной величиныСкачать

Случайный вектор двумерной случайной величины

Доказательство формулы для ковариационной матрицы у доски, линалСкачать

Доказательство формулы для ковариационной матрицы у доски, линал

A.4.9 Матожидание, дисперсия, ковариация и корреляция: общий случайСкачать

A.4.9 Матожидание, дисперсия, ковариация и корреляция: общий случай

Математика без Ху!ни. Ряд распределения дискретной случайной величины. Мат ожидание и дисперсия.Скачать

Математика без Ху!ни. Ряд распределения дискретной случайной величины. Мат ожидание и дисперсия.

Случайные процессы Лекция 1Скачать

Случайные процессы  Лекция 1

Ковариация. ТемаСкачать

Ковариация. Тема

c23 5, Корреляционная система уравнений: установившийся режимСкачать

c23 5, Корреляционная система уравнений: установившийся режим

Теория вероятностей. Подготовка к контрольной. Ковариационные матрицыСкачать

Теория вероятностей. Подготовка к контрольной. Ковариационные матрицы

Математическое Ожидание, Дисперсия, Стандартное Отклонение за 5 минутСкачать

Математическое Ожидание, Дисперсия, Стандартное Отклонение за 5 минут

part6 матрица ковариацийСкачать

part6 матрица ковариаций

Функция распределения дискретной случайной величиныСкачать

Функция распределения дискретной случайной величины

Инвестиции. Расчет корреляционной матрицы в Excel!Скачать

Инвестиции. Расчет корреляционной матрицы в Excel!

Урок 1. Матрицы, определитель матрицы и ранг матрицы | Высшая математика | TutorOnlineСкачать

Урок 1. Матрицы, определитель матрицы и ранг матрицы | Высшая математика | TutorOnline
Поделиться или сохранить к себе: