Которые из названий данного четырехугольника написаны правильно acdb abcd cdab

Которые из названий данного четырехугольника написаны правильно acdb abcd cdabШколе NET
Содержание
  1. Register
  2. Login
  3. Newsletter
  4. Васян Коваль
  5. Которые из названий данного четырёхугольника написаны правильно? Помогите пожалуйста!! даю 30 баллов.
  6. Четырехугольники
  7. теория по математике 📈 планиметрия
  8. Выпуклый четырехугольник
  9. Виды и свойства выпуклых четырехугольников
  10. Прямоугольник
  11. Квадрат
  12. Параллелограмм
  13. Трапеция
  14. Виды трапеций
  15. Средняя линия трапеции
  16. Четырехугольник — виды и свойства с примерами решения
  17. Внутренние и внешние углы четырехугольника
  18. Сумма внутренних углов выпуклого четырёхугольника
  19. Сумма внешних углов выпуклого четырёхугольника
  20. Параллелограмм
  21. Параллелограмм и его свойства
  22. Признаки параллелограмма
  23. Прямоугольник
  24. Признак прямоугольника
  25. Ромб и квадрат
  26. Свойства ромба
  27. Трапеция
  28. Средняя линия треугольника
  29. Средняя линия трапеции
  30. Координаты середины отрезка
  31. Теорема Пифагора
  32. Справочный материал по четырёхугольнику
  33. Пример №1
  34. Признаки параллелограмма
  35. Пример №2 (признак параллелограмма).
  36. Прямоугольник
  37. Пример №3 (признак прямоугольника).
  38. Ромб. Квадрат
  39. Пример №4 (признак ромба)
  40. Теорема Фалеса. Средняя линия треугольника
  41. Пример №5
  42. Пример №6
  43. Трапеция
  44. Пример №7 (свойство равнобедренной трапеции).
  45. Центральные и вписанные углы
  46. Пример №8
  47. Вписанные и описанные четырёхугольники
  48. Пример №9
  49. Пример №10
  50. 🌟 Видео

Register

Do you already have an account? Login

Login

Don’t you have an account yet? Register

Newsletter

Submit to our newsletter to receive exclusive stories delivered to you inbox!

  • Главная 
  • Вопросы & Ответы 
  • Вопрос 2278750

Которые из названий данного четырехугольника написаны правильно acdb abcd cdab

Васян Коваль

Видео:Четырехугольники, вписанные в окружность. 9 класс.Скачать

Четырехугольники, вписанные в окружность. 9 класс.

Которые из названий данного четырёхугольника написаны правильно? Помогите пожалуйста!! даю 30 баллов.

Видео:3 правила для вписанного четырехугольника #shortsСкачать

3 правила для вписанного четырехугольника #shorts

Четырехугольники

теория по математике 📈 планиметрия

Четырехугольник – это геометрическая фигура, состоящая из четырех точек, никакие три из которых не лежат на одной прямой, и отрезков, последовательно соединяющих эти точки.

Выпуклый четырехугольник

Четырехугольник называется выпуклым, если он находится в одной полуплоскости (то есть все его стороны расположены только с одной стороны прямой, прямая НЕ разбивает фигуру) относительно прямой, содержащей любую его сторону. На рисунке показан выпуклый четырехугольник АВСD.

Которые из названий данного четырехугольника написаны правильно acdb abcd cdabОпределение

Диагональ четырехугольника – отрезок, соединяющий любые две не соседние вершины. На рисунке 2 диагоналями являются отрезки АС и BD.Которые из названий данного четырехугольника написаны правильно acdb abcd cdab

Видео:Диагонали четырехугольника равны 4 и 5.Скачать

Диагонали четырехугольника равны 4 и 5.

Виды и свойства выпуклых четырехугольников

Сумма углов выпуклого четырехугольника равна 360 градусов.

Прямоугольник

Прямоугольник – это четырехугольник, у которого все углы прямые.

Которые из названий данного четырехугольника написаны правильно acdb abcd cdabНа рисунке видно, что углы А, В, C и D прямые, то есть равны 90 градусов. Свойства прямоугольника, его периметр и площадь Которые из названий данного четырехугольника написаны правильно acdb abcd cdab

  1. Противоположные стороны прямоугольника равны (АВ=CD, ВС=АD).
  2. Диагонали прямоугольника равны (АС=ВD).
  3. Диагонали пересекаются и точкой пересечения делятся пополам.
  4. Периметр прямоугольника – это сумма длин всех сторон: Р=(а + b) × 2, где а и b соседние (смежные) стороны прямоугольника
  5. Площадь прямоугольника – это произведение длин соседних (смежных) сторон, формула для нахождения площади прямоугольника:

S=ab, где a и b соседние стороны прямоугольника.

Квадрат

Квадрат – это прямоугольник, у которого все стороны равны.

Которые из названий данного четырехугольника написаны правильно acdb abcd cdabСвойства квадрата

  1. Диагонали квадрата равны (BD=AC).
  2. Диагонали квадрата пересекаются под углом 90 градусов.
  3. Диагонали квадрата точкой пересечения делятся пополам (BO=OD, AO=OC).
  4. Периметр квадрата – это сумма длин всех сторон. Так как все стороны квадрата равны, то его можно найти по формуле Р=4×а, где а — длина стороны квадрата.
  5. Площадь квадрата – это произведение длин соседних сторон, формула для нахождения площади прямоугольника S=a 2 , где a — длина стороны квадрата.

Которые из названий данного четырехугольника написаны правильно acdb abcd cdab

Параллелограмм

Параллелограмм – это четырехугольник, у которого противоположные стороны попарно параллельны.

Которые из названий данного четырехугольника написаны правильно acdb abcd cdab

Ромб – это параллелограмм, у которого все стороны равны.

Которые из названий данного четырехугольника написаны правильно acdb abcd cdab

Трапеция

Трапеция – это четырехугольник, у которого только две противоположные стороны параллельны. Параллельные стороны называются основаниями трапеции, а две другие стороны – боковыми сторонами трапеции.

Которые из названий данного четырехугольника написаны правильно acdb abcd cdab

Виды трапеций

Трапеция называется прямоугольной, если у нее боковая сторона перпендикулярна основаниям. Прямоугольная трапеция имеет два прямых угла.

Которые из названий данного четырехугольника написаны правильно acdb abcd cdab

углы А и С равны по 90 градусов

Средняя линия трапеции

Сделаем чертеж параллелограмма и покажем на нем биссектрисы углов, которые пересекаются в точке N.

Которые из названий данного четырехугольника написаны правильно acdb abcd cdab

Угол ANB равен углу NАD как накрест лежащие при параллельных прямых ВС и АD и секущей AN. А по условию углы BАN и NАD равны (AN биссектриса). Следовательно, углы BАN и BNА равны. Значит, треугольник ABN является равнобедренным, у него АВ= BN.

Аналогично, через равенство углов CND, ADN и CDN доказывается, что треугольник CND является равнобедренным, у него CN=DC.

По условию задачи мы имеем параллелограмм, а по свойству параллелограмма – противолежащие стороны равны, т.е. АВ=СD, значит, АВ=BN=NC=CD. Таким образом, мы доказали, что BN=NC, т.е. N – середина ВС.

Ответ: см. решение

pазбирался: Даниил Романович | обсудить разбор | оценить

Найдите боковую сторону АВ трапеции ABCD, если углы АВС и BCD равны соответственно 30 0 и 135 0 , а СD =17

Сделаем чертеж, выполнив на нём дополнительные построения – высоты АМ и СН, которые равны как расстояния между параллельными сторонами трапеции.

Которые из названий данного четырехугольника написаны правильно acdb abcd cdab

Рассмотрим треугольник CНD, где CD=17, угол Н=90 0 , следовательно, треугольник прямоугольный. Найдем величину угла DCН, 135 0 – 90 0 =45 0 (так как провели высоту CН). Отсюда следует, что угол D=45 0 , так как треугольник прямоугольный. Значит, треугольник является равнобедренным (углы D и DCН равны по 45 градусов).

Найдем катеты CН и DН по теореме Пифагора, как катет равнобедренного треугольника по формуле с=а √ 2 , где с=17. Следовательно, CН = 17 √ 2 . . = 17 √ 2 2 . . .

Рассмотрим прямоугольный треугольник АВМ, где угол В равен 30 градусов, а катет АМ= CН= 17 √ 2 2 . . . Зная, что катет, лежащий напротив угла в 30 градусов, равен половине гипотенузы, найдем АВ (она будет в два раза больше катета). АВ=2 × 17 √ 2 2 . . =17 √ 2

Ответ: см. решение

pазбирался: Даниил Романович | обсудить разбор | оценить

Основания трапеции равны 7 и 11, а высота равна 7. Найти площадь этой трапеции.

Которые из названий данного четырехугольника написаны правильно acdb abcd cdab

Для нахождения площади трапеции в справочном материале есть формула

S = a + b 2 . . h , для которой у нас известны и основания, и высота. Подставим в неё эти значения и вычислим: S = 7 + 11 2 . . ∙ 7 = 18 2 . . ∙ 7 = 9 ∙ 7 = 63

pазбирался: Даниил Романович | обсудить разбор | оценить

Радиус вписанной в квадрат окружности равен 22 √ 2 . Найти диагональ этого квадрата.

Которые из названий данного четырехугольника написаны правильно acdb abcd cdab

Для начала надо сделать построения на чертеже, чтобы увидеть, как располагаются известные и неизвестные элементы и чем они еще могут являться на чертеже.

Которые из названий данного четырехугольника написаны правильно acdb abcd cdab

Обозначим диагональ АВ, точкой О – центр окружности, С – один из углов квадрата. Покажем расстояние от центра окружности до стороны квадрата – радиус r. Если радиус равен 22 √ 2 , то сторона квадрата будет в два раза больше, т.е. 44 √ 2 .

Рассмотрим прямоугольный треугольник АВС, который является равнобедренным (так как по условию дан квадрат) и боковые стороны равны по 44 √ 2 . Нам надо найти диагональ, т.е. гипотенузу данного треугольника. Вспомним, что для нахождения гипотенузы равнобедренного треугольника есть формула с=а √ 2 , где с – гипотенуза, а – катет. Подставим в неё наши данные:

с=44 √ 2 × √ 2 =44 √ 4 =44 × 2=88

pазбирался: Даниил Романович | обсудить разбор | оценить

Площадь четырехугольника можно вычислить по формуле S= d 1 d 2 s i n a 2 . . , где d 1 и d 2 длины диагоналей четырехугольника, а – угол между диагоналями. Пользуясь этой формулой, найдите длину диагонали d 1 , если d 2 =16, sin a= 2 5 . . , a S=12,8

Для выполнения данного задания надо подставить все известные данные в формулу:

12,8= d 1 × 16 × 2 5 . . 2 . .

В правой части можно сократить 16 и 2 на 2: 12,8= d 1 × 8 × 2 5 . . 1 . .

Теперь умножим 8 на дробь 2 5 . . , получим 3,2: 12,8= d 1 × 3 , 2

Найдем неизвестный множитель, разделив 12,8 на 3,2: d 1 =12,8:3,2=4

pазбирался: Даниил Романович | обсудить разбор | оценить

Которые из названий данного четырехугольника написаны правильно acdb abcd cdab

На плане изображен дачный участок по адресу: п. Сосновка, ул. Зеленая, д. 19 (сторона каждой клетки на плане равна 2 м). Участок имеет прямоугольную форму. Выезд и въезд осуществляются через единственные ворота.

При входе на участок слева от ворот находится гараж. Справа от ворот находится сарай площадью 24 кв.м, а чуть подальше – жилой дом. Напротив жилого дома расположены яблоневые посадки. Также на участке есть баня, к которой ведет дорожка, выложенная плиткой, и огород с теплицей внутри (огород отмечен на плане цифрой 6). Все дорожки внутри участка имеют ширину 1 м и вымощены тротуарной плиткой размером 1м х 1м. Между гаражом и сараем находится площадка, вымощенная такой же плиткой. К участку подведено электричество. Имеется магистральное газоснабжение.

Задание №1

Для объектов, указанных в таблице, определите, какими цифрами они обозначены на плане. Заполните таблицу, в бланк ответов перенесите последовательность четырех цифр без пробелов, запятых и других символов.

Объектыяблонитеплицасарайжилой дом
Цифры

Решение

Для решения 1 задачи работаем с текстом и планом одновременно:

при входе на участок слева от ворот находится гараж (слева от входа находится объект под номером 2), итак, гараж — 2. Справа от ворот находится сарай площадью 24 кв.м (справа объект под номером 1), сарай – номер 1. А чуть подальше – жилой дом, следовательно, жилой дом – объект под номером 7. Напротив жилого дома расположены яблоневые посадки, на плане они обозначены цифрой 3. Также на участке есть баня, к которой ведет дорожка, выложенная плиткой, на плане видим, что к объекту под номером 4 ведет дорожка, значит баня – 4. Огород с теплицей внутри (огород отмечен на плане цифрой 6), в огороде расположена теплица – объект 5.

Итак, получили следующее:

1 – сарай; 2 – гараж; 3 – яблоневые посадки; 4 – баня; 5 – теплица; 6 – огород; 7 – жилой дом.

Заполняем нашу таблицу:

Объектыяблонитеплицасарайжилой дом
Цифры3517

Записываем ответ: 3517

Задание №2

Плитки для садовых дорожек продаются в упаковках по 6 штук. Сколько упаковок плиток понадобилось, чтобы выложить все дорожки и площадку между сараем и гаражом?

Решение

Для начала надо определить, как обозначены дорожки, которые надо выложить плиткой, на плане. На плане они показаны серым цветом (мы их обведём голубым цветом).

Которые из названий данного четырехугольника написаны правильно acdb abcd cdab

Теперь ищем в условии задачи, что сказано про плитки и дорожки: «Все дорожки внутри участка имеют ширину 1 м и вымощены тротуарной плиткой размером 1м х 1м».

Сосчитаем, сколько клеточек (плиток) на плане, получаем 65. Зная по условию задачи 1, что плитки продаются в упаковках по 6 штук, разделим 65 на 6. Заметим, что 65 на 6 не делится, получается приблизительно 10,8…Учитывая, что упаковки не делятся, округляем до большего целого числа, нам понадобится 11 упаковок.

Задание №3

Найдите расстояние от жилого дома до теплицы (расстояние между двумя ближайшими точками по прямой) в метрах.

Решение

Из задания 1 знаем, что жилой дом обозначен на плане цифрой 7, а теплица цифрой 5. Следовательно, на плане находим эти объекты и расстояние между двумя ближайшими точками по прямой (обозначим это голубым цветом). Видим, что это расстояние – 2 клетки. На плане показано, что длина стороны одной клетки равна 2 метра, значит, расстояние между двумя этими объектами равно 4 метра.

Которые из названий данного четырехугольника написаны правильно acdb abcd cdab

Задание №4

Найдите площадь, которую занимает гараж. Ответ дайте в квадратных метрах.

Решение

Найдем на плане гараж, это объект под номером 2. Гараж имеет прямоугольную форму, следовательно, нам надо найти площадь прямоугольника. Для этого надо найти длину и ширину. На плане показано, что длина стороны 1 клетки равна 2 метра, значит, длина гаража равна 8 м (4 клетки), а ширина — 6 м (3 клетки).

Которые из названий данного четырехугольника написаны правильно acdb abcd cdab

Зная ширину и длину, находим площадь гаража: 6х8=48 кв.м

Задание №5

Хозяин участка решил покрасить весь забор вокруг участка (только с внешней стороны) в зелёный цвет. Площадь забора равна 232 кв.м., а купить краску можно в одном из двух ближайших магазинов. Цена и характеристика краски и стоимость доставки заказа даны в таблице.

Номер магазинаРасход краскиМасса краски в одной банкеСтоимость одной банки краскиСтоимость доставки заказа
10,25 кг/кв.м6 кг3000 руб.500 руб.
20,4 кг/кв.м5 кг1900 руб.800 руб.

Во сколько рублей обойдется наиболее дешёвый вариант покупки с доставкой?

Решение

Определим, сколько килограммов краски понадобится для покраски забора площадью 232 кв.м:

1 магазин: 232х0,25=58 кг

2 магазин: 232х0,4=92,8 кг

Вычислим количество банок краски, которое надо купить, зная массу краски в 1 банке:

1 магазин: 58:6=9,7…; так как банки продаются целиком, то надо 10 банок (округляем до наибольшего целого числа)

2 магазин: 92,8:5=18,56; значит надо 19 банок.

Вычислим стоимость краски в каждом магазине плюс доставка:

1 магазин: 10х3000+500=30500 руб.

2 магазин: 19х1900+800=36900 руб.

Из решения задачи видно, что в 1 магазине купить краску выгоднее. Следовательно, наиболее дешёвый вариант покупки с доставкой будет стоить 30500 рублей.

Ответ: см. решение

pазбирался: Даниил Романович | обсудить разбор | оценить

Видео:ОПИСАННЫЕ И ВПИСАННЫЕ ОКРУЖНОСТИ ЧЕТЫРЕХУГОЛЬНИКА . §10 геометрия 8 классСкачать

ОПИСАННЫЕ И ВПИСАННЫЕ ОКРУЖНОСТИ ЧЕТЫРЕХУГОЛЬНИКА . §10 геометрия 8 класс

Четырехугольник — виды и свойства с примерами решения

Содержание:

Четырёхугольник — это фигура, которая состоит из четырёх точек и четырёх последовательно соединяющих их отрезков. При этом, никакие три из указанных точек не должны быть расположены на одной прямой, а соединяющие их отрезки не должны пересекаться. Данные точки называются вершинами четырёхугольника, а соединяющие их отрезки — сторонами четырёхугольника.

Которые из названий данного четырехугольника написаны правильно acdb abcd cdab

Вершины, являющиеся концами одной стороны четырёхугольника, называются соседними, а вершины, не принадлежащие одной стороне — противолежащими. Стороны, имеющие общую вершину, называются соседними сторонами, а не имеющие общих вершин — противолежащими сторонами. Отрезки, соединяющие противолежащие вершины, называются диагоналями четырёхугольника. Точки, принадлежащие четырёхугольнику, делят плоскость q на два множества, которые образуют две области — внутреннюю и внешнюю.

Которые из названий данного четырехугольника написаны правильно acdb abcd cdab

Четырёхугольник называется выпуклым, если все точки, принадлежащие внутренней области, находятся в одной полуплоскости от линии, содержащей любую сторону четырёхугольника, если эти точки находятся в разных полуплоскостях, то четырёхугольник называется невыпуклым (вогнутым).

Которые из названий данного четырехугольника написаны правильно acdb abcd cdab

Если соединить любые две точки внутренней области выпуклого многоугольника, то отрезок, соединяющий эти точки, целиком находится во внутренней области четырёхугольника.

Диагонали выпуклого четырёхугольника находятся во внутренней области. У невыпуклого четырёхугольника одна из диагоналей находится во внешней области. Каждая из двух диагоналей выпуклого четырёхугольника делит его на два треугольника.

Которые из названий данного четырехугольника написаны правильно acdb abcd cdab

Видео:№759 Дан произвольный четырехугольник MNPQ. Докажите, что:Скачать

№759 Дан произвольный четырехугольник MNPQ. Докажите, что:

Внутренние и внешние углы четырехугольника

Угол, смежный любому углу выпуклого четырёхугольника, называется внешним углом. Из любой вершины четырёхугольника можно провести два внешних угла, которые являются вертикальными углами и соответственно равны друг другу. Поэтому, говоря о внешнем угле четырёхугольника, мы будем иметь в виду, один из них. На рисунке для внутренних углов Которые из названий данного четырехугольника написаны правильно acdb abcd cdabуглы Которые из названий данного четырехугольника написаны правильно acdb abcd cdabявляются внешними.

Которые из названий данного четырехугольника написаны правильно acdb abcd cdab

Каждый внутренний угол выпуклого четырёхугольника меньше Которые из названий данного четырехугольника написаны правильно acdb abcd cdabГрадусная мера внутреннего угла невыпуклого четырёхугольника может быть больше Которые из названий данного четырехугольника написаны правильно acdb abcd cdab

Которые из названий данного четырехугольника написаны правильно acdb abcd cdab

Сумма внутренних углов выпуклого четырёхугольника

Теорема. Сумма внутренних углов выпуклого четырёхугольника равна Которые из названий данного четырехугольника написаны правильно acdb abcd cdabКоторые из названий данного четырехугольника написаны правильно acdb abcd cdab

Которые из названий данного четырехугольника написаны правильно acdb abcd cdab

Докажите теорему, основываясь на том, что сумма внутренних углов треугольника равна Которые из названий данного четырехугольника написаны правильно acdb abcd cdabДоказательство представьте в виде двухстолбчатой таблицы.

