Косинус угла между векторами доказательство

Нахождение угла между векторами

Длина вектора, угол между векторами – эти понятия являются естественно-применимыми и интуитивно понятными при определении вектора как отрезка определенного направления. Ниже научимся определять угол между векторами в трехмерном пространстве, его косинус и рассмотрим теорию на примерах.

Для рассмотрения понятия угла между векторами обратимся к графической иллюстрации: зададим на плоскости или в трехмерном пространстве два вектора a → и b → , являющиеся ненулевыми. Зададим также произвольную точку O и отложим от нее векторы O A → = b → и O B → = b →

Углом между векторами a → и b → называется угол между лучами О А и О В .

Полученный угол будем обозначать следующим образом: a → , b → ^

Косинус угла между векторами доказательство

Очевидно, что угол имеет возможность принимать значения от 0 до π или от 0 до 180 градусов.

a → , b → ^ = 0 , когда векторы являются сонаправленными и a → , b → ^ = π , когда векторы противоположнонаправлены.

Векторы называются перпендикулярными, если угол между ними равен 90 градусов или π 2 радиан.

Если хотя бы один из векторов является нулевым, то угол a → , b → ^ не определен.

Видео:Угол между векторами. 9 класс.Скачать

Угол между векторами. 9 класс.

Нахождение угла между векторами

Косинус угла между двумя векторами, а значит и собственно угол, обычно может быть определен или при помощи скалярного произведения векторов, или посредством теоремы косинусов для треугольника, построенного на основе двух данных векторов.

Согласно определению скалярное произведение есть a → , b → = a → · b → · cos a → , b → ^ .

Если заданные векторы a → и b → ненулевые, то можем разделить правую и левую части равенства на произведение длин этих векторов, получая, таким образом, формулу для нахождения косинуса угла между ненулевыми векторами:

cos a → , b → ^ = a → , b → a → · b →

Данная формула используется, когда в числе исходных данных есть длины векторов и их скалярное произведение.

Исходные данные: векторы a → и b → . Длины их равны 3 и 6 соответственно, а их скалярное произведение равно — 9 . Необходимо вычислить косинус угла между векторами и найти сам угол.

Решение

Исходных данных достаточно, чтобы применить полученную выше формулу, тогда cos a → , b → ^ = — 9 3 · 6 = — 1 2 ,

Теперь определим угол между векторами: a → , b → ^ = a r c cos ( — 1 2 ) = 3 π 4

Ответ: cos a → , b → ^ = — 1 2 , a → , b → ^ = 3 π 4

Чаще встречаются задачи, где векторы задаются координатами в прямоугольной системе координат. Для таких случаев необходимо вывести ту же формулу, но в координатной форме.

Длина вектора определяется как корень квадратный из суммы квадратов его координат, а скалярное произведение векторов равно сумме произведений соответствующих координат. Тогда формула для нахождения косинуса угла между векторами на плоскости a → = ( a x , a y ) , b → = ( b x , b y ) выглядит так:

cos a → , b → ^ = a x · b x + a y · b y a x 2 + a y 2 · b x 2 + b y 2

А формула для нахождения косинуса угла между векторами в трехмерном пространстве a → = ( a x , a y , a z ) , b → = ( b x , b y , b z ) будет иметь вид: cos a → , b → ^ = a x · b x + a y · b y + a z · b z a x 2 + a y 2 + a z 2 · b x 2 + b y 2 + b z 2

Исходные данные: векторы a → = ( 2 , 0 , — 1 ) , b → = ( 1 , 2 , 3 ) в прямоугольной системе координат. Необходимо определить угол между ними.

Решение

  1. Для решения задачи можем сразу применить формулу:

cos a → , b → ^ = 2 · 1 + 0 · 2 + ( — 1 ) · 3 2 2 + 0 2 + ( — 1 ) 2 · 1 2 + 2 2 + 3 2 = — 1 70 ⇒ a → , b → ^ = a r c cos ( — 1 70 ) = — a r c cos 1 70

  1. Также можно определить угол по формуле:

cos a → , b → ^ = ( a → , b → ) a → · b → ,

но предварительно рассчитать длины векторов и скалярное произведение по координатам: a → = 2 2 + 0 2 + ( — 1 ) 2 = 5 b → = 1 2 + 2 2 + 3 2 = 14 a → , b → ^ = 2 · 1 + 0 · 2 + ( — 1 ) · 3 = — 1 cos a → , b → ^ = a → , b → ^ a → · b → = — 1 5 · 14 = — 1 70 ⇒ a → , b → ^ = — a r c cos 1 70

Ответ: a → , b → ^ = — a r c cos 1 70

Также распространены задачи, когда заданы координаты трех точек в прямоугольной системе координат и необходимо определить какой-нибудь угол. И тогда, для того, чтобы определить угол между векторами с заданными координатами точек, необходимо вычислить координаты векторов в виде разности соответствующих точек начала и конца вектора.