Сумма внешних углов выпуклого четырёхугольника

Теорема. Сумма внешних углов выпуклого четырёхугольника равна Которые из названий данного четырехугольника написаны правильно acdb abcd cdab

Которые из названий данного четырехугольника написаны правильно acdb abcd cdab

Докажите теорему, опираясь на то, что внешний и внутренний угол, при каждой вершине являются смежными углами.

Параллелограмм

Параллелограмм и его свойства

Параллелограммом называется четырёхугольник, у которого противоположные стороны попарно параллельны. Которые из названий данного четырехугольника написаны правильно acdb abcd cdab

Теорема 1. Противоположные стороны параллелограмма конгруэнтны. Которые из названий данного четырехугольника написаны правильно acdb abcd cdab

Теорема 2. Противоположные углы параллелограмма конгруэнтны. Которые из названий данного четырехугольника написаны правильно acdb abcd cdab

Теорема 3. Сумма углов, прилежащих к одной стороне параллелограмма равна Которые из названий данного четырехугольника написаны правильно acdb abcd cdabКоторые из названий данного четырехугольника написаны правильно acdb abcd cdab

Которые из названий данного четырехугольника написаны правильно acdb abcd cdab

Теорема 4. Диагонали параллелограмма пересекаются и делятся точкой пересечения пополам. Которые из названий данного четырехугольника написаны правильно acdb abcd cdab

Теорема 5. Диагонали параллелограмма делят его на два конгруэнтных треугольника. Которые из названий данного четырехугольника написаны правильно acdb abcd cdab

Которые из названий данного четырехугольника написаны правильно acdb abcd cdab

Признаки параллелограмма

Теорема 1. Четырёхугольник у которого две противоположные стороны конгруэнтный параллельны есть параллелограмм.

Теорема 2. Четырёхугольник с попарно конгруэнтными сторонами есть параллелограмм.

Теорема 3. Если диагонали четырёхугольника пересекаются и в точке пересечения делятся по полам, то этот четырёхугольник есть параллелограмм.

Прямоугольник

Параллелограмм, все углы которого прямые, называется прямоугольником.

Все свойства параллелограмма относятся к прямоугольнику.

Наряду с этим прямоугольник имеет следующее свойство:

Теорема. Диагонали прямоугольника конгруэнтны. Которые из названий данного четырехугольника написаны правильно acdb abcd cdab

Признак прямоугольника

Параллелограмм, у которого диагонали конгруэнтны есть прямоугольник.

Которые из названий данного четырехугольника написаны правильно acdb abcd cdab

Ромб и квадрат

Свойства ромба

Параллелограмм, у которого все стороны конгруэнтны, называется ромбом. Все свойства параллелограмма относятся к ромбу. Наряду с этим, ромб обладает следующими свойствами:

Теорема 1. Диагонали ромба являются биссектрисами его углов и пересекаются под прямым утлом. Которые из названий данного четырехугольника написаны правильно acdb abcd cdab

Теорема 2. (Обратная георема). Параллелограмм, у которого диагонали перпендикулярны, есть ромб. Если Которые из названий данного четырехугольника написаны правильно acdb abcd cdabто параллелограмм Которые из названий данного четырехугольника написаны правильно acdb abcd cdabявляется ромбом.

Которые из названий данного четырехугольника написаны правильно acdb abcd cdab

Доказательство теоремы 1.

Дано: Которые из названий данного четырехугольника написаны правильно acdb abcd cdabромб.

Докажите, что Которые из названий данного четырехугольника написаны правильно acdb abcd cdab

Доказательство (словестное): По определению ромба Которые из названий данного четырехугольника написаны правильно acdb abcd cdabПри этом, так как ромб является параллелограммом, а диагонали параллелограмма делятся точкой пересечения пополам, тогда можно записать, что Которые из названий данного четырехугольника написаны правильно acdb abcd cdabравнобедренный. Медиана Которые из названий данного четырехугольника написаны правильно acdb abcd cdab(так как Которые из названий данного четырехугольника написаны правильно acdb abcd cdab), является также и биссектрисой и высотой. Т.е. Которые из названий данного четырехугольника написаны правильно acdb abcd cdabТак как Которые из названий данного четырехугольника написаны правильно acdb abcd cdabявляется прямым углом, то Которые из названий данного четырехугольника написаны правильно acdb abcd cdab. Аналогичным образом можно доказать, что Которые из названий данного четырехугольника написаны правильно acdb abcd cdab

Если четырёхугольник является ромбом или квадратом, то справедливы следующие утверждения.

Ромб:

  • 1. Все свойства параллелограмма действительны для ромба.
  • 2. Все стороны конгруэнтны.
  • 3. Диагонали взаимно перпендикулярны.
  • 4. Диагонали ромба делят его углы пополам.

Квадрат:

  • 1. Все свойства прямоугольника и ромба действительны для квадрата.
  • 2. Все углы прямые.
  • 3. Все стороны конгруэнтны.
  • 4. Диагонали равны, взаимно перпендикулярны, делятся точкой пересечения пополам, являются биссектрисами углов квадрата.

Которые из названий данного четырехугольника написаны правильно acdb abcd cdab

Трапеция

Четырёхугольник, у которого только две стороны параллельны, называется трапецией.

Параллельные стороны трапеции называются основаниями, не параллельные стороны называются боковыми сторонами.

Которые из названий данного четырехугольника написаны правильно acdb abcd cdab

Трапеция, у которой боковые стороны равны называется равнобедренной трапецией.

Трапеция, у которой одна из боковых сторон перпендикулярна основанию называется прямоугольной трапецией.

Теорема 1. В равнобедренной трапеции углы, прилежащие к основанию конгруэнтны. Которые из названий данного четырехугольника написаны правильно acdb abcd cdab

Теорема 2. Диагонали равнобедренной трапеции конгруэнтны. Которые из названий данного четырехугольника написаны правильно acdb abcd cdab

Которые из названий данного четырехугольника написаны правильно acdb abcd cdab

План доказательства теоремы 2

Дано: Которые из названий данного четырехугольника написаны правильно acdb abcd cdabравнобедренная трапеция. Которые из названий данного четырехугольника написаны правильно acdb abcd cdab

Докажите: Которые из названий данного четырехугольника написаны правильно acdb abcd cdab

Которые из названий данного четырехугольника написаны правильно acdb abcd cdab

Средняя линия треугольника

Теорема Фалеса. Если параллельные прямые, пересекающие стороны угла, отсекают на одной его стороне конгруэнтные отрезки, то они отсекают конгруэнтные отрезки и на другой его стороне. Если Которые из названий данного четырехугольника написаны правильно acdb abcd cdabтогда Которые из названий данного четырехугольника написаны правильно acdb abcd cdabЗапишите в тетради доказательство теоремы, заполнив пропущенные строки.

Доказательство: через точку Которые из названий данного четырехугольника написаны правильно acdb abcd cdabпроведем параллельную прямую к прямой Которые из названий данного четырехугольника написаны правильно acdb abcd cdab

Которые из названий данного четырехугольника написаны правильно acdb abcd cdab

Если в условии теоремы Фалеса, вместо угла взять две произвольные прямые, то результат не изменится.

Исследование: 1) В треугольнике Которые из названий данного четырехугольника написаны правильно acdb abcd cdabчерез точку Которые из названий данного четырехугольника написаны правильно acdb abcd cdab— середину стороны Которые из названий данного четырехугольника написаны правильно acdb abcd cdabпроведите прямую параллельную Которые из названий данного четырехугольника написаны правильно acdb abcd cdabКакая фигура получилась? Является ли Которые из названий данного четырехугольника написаны правильно acdb abcd cdabтрапецией? Измерьте и сравните основания полученной трапеции. 2) Измерьте и сравните длины отрезков Которые из названий данного четырехугольника написаны правильно acdb abcd cdabМожно ли утверждать, что Которые из названий данного четырехугольника написаны правильно acdb abcd cdab

Которые из названий данного четырехугольника написаны правильно acdb abcd cdab

Определение: Отрезок, соединяющий середины двух сторон треугольника называется средней линией этого треугольника. Теорема. Средняя линия, соединяющая середины двух сторон треугольника, параллельна третьей стороне и равна ее половине Которые из названий данного четырехугольника написаны правильно acdb abcd cdab

Которые из названий данного четырехугольника написаны правильно acdb abcd cdab

Доказательство. Пусть дан треугольник Которые из названий данного четырехугольника написаны правильно acdb abcd cdabи его средняя линия Которые из названий данного четырехугольника написаны правильно acdb abcd cdabПроведём через точку Которые из названий данного четырехугольника написаны правильно acdb abcd cdabпрямую параллельную стороне Которые из названий данного четырехугольника написаны правильно acdb abcd cdabПо теореме Фалеса, она проходит через середину стороны Которые из названий данного четырехугольника написаны правильно acdb abcd cdabт.е. совпадает со средней линией Которые из названий данного четырехугольника написаны правильно acdb abcd cdabТ.е. средняя линия Которые из названий данного четырехугольника написаны правильно acdb abcd cdabпараллельна стороне Которые из названий данного четырехугольника написаны правильно acdb abcd cdabТеперь проведём среднюю линию Которые из названий данного четырехугольника написаны правильно acdb abcd cdabТ.к. Которые из названий данного четырехугольника написаны правильно acdb abcd cdabто четырёхугольник Которые из названий данного четырехугольника написаны правильно acdb abcd cdabявляется параллелограммом. По свойству параллелограмма Которые из названий данного четырехугольника написаны правильно acdb abcd cdabПо теореме Фалеса Которые из названий данного четырехугольника написаны правильно acdb abcd cdabТогда Которые из названий данного четырехугольника написаны правильно acdb abcd cdabТеорема доказана.

Средняя линия трапеции

Средней линией трапеции называется отрезок, соединяющим середины боковых сторон трапеции.

Которые из названий данного четырехугольника написаны правильно acdb abcd cdab

Теорема. Средняя линия трапеции параллельна основаниям и равна их полусумме.

Которые из названий данного четырехугольника написаны правильно acdb abcd cdab

Доказательство: Через точку Которые из названий данного четырехугольника написаны правильно acdb abcd cdabи точку Которые из названий данного четырехугольника написаны правильно acdb abcd cdabсередину Которые из названий данного четырехугольника написаны правильно acdb abcd cdabпроведём прямую и обозначим точку пересечения со стороной Которые из названий данного четырехугольника написаны правильно acdb abcd cdabчерез Которые из названий данного четырехугольника написаны правильно acdb abcd cdab

Которые из названий данного четырехугольника написаны правильно acdb abcd cdab

Координаты середины отрезка

Исследование: Начертите числовую ось. Постройте окружность с центром в точке Которые из названий данного четырехугольника написаны правильно acdb abcd cdabрадиусом 3 единицы. Вычислите значение выражения Которые из названий данного четырехугольника написаны правильно acdb abcd cdabЕсть ли связь между значением данного выражения и координатой точки Которые из названий данного четырехугольника написаны правильно acdb abcd cdab

Которые из названий данного четырехугольника написаны правильно acdb abcd cdab

Координаты середины отрезка

1) Пусть на числовой оси заданы точки Которые из названий данного четырехугольника написаны правильно acdb abcd cdabи Которые из названий данного четырехугольника написаны правильно acdb abcd cdabи точка Которые из названий данного четырехугольника написаны правильно acdb abcd cdabкоторая является серединой отрезка Которые из названий данного четырехугольника написаны правильно acdb abcd cdab

Которые из названий данного четырехугольника написаны правильно acdb abcd cdabто Которые из названий данного четырехугольника написаны правильно acdb abcd cdabа отсюда следует, что Которые из названий данного четырехугольника написаны правильно acdb abcd cdab

Которые из названий данного четырехугольника написаны правильно acdb abcd cdab

2) По теореме Фалеса, если точка Которые из названий данного четырехугольника написаны правильно acdb abcd cdabявляется серединой отрезка Которые из названий данного четырехугольника написаны правильно acdb abcd cdabто на оси абсцисс точка Которые из названий данного четырехугольника написаны правильно acdb abcd cdabявляется соответственно координатой середины отрезка концы которого находятся в точках Которые из названий данного четырехугольника написаны правильно acdb abcd cdabи Которые из названий данного четырехугольника написаны правильно acdb abcd cdab

Которые из названий данного четырехугольника написаны правильно acdb abcd cdab

3) Координаты середины отрезка Которые из названий данного четырехугольника написаны правильно acdb abcd cdabс концами Которые из названий данного четырехугольника написаны правильно acdb abcd cdabи Которые из названий данного четырехугольника написаны правильно acdb abcd cdabточки Которые из названий данного четырехугольника написаны правильно acdb abcd cdabнаходятся так:

Которые из названий данного четырехугольника написаны правильно acdb abcd cdab

Убедитесь, что данная формула верна в случае, если отрезок Которые из названий данного четырехугольника написаны правильно acdb abcd cdabпараллелен одной из осей координат.

Теорема Пифагора

В этом разделе вы научитесь:

  • различать рациональные и иррациональные числа;
  • упрощать выражения, содержащие квадратные корни;
  • решать задания на извлечение квадратного корня;
  • основам теоремы Пифагора;
  • решать практические задачи, применяя теорему Пифагора.

При решении таких задач как вычисления силы шторма на море, скорости автомобиля при аварии, определения места приземления при прыжке с парашютом часто приходится проводить вычисления с числами, стоящими под знаком корня.

Теорема Пифагора очень часто используется при решении геометрических задач.

Имя Пифагора ассоциируется с прямоугольным треугольником и соотношением между его сторонами. Греческий учёный Пифагор, живший в VI веке до нашей эры, является основателем школы, в которой преподавались музыка, гимнастика, философия и геометрия. Ученики школы называли себя Пифагорейцами. Они провозглашали гармонию музыки и чисел в природе и не верили в существование иррациональных чисел.

Практическая работа:

Шаг 1. Вырежьте из картона два одинаковых квадрата.

Шаг 2. На стороне одного из них отметьте отрезки Которые из названий данного четырехугольника написаны правильно acdb abcd cdabкак показано на рисунке и разрежьте его на два квадрата и два прямоугольника.

Которые из названий данного четырехугольника написаны правильно acdb abcd cdab

Шаг 3. Полученные фигуры расположите, как показано на рисунке.

Которые из названий данного четырехугольника написаны правильно acdb abcd cdab

Шаг 4. На сторонах другого квадрата отметьте отрезки Которые из названий данного четырехугольника написаны правильно acdb abcd cdabкак показано на рисунке и отрежьте четыре прямоугольных треугольника.

Которые из названий данного четырехугольника написаны правильно acdb abcd cdab

Шаг 5. Что вы можете сказать о конгруэнтности данных треугольников? К какому виду относится оставшаяся фигура, после того, как вы отрезали треугольники и убрали их? Чему равен каждый внутренний угол данного четырёхугольника?

Шаг 6. Расположите полученные фигуры, как показано на рисунке.

Которые из названий данного четырехугольника написаны правильно acdb abcd cdab

Шаг 7. Сравните результаты, которые вы получили на 3 и 6 шагах. К какому выводу вы пришли?

Теорема Пифагора:

В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов. Которые из названий данного четырехугольника написаны правильно acdb abcd cdab

Если рассмотреть площади квадратов, построенных на сторонах прямоугольного треугольника, то теорему Пифагора можно перефразировать так: в прямоугольном треугольнике площадь квадрата, построенного на гипотенузе, равна сумме площадей квадратов, построенных на катетах: Которые из названий данного четырехугольника написаны правильно acdb abcd cdab

Которые из названий данного четырехугольника написаны правильно acdb abcd cdab

Если в прямоугольном треугольнике заданы две стороны, то третью сторону можно найти по теореме Пифагора.

Пример:

Найдём длину катета на рисунке:

Которые из названий данного четырехугольника написаны правильно acdb abcd cdab

Которые из названий данного четырехугольника написаны правильно acdb abcd cdab

Историческая справка: Пифагор родился в 569 году до нашей эры на острове Самос в Греции. В истории его имя увековечено теоремой, которая называется теоремой Пифагора. Она известна своей простотой и практическим значением. Об этой теореме знали ещё задолго до Пифагора. Однако, из письменных источников следует, что впервые её доказал именно Пифагор. Помимо оригинального доказательства теоремы самим Пифагором, известны также доказательстве» Эвклида, Леонардо да Винчи, Президента Америки Джеймса Гарфилда. В 1940 году широкой публике была представлена книга, где приводилось 370 доказательств теоремы. На рисунке вы видите статую, возведённую в честь Пифагора на его родине на острове Самос.

Обратная теорема:

Если квадрат одной из сторон треугольника равен сумме квадратов двух других сторон, то такой треугольник является прямоугольным треугольником. Если Которые из названий данного четырехугольника написаны правильно acdb abcd cdabто, Которые из названий данного четырехугольника написаны правильно acdb abcd cdab— прямоугольный.

Которые из названий данного четырехугольника написаны правильно acdb abcd cdab

Прямоугольные треугольники, которых выражаются натуральными числами, называются Пифагоровыми треугольниками. Самый распространённый прямоугольный треугольник имеет стороны 3; 4; 5. Древние египтяне повсеместно пользовались этим треугольником для измерений. Такой треугольник называется Египетским треугольником. Треугольники со сторонами 5,12,13; 8,15,17; 7,24,25. также являются треугольниками Пифагора. А эти числа называются Пифагоровыми тройками. Если числа Которые из названий данного четырехугольника написаны правильно acdb abcd cdabявляются Пифагоровыми тройками, то и числа Которые из названий данного четырехугольника написаны правильно acdb abcd cdabтакже являются Пифагоровыми тройками.

Видео:8 класс, 3 урок, ЧетырехугольникСкачать

8 класс, 3 урок, Четырехугольник

Справочный материал по четырёхугольнику

Обозначим четыре точки, например А, В, С, D, из которых никакие три не лежат на одной прямой. Последовательно соединим их непересекающимися отрезками АВ, ВС, CD, DA. Получим четырёхугольник ABCD.

Которые из названий данного четырехугольника написаны правильно acdb abcd cdab(рис. 1).

Точки А, В, С, D — вершины четырёхугольника, отрезки АВ, ВС, CD, DA — его стороны. Углы DAB, ABC, BCD, CDA — это углы четырёхугольника. Их также обозначают одной буквой — Которые из названий данного четырехугольника написаны правильно acdb abcd cdabКоторые из названий данного четырехугольника написаны правильно acdb abcd cdab

Вершины, стороны и углы четырёхугольника называют его элементами. ? | Почему фигуры, изображённые на рисунках 2 и 3, не являются четырёхугольниками?

У фигуры на рисунке 2 отрезки АС и BD пересекаются, а у фигуры на рисунке 3 точки A, D, С лежат на одной прямой. Которые из названий данного четырехугольника написаны правильно acdb abcd cdab

Четырёхугольник обозначают, последовательно записывая его вершины, начиная с любой из них. Например, четырёхугольник на рисунке 4 можно обозначить так: ABCD, или BCDA, или CDAB и т. д. Но для данного четырёхугольника запись, например, ADBC либо CDBA — неверна.

Две вершины, два угла или две стороны четырёхугольника могут быть либо соседними, либо противоположными. Например, в четырёхугольнике ABCD (рис. 4) вершины А и D, ZA и ZD, стороны AD и АВ — соседние, а вершины А и С, Которые из названий данного четырехугольника написаны правильно acdb abcd cdab, стороны AD и ВС — противоположные.

Отрезки, соединяющие противоположные вершины четырёхугольника, называются его диагоналями. На рис. 4 отрезки АС и BD — диагонали четырёхугольника ABCD.

Четырёхугольники бывают выпуклыми и невыпуклыми.

Если четырёхугольник лежит по одну сторону от каждой прямой, соединяющей две его соседние вершины, то он выпуклый. На рисунке 5 четырёхугольник выпуклый, а на рисунке б — невыпуклый, поскольку он не лежит по одну сторону от прямой, проходящей через вершины М и N.

Которые из названий данного четырехугольника написаны правильно acdb abcd cdab

Мы будем изучать лишь выпуклые четырёхугольники. Сумма длин всех сторон четырёхугольника называется его периметром. Периметр обозначают буквой Р.

Записать, что периметр четырёхугольника ABCD равен 40 см, можно так: Которые из названий данного четырехугольника написаны правильно acdb abcd cdab=40 cm

Пример:

Докажите, что каждая сторона четырёхугольника меньше суммы трёх других его сторон.