Исходные данные: на плоскости в прямоугольной системе координат заданы точки A ( 2 , — 1 ) , B ( 3 , 2 ) , C ( 7 , — 2 ) . Необходимо определить косинус угла между векторами A C → и B C → .

Решение

Найдем координаты векторов по координатам заданных точек A C → = ( 7 — 2 , — 2 — ( — 1 ) ) = ( 5 , — 1 ) B C → = ( 7 — 3 , — 2 — 2 ) = ( 4 , — 4 )

Теперь используем формулу для определения косинуса угла между векторами на плоскости в координатах: cos A C → , B C → ^ = ( A C → , B C → ) A C → · B C → = 5 · 4 + ( — 1 ) · ( — 4 ) 5 2 + ( — 1 ) 2 · 4 2 + ( — 4 ) 2 = 24 26 · 32 = 3 13

Ответ: cos A C → , B C → ^ = 3 13

Угол между векторами можно определить по теореме косинусов. Отложим от точки O векторы O A → = a → и O B → = b → , тогда, согласно теореме косинусов в треугольнике О А В , будет верным равенство:

A B 2 = O A 2 + O B 2 — 2 · O A · O B · cos ( ∠ A O B ) ,

b → — a → 2 = a → + b → — 2 · a → · b → · cos ( a → , b → ) ^

и отсюда выведем формулу косинуса угла:

cos ( a → , b → ) ^ = 1 2 · a → 2 + b → 2 — b → — a → 2 a → · b →

Для применения полученной формулы нам нужны длины векторов, которые несложно определяются по их координатам.

Хотя указанный способ имеет место быть, все же чаще применяют формулу:

Видео:Нахождение угла между векторами через координаты. 9 класс.Скачать

Нахождение угла между векторами  через координаты. 9 класс.

Скалярное произведение векторов

Косинус угла между векторами доказательство

О чем эта статья:

11 класс, ЕГЭ/ОГЭ

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Видео:Угол между векторами | МатематикаСкачать

Угол между векторами | Математика

Основные определения

Система координат — способ определить положение и перемещение точки или тела с помощью чисел или других символов.

Координаты — это совокупность чисел, которые определяют положение какого-либо объекта на прямой, плоскости, поверхности или в пространстве. Как найти координаты точки мы рассказали в этой статье.

Скаляр — это величина, которая полностью определяется в любой координатной системе одним числом или функцией.

Вектор — направленный отрезок прямой, для которого указано, какая точка является началом, а какая — концом.

Косинус угла между векторами доказательство

Вектор с началом в точке A и концом в точке B принято обозначать как →AB. Векторы также можно обозначать малыми латинскими буквами со стрелкой или черточкой над ними, вот так: →a.

Скалярное произведение — это операция над двумя векторами, результатом которой является скаляр, то есть число, которое не зависит от выбора системы координат.

Результат операции является число. То есть при умножении вектор на вектор получается число. Если длины векторов |→a|, |→b| — это числа, косинус угла — число, то их произведение |→a|*|→b|*cos∠(→a, →b) тоже будет числом.

Чтобы разобраться в теме этой статьи, нам еще нужно узнать особенности угла между векторами.

Видео:Геометрия 9 класс (Урок№18 - Угол между векторами. Скалярное произведение векторов.)Скачать

Геометрия 9 класс (Урок№18 - Угол между векторами. Скалярное произведение векторов.)

Угол между векторами

Угол между векторами ∠(→a, →b) может принимать значения от 0° до 180° градусов включительно. Аналитически это можно записать в виде двойного неравенства: 0°=

2. Если угол между векторами равен 90°, то такие векторы перпендикулярны друг другу.

Косинус угла между векторами доказательство

3. Если векторы направлены в разные стороны, тогда угол между ними 180°.

Косинус угла между векторами доказательство

Также векторы могут образовывать тупой угол. Это выглядит так:

Косинус угла между векторами доказательство

Видео:Как находить угол между векторамиСкачать

Как находить угол между векторами

Скалярное произведение векторов

Определение скалярного произведения можно сформулировать двумя способами:

Скалярное произведение двух векторов a и b дает в результате скалярную величину, которая равна сумме попарного произведения координат векторов a и b.