Решение:

Диагональ АС четырёхугольника ABCD делит его на два треугольника ABC и ADC (рис. 7). В Которые из названий данного четырехугольника написаны правильно acdb abcd cdab+ CD (по неравенству треугольника). Тогда Которые из названий данного четырехугольника написаны правильно acdb abcd cdab. Аналогично АВ 45 и DC и секущей АС. Из равенства треугольников ABC и CD А следует: 1) АВ = DC, ВС = AD 2) Которые из названий данного четырехугольника написаны правильно acdb abcd cdab. Углы А и С параллелограмма равны как суммы равных углов.

Может ли в параллелограмме быть только один острый угол? Не может, так как, согласно доказанной теореме, таких углов два.

Пример №1

Сумма углов, прилежащих к одной стороне параллелограмма, равна 180°. Докажите это.

Которые из названий данного четырехугольника написаны правильно acdb abcd cdab

Решение:

Которые из названий данного четырехугольника написаны правильно acdb abcd cdab(рис. 31) по свойству внутренних односторонних углов при параллельных прямых ВС и AD и секущей АВ. Аналогично Которые из названий данного четырехугольника написаны правильно acdb abcd cdab(АВ CD, ВС-секущая), Которые из названий данного четырехугольника написаны правильно acdb abcd cdab(ВС || AD, CD — секущая), Которые из названий данного четырехугольника написаны правильно acdb abcd cdab(АВ || CD, AD- секущая).

Теорема (свойство диагоналей параллелограмма).

Диагонали параллелограмма точкой их пересечения делятся пополам.

Дано: ABCD — параллелограмм (рис. 32), АС и BD — диагонали, О — точка пересечения диагоналей. Доказать: АО = ОС, ВО = OD.

Которые из названий данного четырехугольника написаны правильно acdb abcd cdab

Доказательство. Которые из названий данного четырехугольника написаны правильно acdb abcd cdabпо стороне А и прилежащим к ней углам. Из них ВС = AD как противоположные стороны параллелограмма, Которые из названий данного четырехугольника написаны правильно acdb abcd cdabкак внутренние накрест лежащие углы при параллельных прямых ВС и AD и секущей BD, (BC || AD, АС— секущая). Из равенства треугольников AOD и СОВ следует: АО = ОС, ВО = OD.

Для того чтобы доказать равенство отрезков (углов) в параллелограмме, докажите равенство треугольников, соответствующими элементами которых являются эти отрезки (углы).

Свойства параллелограмма приведены в таблице 3.Которые из названий данного четырехугольника написаны правильно acdb abcd cdab

1. Возникает вопрос: Сколько данных необходимо для построения параллелограмма ?Таких данных должно быть три, среди которых — не более одного из его углов (один угол параллелограмма определяет остальные углы).

2. Название «параллелограмм» (parallelogrammon) происходит от сочетания греческих слов: «параллелос» — идущий рядом и «грамма» — линия.

Этот термин впервые упоминается в «Началах» Евклида (III в. до н. э.). Сначала вместо термина «параллелограмм» древнегреческий учёный использовал словосочетание «образованная параллельными линиями площадь» (часть плоскости, ограниченная двумя парами параллельных прямых).

Признаки параллелограмма

Решaя задачи, иногда требуется установить, что данный четырёхугольник — параллелограмм. Для этого используют признаки параллелограмма.

Теорема (признак параллелограмма).

Если противоположные стороны четырёхугольника попарнo равны, то такой четырёхугольник — параллелограмм.

Которые из названий данного четырехугольника написаны правильно acdb abcd cdab

Дано: ABCD — четырёхугольник (рис. 52), АВ = DC, ВС = AD.

Доказать: ABCD— параллелограмм.

Доказательство. Проведём диагональ BD (рис. 52). Которые из названий данного четырехугольника написаны правильно acdb abcd cdabпо трём сторонам. У них BD— общая сторона, АВ = DC и ВС = AD по условию. Из равенства треугольников следует: Которые из названий данного четырехугольника написаны правильно acdb abcd cdab Которые из названий данного четырехугольника написаны правильно acdb abcd cdabУглы CBD и ADB— внутренние накрест лежащие при прямых ВС и AD и секущей BD. Поэтому ВС || AD. Углы ABD и СОВ также внутренние накрест лежащие при прямых АВ и DC и секущей BD. Поэтому АВ || DC. Так как в четырёхугольнике ABCD ВС ||AD и АВ ||DC, то, по определению, этот четырёхугольник — параллелограмм.

Можно ли считать четырёхугольник параллелограммом, если в нём две противоположные стороны равны, а две другие — параллельны?

Нет, нельзя. На рисунке 53 АВ = CD, ВС || AD, но четырёхугольник ABCD — не параллелограмм. Которые из названий данного четырехугольника написаны правильно acdb abcd cdab

Теорема (признак параллелограмма).

Если в четырёхугольнике две противоположные стороны равны и параллельны, то такой четырёхугольник — параллелограмм.

Дано: ABCD — четырёхугольник (рис. 54), и АВ = DC, АВ || DC.

Которые из названий данного четырехугольника написаны правильно acdb abcd cdab

Доказать: ABCD — параллелограмм.

Доказательство. Проведём диагональ АС (рис. 54). Которые из названий данного четырехугольника написаны правильно acdb abcd cdabпо двум сторонам и углу между ними. У них АС — общая сторона, АВ = DC по условию, Которые из названий данного четырехугольника написаны правильно acdb abcd cdabкак внутренние накрест лежащие углы при параллельных прямых АВ и DC и секущей АС. Из равенства треугольников следует: Которые из названий данного четырехугольника написаны правильно acdb abcd cdabНо углы DAC и ВС А — внутренние накрест лежащие при прямых ВС и AD и секущей АС. Поэтому ВС || AD. Поскольку в четырёхугольнике ABCD AD || БС(по доказанному) и АВ || DC (по условию), то, по определению, этот четырёхугольник — параллелограмм.

Пример №2 (признак параллелограмма).

Если диагонали четырёхугольника делятся точкой их пересечения пополам, то такой четырёхугольник — параллелограмм. Докажите это.

Которые из названий данного четырехугольника написаны правильно acdb abcd cdab

Решение:

Пусть ABCD—данный четырёхугольник, О — точка пересечения его диагоналей и ВО= OD, АО= ОС (рис. 55). Докажем, что ABCD — параллелограмм. Которые из названий данного четырехугольника написаны правильно acdb abcd cdabпо двум сторонам и углу между ними. У них ВО = OD, АО = ОС по условию, Которые из названий данного четырехугольника написаны правильно acdb abcd cdabкак вертикальные. Из равенства треугольников следует: ВС= AD и Которые из названий данного четырехугольника написаны правильно acdb abcd cdabНо углы ОВС и ODA — внутренние накрест лежащие при прямых BCuADh секущей BD. Поэтому BC\AD.

Поскольку в четырёхугольнике ABCD ВС= AD и ВС || AD, то, согласно доказанному признаку, этот четырёхугольник — параллелограмм.

Чтобы установить, что четырёхугольник — параллелограмм, докажите, что в нём:

  1. либо противоположные стороны попарно параллельны (определение параллелограмма),
  2. либо противоположные стороны попарно равны (признак),
  3. либо две противоположные стороны равны и параллельны (признак),
  4. либо диагонали делятся точкой их пересечения пополам (признак).

Вам уже знакомы понятия «необходимо», «достаточно», «необходимо и достаточно». В таблице 5 рассмотрите пары утверждений А и В и выясните смысл этих понятий.

Которые из названий данного четырехугольника написаны правильно acdb abcd cdab

Обратите внимание, что утверждения «Л достаточно для в» и «А необходимо для В» — взаимно обратные. Их можно объединить и сформулировать следующим образом.

Для того чтобы четырехугольник был параллелограммом, необходимо и достаточно, чтобы его противоположные стороны были попарно равны.

Иногда вместо «необходимое и достаточное условие» говорят «необходимый и достаточный признак», а чаще — просто «признак». Поэтому теоремы этого параграфа называем «признаками параллелограмма».

Прямоугольник

Параллелограммы, как и —у треугольники, можно разделить на виды. Прямоугольник — один из видов параллелограмма. На рисунке 73 вы видите параллелограмм ABCD являющийся прямоугольником. Дайте определение прямоугольнику и сравните его с приведённым в учебнике. Которые из названий данного четырехугольника написаны правильно acdb abcd cdab

Параллелограмм, у которого все углы прямые, называется прямоугольником.

Поскольку прямоугольник — частный вид параллелограмма, то ему присущи все свойства параллелограмма:

  1. противоположные стороны равны;
  2. противоположные углы равны;
  3. диагонали делятся точкой их пересечения пополам.

Кроме этих свойств прямоугольник имеет ещё и особое свойство.

Дано: ABCD — прямоугольник, АС и BD — диагонали (рис. 74).

Которые из названий данного четырехугольника написаны правильно acdb abcd cdab

Доказать: АС = BD.

Доказательство. Прямоугольные треугольники ACDw DBA равны по двум катетам. При этом AD — общий катет, а катеты АВ и DC равны как противоположные стороны параллелограмма. Из равенства треугольников следует: АС = BD.

Свойства прямоугольника приведены в таблице 8.

Которые из названий данного четырехугольника написаны правильно acdb abcd cdabМожно ли утверждать, что параллелограмм, в котором диагонали равны, является прямоугольником? Да, но это нужно доказать.

Пример №3 (признак прямоугольника).

Если диагонали параллелограмма равны, то такой параллелограмм — прямоугольник. Докажите это.

Решение:

Пусть ABCD — параллелограмм, в котором АС = BD (рис. в табл. 8). Докажем, что Которые из названий данного четырехугольника написаны правильно acdb abcd cdab. Которые из названий данного четырехугольника написаны правильно acdb abcd cdabпо трём сторонам. У них AD — общая сторона, АС = BD по условию, АВ = DC — как противоположные стороны параллелограмма. Из этого следует, что Которые из названий данного четырехугольника написаны правильно acdb abcd cdab. Поскольку в параллелограмме противоположные углы равны, то: Которые из названий данного четырехугольника написаны правильно acdb abcd cdab. По свойству углов четырёхугольника, Которые из названий данного четырехугольника написаны правильно acdb abcd cdab

Следовательно, Которые из названий данного четырехугольника написаны правильно acdb abcd cdab: 4 = 90°, то есть параллелограмм ABCD — прямоугольник.

Для того чтобы установить, что данный параллелограмм — прямоугольник, докажите, что у него: либо все его углы прямые (определение прямоугольника), либо диагонали равны (признак).

Можно ли утверждать, что четырёхугольник, в котором диагонали равны, — это прямоугольник? Нет, нельзя (см. рис. 75). Необходимо проверить, выполняется ли один из признаков параллелограмма. Например, делятся ли диагонали точкой их пересечения пополам.

Которые из названий данного четырехугольника написаны правильно acdb abcd cdab

Возникает вопрос: Можно ли сформулировать другие определения прямоугольника ?

В младших классах прямоугольником называли четырёхугольник, все углы в котором прямые. Теперь мы определили прямоугольник как частный вид параллелограмма. Возможны и такие определения прямоугольника: параллелограмм, в котором все углы равны (действительно, сумма углов параллелограмма составляет 360°, тогда каждый из них равен 90°); параллелограмм, в котором есть прямой угол (действительно, в параллелограмме сумма смежных углов составляет 180е, а противоположные углы равны. Если один из его углов прямой, то и три остальные — прямые). Эти определения прямоугольника эквивалентны.

Следовательно, существуют разные определения одного и того же понятия.

Ромб. Квадрат

Могут ли в параллелограмме все стороны быть равными? Да, могут. На рисунке 94 в параллелограмме ABCD АВ = ВС = = CD = AD. Это ещё один вид параллелограмма — ромб.

Которые из названий данного четырехугольника написаны правильно acdb abcd cdab

Параллелограмм, у которого все стороны равны, называется ромбом.

Можно ли утверждать, что параллелограмм является ромбом, если две его смежные стороны равны? Да, можно. Равенство всех сторон такого параллелограмма следует из свойства: противоположные стороны параллелограмма равны.

Теорема (свойства диагоналей ромба). Диагонали ромба взаимно перпендикулярны. Диагонали ромба делят его углы пополам.

Которые из названий данного четырехугольника написаны правильно acdb abcd cdab

Дано: ABCD — ромб (рис. 95), О— точка пересечения диагоналей АС и BD.

Доказать: Которые из названий данного четырехугольника написаны правильно acdb abcd cdab

Доказательство. Согласно определению ромба АВ = ВС, поэтому треугольник ABC— равнобедренный. Так как ромб ABCD— параллелограмм, то АО — ОС. Отсюда ВО— медиана равнобедренного треугольника ABC, следовательно, высота и биссектриса этого треугольника. Поэтому Которые из названий данного четырехугольника написаны правильно acdb abcd cdab. Которые из названий данного четырехугольника написаны правильно acdb abcd cdab

Аналогично доказываем, что диагональ BD делит пополам угол D, а диагональ АС— углы А и С ромба ABCD.

Свойства ромба приведены в таблице 10. Таблица 1 О

Которые из названий данного четырехугольника написаны правильно acdb abcd cdab

Пример №4 (признак ромба)

Докажите, что параллелограмм, диагонали которого взаимно перпендикулярны, является ромбом.

Решение:

Пусть ABCD — данный параллелограмм, в котором Которые из названий данного четырехугольника написаны правильно acdb abcd cdab(рис. 96). Докажем, что ABCD— ромб. Которые из названий данного четырехугольника написаны правильно acdb abcd cdabпо двум сторонами и углу между ними.

Которые из названий данного четырехугольника написаны правильно acdb abcd cdab

Так как ромб — это частный вид параллелограмма, то он имеет все свойства параллелограмма (назовите их). Кроме того, ромб обладает особыми свойствами. У них сторона АО — общая, OB = OD по свойству диагоналей параллелограмма, Которые из названий данного четырехугольника написаны правильно acdb abcd cdabпо условию. Из равенства треугольников следует: АВ = AD. Тогда АВ = CD и AD = ВС по свойству противоположных сторон параллелограмма. Итак, все стороны параллелограмма равны, поэтому он является ромбом.

Для того чтобы установить, что данный параллелограмм — ромб, докажите, что в нем:

  • либо все стороны равны (определение ромба),
  • либо диагонали взаимно перпендикулярны (признак).

Прямоугольник, в котором все стороны равны, называется квадратом.

На рисунке 97 вы видите квадрат ABCD.

Которые из названий данного четырехугольника написаны правильно acdb abcd cdab

Существуют и другие определения квадрата: ромб, в котором все углы прямые, называется квадратом; прямоугольник, в котором все стороны равны, называется квадратом; параллелограмм, в котором все стороны равны и все углы прямые, называется квадратом. Следовательно, квадрат имеет все свойства параллелограмма, прямоугольника и ромба. Перечислим свойства квадрата.

  1. Противоположные стороны и противоположные углы квадрата равны. Диагонали квадрата в точке пересечения делятся пополам (свойства параллелограмма).
  2. Диагонали квадрата равны (свойство прямоугольника).
  3. Диагонали квадрата взаимно перпендикулярны и делят его углы пополам (свойства ромба).

Квадрат является частным видом и ромба, и прямоугольника, и параллелограмма. Ромб и прямоугольник — это частные виды параллелограмма. Соотношение между видами параллелограммов показано на Которые из названий данного четырехугольника написаны правильно acdb abcd cdab

1. Рассмотрите таблицу классификации параллелограммов по соседним углам и смежным сторонам. Предложите собственную классификацию изученных видов параллелограмма.

Которые из названий данного четырехугольника написаны правильно acdb abcd cdab

2. Кроме параллелограммов есть ещё один вид четырёхугольников — дельтоид. Эту фигуру получим, если два равнобедренных треугольника ABC и ADCc равными основаниями АС приложить друг к другу так, как показано на рисунке 99.

Которые из названий данного четырехугольника написаны правильно acdb abcd cdab

Свойства дельтоида следуют из свойств равнобедренного треугольника. Например, диагонали взаимно перпендикулярны, одна из них делит углы пополам и другую диагональ — пополам. Сформулируйте, пользуясь рисунком, другие свойства дельтоида. Если равнобедренные треугольники, из которых образован дельтоид, равны, то такой дельтоид является ромбом. Если равнобедренные треугольники к тому же прямоугольные, то дельтоид является квадратом.

3. Слово «ромб» происходит от греческого rhombos — юла, вращение. Слово «квадрат» происходит от латинского quadratum — четырёхугольник. Квадрат был первым четырёхугольником, который рассматривался в геометрии.

Теорема Фалеса. Средняя линия треугольника

Начертите угол ABC (рис. 117).

Которые из названий данного четырехугольника написаны правильно acdb abcd cdab

Произвольным раствором циркуля отложите на стороне АВ угла равные отрезки Которые из названий данного четырехугольника написаны правильно acdb abcd cdabи Которые из названий данного четырехугольника написаны правильно acdb abcd cdabПроведите с помощью чертёжного угольника и линейки через точки Которые из названий данного четырехугольника написаны правильно acdb abcd cdabпараллельные прямые, которые пересекут сторону ВС этого угла в точках Которые из названий данного четырехугольника написаны правильно acdb abcd cdabПри помощи циркуля сравните длины отрезков Которые из названий данного четырехугольника написаны правильно acdb abcd cdabСделайте вывод.

Теорема Фалёса. Если параллельные прямые, пересекающие стороны угла, отсекают на одной его стороне равные отрезки, то они отсекают равные отрезки и на другой его стороне.

Дано: Которые из названий данного четырехугольника написаны правильно acdb abcd cdab

Которые из названий данного четырехугольника написаны правильно acdb abcd cdab

Доказать: Которые из названий данного четырехугольника написаны правильно acdb abcd cdab

Доказательство. Проведём через точки Которые из названий данного четырехугольника написаны правильно acdb abcd cdabпрямые Которые из названий данного четырехугольника написаны правильно acdb abcd cdabпараллельные ВС. Которые из названий данного четырехугольника написаны правильно acdb abcd cdabпо стороне и прилежащим к ней углам. У них Которые из названий данного четырехугольника написаны правильно acdb abcd cdabпо условию, Которые из названий данного четырехугольника написаны правильно acdb abcd cdabкак соответственные углы при параллельных прямых. Из равенства этих треугольников следует, что Которые из названий данного четырехугольника написаны правильно acdb abcd cdabи Которые из названий данного четырехугольника написаны правильно acdb abcd cdabкак противоположные стороны параллелограммов Которые из названий данного четырехугольника написаны правильно acdb abcd cdab

Справедлива ли теорема Фалеса, если вместо сторон угла взять две произвольные прямые? Да, справедлива. Параллельные прямые, пересекающие две заданные прямые и отсекающие на одной прямой равные отрезки, отсекают равные отрезки и на другой прямой (рис. 119).

Которые из названий данного четырехугольника написаны правильно acdb abcd cdab

Пример №5

Разделите данный отрезок АВ на пять равных частей.

Решение:

Проведём из точки А луч АС, не лежащий на прямой АВ (рис. 120).

Которые из названий данного четырехугольника написаны правильно acdb abcd cdab

Отложим на луче АС пять равных отрезков: АА,Которые из названий данного четырехугольника написаны правильно acdb abcd cdabПроведём прямую Которые из названий данного четырехугольника написаны правильно acdb abcd cdab. Через точки Которые из названий данного четырехугольника написаны правильно acdb abcd cdabпроведём прямые, параллельные прямой Которые из названий данного четырехугольника написаны правильно acdb abcd cdab. По теореме Фалеса, эти прямые делят отрезок АВ на пять равных частей.

Средней линией треугольника называется отрезок, соединяющий середины двух его сторон.

На рисунке 121 отрезок MN — средняя линия Которые из названий данного четырехугольника написаны правильно acdb abcd cdab, так как точки М и N — середины сторон АВ и ВС.

Которые из названий данного четырехугольника написаны правильно acdb abcd cdab

Теорема (свойства средней линии треугольника). Средняя линия треугольника параллельна третьей его стороне и равна её половине.

Дано: Которые из названий данного четырехугольника написаны правильно acdb abcd cdab(рис. 122), AD = BD, СЕ= BE.

Которые из названий данного четырехугольника написаны правильно acdb abcd cdab

Доказать: Которые из названий данного четырехугольника написаны правильно acdb abcd cdab

Доказательство. 1) Пусть DE- средняя линия Которые из названий данного четырехугольника написаны правильно acdb abcd cdab. Проведём через точку D прямую, параллельную АС. Согласно теореме Фалеса, она пересекает отрезок ВС в его середине £, то есть содержит среднюю линию DE. Следовательно DE || АС.

2) Проведём прямую EF|| АВ. По теореме Фалеса, прямая EFделит отрезок 1

АС пополам: Которые из названий данного четырехугольника написаны правильно acdb abcd cdab. По построению, четырёхугольник ADEF- параллелограмм, поэтому DE= AF. Следовательно, Которые из названий данного четырехугольника написаны правильно acdb abcd cdab

Пример №6

Докажите, что середины сторон четырёхугольника являются вершинами параллелограмма.