Скалярным произведением двух векторов a и b будет скалярная величина, равная произведению модулей этих векторов, умноженная на косинус угла между ними:

→a * →b = →|a| * →|b| * cosα

Косинус угла между векторами доказательство

  • Алгебраическая интерпретация.
  • Что важно запомнить про геометрическую интерпретацию скалярного произведения:

    • Если угол между векторами острый и векторы ненулевые, то скалярное произведение положительно, то есть cosα > 0. Косинус угла между векторами доказательство
    • Если угол между векторами тупой и векторы ненулевые, то скалярное произведение отрицательно, так как cosα

    Видео:Косинус угла между векторами. Коллинеарность векторовСкачать

    Косинус угла между векторами.  Коллинеарность векторов

    Скалярное произведение в координатах

    Вычисление скалярного произведения можно произвести через координаты векторов в заданной плоскости или в пространстве.

    Скалярным произведением двух векторов на плоскости или в трехмерном пространстве в прямоугольной системе координат называется сумма произведений соответствующих координат векторов →a и →b.

    То есть для векторов →a = (ax, ay), →b = (bx, by) на плоскости в прямоугольной декартовой системе координат формула для вычисления скалярного произведения имеет вид: (→a, →b) = ax*bx + ay*by

    А для векторов →a = (ax, ay, az), →b = (bx, by, bz) в трехмерном пространстве скалярное произведение в координатах находится так: (→a, →b) = ax*bx + ay*by + az*bz

    Докажем это определение:



      Сначала докажем равенства
      Косинус угла между векторами доказательство

    для векторов →a = (ax, ay), →b = (bx, by) на плоскости, заданных в прямоугольной декартовой системе координат.

    Отложим от начала координат (точка О) векторы →OB = →b = (bx, by) и →OA = →a = (ax, ay)

    Тогда, →AB = →OB — →OA = →b — →a = (bx — ax, by — ay)

    Будем считать точки О, А и В вершинами треугольника ОАВ. По теореме косинусов можно записать:
    Косинус угла между векторами доказательство

    Косинус угла между векторами доказательство

    то последнее равенство можно переписать так:

    Косинус угла между векторами доказательство

    а по первому определению скалярного произведения имеем

    Косинус угла между векторами доказательство

    Косинус угла между векторами доказательство

  • Вспомнив формулу вычисления длины вектора по координатам, получаем
    Косинус угла между векторами доказательство
  • Абсолютно аналогично доказывается справедливость равенств (→a, →b) = |→a|*|→b|*cos(→a, →b) = ax*bx + ay*by + ax*bz для векторов →a = (ax, ay, az), →b = (bx, by, bz), заданных в прямоугольной системе координат трехмерного пространства.
  • Формула скалярного произведения векторов в координатах позволяет заключить, что скалярный квадрат вектора равен сумме квадратов всех его координат: на плоскости (→a, →a) = ax2 + ay2 в пространстве (→a, →a) = ax2 + ay2 + az2.
  • Записывайтесь на наши курсы по математике для учеников с 1 по 11 классы!

    Видео:Урок 3. Произведение векторов и загадочный угол между векторами. Высшая математика | TutorOnlineСкачать

    Урок 3. Произведение векторов и загадочный угол между векторами. Высшая математика | TutorOnline

    Формулы скалярного произведения векторов заданных координатами

    Формула скалярного произведения векторов для плоских задач

    В плоской задаче скалярное произведение векторов a = и b = можно найти по формуле:

    a * b = ax * bx + ay * by

    Формула скалярного произведения векторов для пространственных задач

    В пространственной задаче скалярное произведение векторов a = и b = можно найти по формуле:

    a * b = ax * bx + ay * by + az * bz

    Формула скалярного произведения n-мерных векторов

    В n-мерном пространстве скалярное произведение векторов a = и b = можно найти по формуле:

    a * b = a1 * b1 + a2 * b2 + . + an * bn

    Видео:18+ Математика без Ху!ни. Скалярное произведение векторов. Угол между векторами.Скачать

    18+ Математика без Ху!ни. Скалярное произведение векторов. Угол между векторами.

    Свойства скалярного произведения

    Свойства скалярного произведения векторов:



      Скалярное произведение вектора самого на себя всегда больше или равно нулю. В результате получается нуль, если вектор равен нулевому вектору.

    →0 * →0 = 0

    Скалярное произведение вектора самого на себя равно квадрату его модуля:

    →a * →a = →∣∣a∣∣2

    Операция скалярного произведения коммуникативна, то есть соответствует переместительному закону:

    →a * →b = →b * →a

    Операция скалярного умножения дистрибутивна, то есть соответствует распределительному закону:

    (→a + →b) * →c = →a * →c + →b * →c

    Сочетательный закон для скалярного произведения:

    (k * →a) * →b = k * (→a * →b)

    Если скалярное произведение двух ненулевых векторов равно нулю, то эти векторы ортогональны, то есть перпендикулярны друг другу:

    a ≠ 0, b ≠ 0, a * b = 0 a ┴ b

    Эти свойства очень легко обосновать, если отталкиваться от определения скалярного произведения в координатной форме и от свойств операций сложения и умножения действительных чисел.

    Для примера докажем свойство коммутативности скалярного произведения (→a, →b) = (→b, →a)

    По определению (→a, →b) = ax*bx + ay*by и (→b, →a) = bx*ax + by*ay. В силу свойства коммутативности операции умножения действительных чисел, справедливо ax*bx = bx*ax b ay*by = by*ay, тогда ax*bx + ay*by = bx*ax + by*ay.

    Следовательно, (→a, →b) = (→b, →a), что и требовалось доказать.

    Аналогично доказываются остальные свойства скалярного произведения.

    Следует отметить, что свойство дистрибутивности скалярного произведения справедливо для любого числа слагаемых, то есть,

    Косинус угла между векторами доказательство

    Косинус угла между векторами доказательство

    Косинус угла между векторами доказательство

    Видео:100 тренировочных задач #135 Угол между векторамиСкачать

    100 тренировочных задач #135 Угол между векторами

    Примеры вычислений скалярного произведения

    Пример 1.

    Вычислите скалярное произведение двух векторов →a и →b, если их длины равны 3 и 7 единиц соответственно, а угол между ними равен 60 градусам.

    У нас есть все данные, чтобы вычислить скалярное произведение по определению:

    (→a,→b) = →|a| * →|b| * cos(→a,→b) = 3 * 7 cos60° = 3 * 7 * 1/2 = 21/2 = 10,5.

    Ответ: (→a,→b) = 21/2 = 10,5.

    Пример 2.

    Найти скалярное произведение векторов →a и →b, если →|a| = 2, →|b| = 5, ∠(→a,→b) = π/6.

    Используем формулу →a * →b = →|a| * →|b| * cosα.

    В данном случае:

    →a * →b = →|a| * →|b| * cosα = 2 * 5 * cosπ/6 = 10 * √3/2 = 5√3

    Пример 3.

    Как найти скалярное произведение векторов →a = 7*→m + 3*→n и →b = 5*→m + 8*→n, если векторы →m и →n перпендикулярны и их длины равны 3 и 2 единицы соответственно.

    Косинус угла между векторами доказательство

    По свойству дистрибутивности скалярного произведения имеем

    Косинус угла между векторами доказательство

    Сочетательное свойство позволяет нам вынести коэффициенты за знак скалярного произведения:

    Косинус угла между векторами доказательство

    В силу свойства коммутативности последнее выражение примет вид

    Косинус угла между векторами доказательство

    Итак, после применения свойств скалярного произведения имеем

    Косинус угла между векторами доказательство

    Осталось применить формулу для вычисления скалярного произведения через длины векторов и косинус угла между ними:

    Косинус угла между векторами доказательство

    Пример 4.

    В правильной треугольной призме ABCA1B1C1, все ребра которой равны 1, найти косинус угла между прямыми AB1 и BC1.

    Косинус угла между векторами доказательство



      Введем систему координат.
      Косинус угла между векторами доказательство

    Если сделать выносной рисунок основания призмы, получим понятный плоскостной рисунок с помощью которого можно легко найти координаты всех интересующих точек.

    Косинус угла между векторами доказательство

  • Точка А имеет координаты (0;0;0). Точка С — (1;0;0). Точка В — (1/2;√3/2;0). Тогда точка В1 имеет координаты (1/2;√3/2;1), а точка С1 – (1;0;1).
  • Найдем координаты векторов →AB1 и →BC1:
    Косинус угла между векторами доказательство
  • Найдем длины векторов →AB1 и →BC1:
    Косинус угла между векторами доказательство
  • Найдем скалярное произведение векторов →AB1 и →BC1:
    Косинус угла между векторами доказательство
  • Найдем косинус угла между прямыми AB1 и BC1:
    Косинус угла между векторами доказательство
  • Пример 5.

    а) Проверить ортогональность векторов: →a(1; 2; -4) и →