Решение:

Пусть ABC— данный четырёхугольник и М, N, Р, К — середины его сторон (рис. 123). Докажем, что MNPK — параллелограмм. Проведём диагональ AC. MN— средняя линия ААВС.

Которые из названий данного четырехугольника написаны правильно acdb abcd cdab

Поэтому Которые из названий данного четырехугольника написаны правильно acdb abcd cdab. КР— средняя линия треугольника ADC. Поэтому КР || АС и Которые из названий данного четырехугольника написаны правильно acdb abcd cdab

Получаем: MN || АС и КР || АС, отсюда MN || КРКоторые из названий данного четырехугольника написаны правильно acdb abcd cdab, отсюда MN= КР. Противоположные стороны MN и КР четырёхугольника MNPK равны и параллельны, следовательно, это параллелограмм.

Если по условию задачи даны середины некоторых отрезков, то можно использовать свойства средней линии треугольника.

Древнегреческого учёного Фалеса из Милета (625 — 548 гг. до н. э.) считают одним из семи мудрецов мира. Гений Фалеса нашёл воплощение в разных сферах деятельности. Он занимался инженерным делом, был государственным деятелем, математиком, астрономом. Особой заслугой Фалеса является то, что он ввёл в математику идею доказательства. Учёный доказал, что углы при основании равнобедренного треугольника равны, что диаметр делит окружность на две равные части, что прямой угол можно вписать в полуокружность и т. д. Историки полагают, что именно Фалес начал использовать основные геометрические инструменты — циркуль и линейку. Учёный измерял высоту египетских пирамид по длине их теней, впервые предсказал солнечное затемнение, наблюдавшееся в 585 г. до н. э.

Которые из названий данного четырехугольника написаны правильно acdb abcd cdab

Трапеция

Вы уже знаете, что четырёхугольник с попарно параллельными противоположными сторонами — параллелограмм.

На рисунке 143 изображён четырёхугольник ABCD, две стороны AD и ВС которого параллельны, а две другие — АВ и CD — непараллельны. Такой четырёхугольник — трапеция. Дайте определение трапеции и сравните его с приведённым в учебнике.

Которые из названий данного четырехугольника написаны правильно acdb abcd cdab

Трапецией называется четырёхугольник, в которомдве стороны параллельны, а две другие — непараллельны.

Которые из названий данного четырехугольника написаны правильно acdb abcd cdab

Параллельные стороны трапеции называются её основаниями, а непараллельные — боковыми сторонами. На рисунке 144 AD и ВС — основания трапеции, АВ и CD — боковые стороны.

Могут ли основания трапеции быть равными? Не могут, поскольку тогда получим параллелограмм.

Высотой трапеции называется перпендикуляр, проведённый из любой точки одного основания к другому основанию либо его продолжению (рис. 144).

Трапеция, в которой боковые стороны равны, называется равнобедренной. На рисунке 145 трапеция MNKP — равнобедренная, поскольку MN = КР.

Трапецию, один из углов которой прямой, называют прямоугольной. Трапеция ABCD (рис. 146) — прямоугольная, поскольку Которые из названий данного четырехугольника написаны правильно acdb abcd cdab= 90*.

Средней линией трапеции называется отрезок, соединяющий середины её боковых сторон.

На рисунке 147 отрезок EF — средняя линия трапеции ABCD, так как точки Е и F — середины боковых сторон АВ и CD.

Которые из названий данного четырехугольника написаны правильно acdb abcd cdab

Теорема (свойства средней линии трапеции). Средняя линия трапеции параллельна основаниям и равна их полусумме.

Дано: ABCD — трапеция с основаниями AD и ВС (рис. 148), EF— средняя линия. Доказать: Которые из названий данного четырехугольника написаны правильно acdb abcd cdab

Которые из названий данного четырехугольника написаны правильно acdb abcd cdab

Доказательство. Поскольку EF — средняя линия трапеции ABCD, то АЕ= BE, DF= CF. Через точки В и проведём прямую, пересекающую продолжение основания ADb точке Q. Которые из названий данного четырехугольника написаны правильно acdb abcd cdabno стороне и прилежащим к ней углам. У них CF = FD по условию, Которые из названий данного четырехугольника написаны правильно acdb abcd cdabкак вертикальные, Которые из названий данного четырехугольника написаны правильно acdb abcd cdabвнутренние накрест лежащие углы при параллельных прямых ВС и АО и секущей CD. Из равенства треугольников следует: BF— F0, то есть средняя линия ЕF трапеции является средней линией треугольника АВО.

1) По свойству средней линии треугольника EF || АО, поэтому EF || AD. Поскольку AD || ВС, то EF\ ВС.

Пример №7 (свойство равнобедренной трапеции).

В равнобедренной трапеции углы при основании равны. Докажите это.

Решение:

Пусть в трапеции ABCD (рис. 149) АВ = CD. Докажем, что углы при основании AD равны.

Которые из названий данного четырехугольника написаны правильно acdb abcd cdab

Проведём СЕ || АВ. Полученный четырёхугольник АВСЕ— параллелограмм, так как его противоположные стороны попарно параллельны. По свойству параллелограмма, АВ = СЕ, а по условию — АВ = CD. Следовательно, С£= CD и Которые из названий данного четырехугольника написаны правильно acdb abcd cdabравнобедренный. Поэтому Которые из названий данного четырехугольника написаны правильно acdb abcd cdabсоответственные углы при параллельных прямых СЕ и АВ и секущей АЁ. Отсюда

Которые из названий данного четырехугольника написаны правильно acdb abcd cdab

Если в условии задачи дана трапеция, то полезно такое дополнительное построение: проведите через вершину трапеции прямую, параллельную боковой стороне (рис. 149 или 150), и используйте свойства полученных параллелограмма и треугольника.

Решите предыдущую задачу, используя рисунок 150. Посмотрите на рисунок 151, где изображены изученные вами

Которые из названий данного четырехугольника написаны правильно acdb abcd cdab

Центральные и вписанные углы

Проведём окружность с центром О и построим угол с вершиной в центре окружности (рис. 182). Получили центральный угол в окружности.

Угол с вершиной в центре окружности называется центральным углом. Которые из названий данного четырехугольника написаны правильно acdb abcd cdabКоторые из названий данного четырехугольника написаны правильно acdb abcd cdab

Теорема (о вписанном угле). Вписанный угол измеряется половиной дуги, на которую он опирается.

Дано: Которые из названий данного четырехугольника написаны правильно acdb abcd cdab— вписанный в окружность с центром О (рис. 188 — 190).

Доказать: Которые из названий данного четырехугольника написаны правильно acdb abcd cdab

Доказательство. Рассмотрим три случая расположения центра , окружности относительно сторон данного вписанного угла.

1. Центр окружности лежит на стороне вписанного угла (рис. 188). Проведём отрезок ОД тогда центральный угол АОС является внешним углом Которые из названий данного четырехугольника написаны правильно acdb abcd cdab. По свойству внешнего угла треугольника, Которые из названий данного четырехугольника написаны правильно acdb abcd cdabКоторые из названий данного четырехугольника написаны правильно acdb abcd cdab— равнобедренный (ОВ= OA = R). Поэтому Которые из названий данного четырехугольника написаны правильно acdb abcd cdabизмеряется дугой АС. Следовательно, вписанный угол ABC измеряется половиной дуги АС.

2. Центр окружности лежит во внутренней области вписанного угла (рис. 189). Проведём луч ВО, тогда данный угол равен сумме двух углов:Которые из названий данного четырехугольника написаны правильно acdb abcd cdab

Из доказанного в первом случае следует, что Которые из названий данного четырехугольника написаны правильно acdb abcd cdabизмеряется половиной дуги AD, a Которые из названий данного четырехугольника написаны правильно acdb abcd cdab— половиной дуги DC. Поэтому Которые из названий данного четырехугольника написаны правильно acdb abcd cdabизмеряется суммой полудуг AD и DC, то J есть половиной дуги АС.

3. Центр круга лежит во внешней области вписанного угла (рис. 190). Проведём луч ВО, тогда: Которые из названий данного четырехугольника написаны правильно acdb abcd cdab

Которые из названий данного четырехугольника написаны правильно acdb abcd cdab

Следствие 1.

Вписанные углы, опирающиеся на одну и ту же дугу, равны (рис. 191). Действительно, каждый из них измеряется половиной одной и той же дуги.

Следствие 2.

Вписанный угол, опирающийся на диаметр, — прямой (рис. 192). Действительно, такой угол измеряется половиной полуокружности, то есть 180°: 2 = 90°. Которые из названий данного четырехугольника написаны правильно acdb abcd cdab

Равны ли вписанные углы, опирающиеся на равные дуги (рис. 193)? Да, так как каждый из этих углов измеряется половиной равных дуг, градусные меры которых равны.

Пример №8

Хорды окружности АВ и ВС образуют угол 30°. Найдите хорду АС, если диаметр окружности равен 10 см.

Решение:

Проведём диаметр CD и соединим точки A и D (рис. 194). Которые из названий данного четырехугольника написаны правильно acdb abcd cdabкак вписанные, опирающиеся на дугу АС (следствие 1). Поэтому Которые из названий данного четырехугольника написаны правильно acdb abcd cdab, так как опирается на диаметр окружности (следствие 2). Тогда в прямоугольном треугольнике ADC катет АС лежит против угла 30° и равен половине гипотенузы CD. Следовательно, Которые из названий данного четырехугольника написаны правильно acdb abcd cdab

Для того чтобы доказать равенство двух углов, покажите, что они являются вписанными в одну окружность и опираются на одну и ту же дугу либо на равные дуги данной окружности.

Рассмотрим геометрическое место точек, которое используется при решении сложных задач на построение.

Пусть АВ — некоторый отрезок прямой а, М— произвольная точка, не лежащая на прямой a, Которые из названий данного четырехугольника написаны правильно acdb abcd cdab(рис. 195). Тогда говорят: из точки М отрезок АВ виден под углом а.

Если описать окружность около Которые из названий данного четырехугольника написаны правильно acdb abcd cdab(рис. 196), то из любой точки дуги АМВ (кроме точек А и В) отрезок АВ виден под углом а (следствие 1 из теоремы о вписанном угле). Поскольку точку можно взять и с другой стороны от прямой а, то существует ещё одна дуга, например ANB(рис. 197), из каждой точки которой (кроме точек А и В) отрезок АВ виден под углом а. Поэтому геометрическим местом точек, из которых отрезок АВ виден под углом а, является фигура, состоящая из двух дуг АМВ и AN В без точек А и В. Чтобы построить одну из двух дуг этого геометрического места точек для острого угла а, необходимо: Которые из названий данного четырехугольника написаны правильно acdb abcd cdab

Вписанные и описанные четырёхугольники

Отметим на окружности четыре точки и соединим их хордами (рис. 222). Получили четырёхугольник, вписанный в окружность. Которые из названий данного четырехугольника написаны правильно acdb abcd cdab

Четырёхугольник, все вершины которого лежат на окружности, называется вписанным в эту окружность, а окружность — описанной около этого четырехугольника.

Отметим на окружности четыре точки и проведём через них отрезки касательных, как показано на рисунке 223. Получили четырёхугольник, описанный около окружности.

Которые из названий данного четырехугольника написаны правильно acdb abcd cdab

Четырёхугольнику все стороны которого касаются окружности, называется описанным около этой окружности, а окружность — вписанной в этот четырёхугольник.

Свойство вписанного четырёхугольника и его признак связаны с углами этого четырёхугольника.

Теорема (свойство углов вписанного четырёхугольника). Сумма противоположных углов вписанного четырёхугольника равна 180″.

Дано: четырёхугольник ABCD, вписанный в окружность (рис. 224).

Которые из названий данного четырехугольника написаны правильно acdb abcd cdab

Доказать: Которые из названий данного четырехугольника написаны правильно acdb abcd cdab

Доказательство. Углы А, В, Си D вписаны в окружность.

Из теоремы о вписанном угле следует: Которые из названий данного четырехугольника написаны правильно acdb abcd cdab

Тогда Которые из названий данного четырехугольника написаны правильно acdb abcd cdab

Сумма всех углов четырёхугольника равна 360°, а сумма углов А и С — 180°. Тогда Которые из названий данного четырехугольника написаны правильно acdb abcd cdab

Около каждого ли четырёхугольника можно описать окружность? В отличие от треугольника не каждый четырёхугольник — вписанный. Приведём признак вписанного четырёхугольника без доказательства.

Теорема (признак вписанного четырёхугольника). Если в четырёхугольнике сумма двух противоположных углов равна 180е, то около такого четырёхугольника можно описать окружность.

Пример №9

Докажите, что около равнобедренной трапеции можно описать окружность.

Решение:

Пусть ABCD — равнобедренная трапеция с основаниями AD и ВС (рис. 225). Которые из названий данного четырехугольника написаны правильно acdb abcd cdab

Докажем, что Которые из названий данного четырехугольника написаны правильно acdb abcd cdab. В любой трапеции сумма углов, прилежащих к одной боковой стороне, равна 180° (следует из свойства параллельных прямых).

Поэтому, Которые из названий данного четырехугольника написаны правильно acdb abcd cdab. По свойству равнобокой трапеции, Которые из названий данного четырехугольника написаны правильно acdb abcd cdab

Тогда Которые из названий данного четырехугольника написаны правильно acdb abcd cdabи, согласно признаку вписанного четырёхугольника, трапеция ABCD— вписанная. Свойство описанного четырёхугольника и его признак связаны со сторонами этого четырёхугольника.

Теорема (свойство сторон описанного четырёхугольника). Суммы противоположных сторон описанного четырёхугольника равны.

Дано: четырёхугольник ABCD, описанный около окружности (рис. 226), Е, F, K и P — точки касания.

Которые из названий данного четырехугольника написаны правильно acdb abcd cdab

Доказать: АВ + CD = ВС + AD.

Доказательство. По свойству касательных, проведённых к окружности из одной точки: АЕ = АР; BE = BF, СК = CF, DK = DP. Сложив почленно эти равенства, получим: АЕ + BE + СК + DK = АР + BF + CF + DP, то есть АВ + CD = ВС + AD.

В каждый ли четырёхугольник можно вписать окружность? В отличие от треугольника, не в каждый четырёхугольник можно вписать окружность. Приведём признак описанного четырёхугольника без доказательства.

Теорема (признак описанного четырёхугольника). Если в четырёхугольнике суммы противоположных сторон равны, то в этот четырёхугольник можно вписать окружность.

Чтобы доказать, что четырёхугольник MNKP (рис. 227) — вписанный, покажите, что: либо ے M + ے K = 180°, либо ے N + ے P= 180°. Чтобы доказать, что четырёхугольник ABCD (рис. 227) — описанный, покажите, что: AB + CD = AD + BC.

1. Кроме окружностей, вписанной и описанной около четырёхугольника, существуют ещё и вневписанные окружности.

Которые из названий данного четырехугольника написаны правильно acdb abcd cdab

Проведём в произвольном четырёхугольнике ABCD биссектрисы внешних углов при вершинах А, В, С и D [рис. 228). Точки их пересечения Которые из названий данного четырехугольника написаны правильно acdb abcd cdabцентры четырёх вневписанных окружностей. Каждая из них касается одной стороны четырёхугольника и продолжении двух других его сторон. Вневписанные окружности имеют следующее свойство: их центры являются вершинами четырёхугольника Которые из названий данного четырехугольника написаны правильно acdb abcd cdabвписанного в окружность. Действительно,

Которые из названий данного четырехугольника написаны правильно acdb abcd cdab

Следовательно, четырёхугольник Которые из названий данного четырехугольника написаны правильно acdb abcd cdab— вписанный в окружность.

2. Древнегреческие учёные открыли, кроме уже известных вам, другие интересные свойства вписанных и описанных четырёхугольников. Например.

Теорема Птолемея (II в.). Произведение диагоналей вписанного четырёхугольника равно сумме произведений его противоположных сторон.

Задача Архимеда (III в. до н. э.). Если диагонали вписанного четырёхугольника перпендикулярны, то сумма квадратов четырёх отрезков, на которые делятся диагонали точкой пересечения, равна квадрату диаметра описанной окружности. Позднее (IX — XIII в.) арабские учёные дополнили сведения о вписанных и описанных четырёхугольниках и способах исследования их свойств. Так, одарённый геометр Гасан ибн-Гайтем (умер в 1038 г.) предложил, способ, позволяющий установить, используя лишь циркуль, является ли данный четырёхугольник вписанным. Пусть дан четырёхугольник ABCD(рис. 229).

Которые из названий данного четырехугольника написаны правильно acdb abcd cdab

Продолжим сторону AD за точку D. Проведём дуги равных окружностей с центрами в точках В и D. Если KL = МО, то четырёхугольник ABCD — вписанный, так как ے ABC + ے ADC = 180° (докажите это). В иных случаях четырёхугольник не является вписанным.

4 | 3. При решении задач иногда рассматриваются окружности, не заданные в условии. На рисунке к задаче сначала находим четырёхугольник, около которого можно описать окружность либо в который можно вписать окружность, а потом используем свойства хорд, диаметров, вписанных углов, углов с вершиной внутри окружности и т. д.

Которые из названий данного четырехугольника написаны правильно acdb abcd cdab

Пример №10

Из произвольной точки М катета ВС прямоугольного треугольника ABC проведён перпендикуляр MD к гипотенузе АВ (рис. 230). Докажем, что ے MAD= ے MCD.

Решение:

Около четырёхугольника ADMC можно описать окружность, так как ے ACM+ ے ADM= 180°.

Тогда ے MAD= ے MCD— вписанные углы, опирающиеся на одну дугу MD.

Рекомендую подробно изучить предметы:
  • Геометрия
  • Аналитическая геометрия
  • Начертательная геометрия
Ещё лекции с примерами решения и объяснением:
  • Площади фигур в геометрии
  • Площади поверхностей геометрических тел
  • Вычисление площадей плоских фигур
  • Преобразование фигур в геометрии
  • Парабола
  • Многогранник
  • Решение задач на вычисление площадей
  • Тела вращения: цилиндр, конус, шар

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

🌟 Видео

Вписанный четырёхугольник | ЕГЭ-2018. Задание 16. Математика. Профильный уровень | Борис ТрушинСкачать

Вписанный четырёхугольник | ЕГЭ-2018. Задание 16. Математика. Профильный уровень | Борис Трушин

МЕРЗЛЯК-8 ГЕОМЕТРИЯ. ОПИСАННАЯ И ВПИСАННАЯ ОКРУЖНОСТИ ЧЕТЫРЁХУГОЛЬНИКА. ПАРАГРАФ-10. ТЕОРИЯСкачать

МЕРЗЛЯК-8 ГЕОМЕТРИЯ. ОПИСАННАЯ И ВПИСАННАЯ ОКРУЖНОСТИ ЧЕТЫРЁХУГОЛЬНИКА. ПАРАГРАФ-10. ТЕОРИЯ

Вписанные и описанные четырехугольники. Практическая часть. 9 класс.Скачать

Вписанные  и описанные четырехугольники. Практическая часть. 9 класс.

Попробуйте решить неправильную задачу! Возможно ли это? | МатематикаСкачать

Попробуйте решить неправильную задачу! Возможно ли это? | Математика

Тема 9. Вписанные и описанные четырехугольникиСкачать

Тема 9. Вписанные и описанные четырехугольники

Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

Вписанные четырехугольники. 9 класс.Скачать

Вписанные четырехугольники. 9 класс.

Как решить любую задачу с четырёхугольниками? | Математика TutorOnlineСкачать

Как решить любую задачу с четырёхугольниками? | Математика TutorOnline

Свойство четырёхугольника, вписанного в окружность, и не только!😉 Задание В4 #цт2020 способ 2Скачать

Свойство четырёхугольника, вписанного в окружность, и не только!😉 Задание В4 #цт2020 способ 2

19 задание. Серия 4. ЕГЭ по математике. Разбор 19 задачи из ЕГЭ 2017, основная волнаСкачать

19 задание. Серия 4. ЕГЭ по математике. Разбор 19 задачи из ЕГЭ 2017, основная волна

Описанная и вписанная окружности четырехугольника - 8 класс геометрияСкачать

Описанная и вписанная окружности четырехугольника - 8 класс геометрия

Задача 6 №27859 ЕГЭ по математике. Урок 104Скачать

Задача 6 №27859 ЕГЭ по математике. Урок 104

ЕГЭ Математика Задание 6#27935Скачать

ЕГЭ Математика Задание 6#27935

Задание 10 ЕГЭ по математике #4Скачать

Задание 10 ЕГЭ по математике #4
Поделиться или сохранить к себе: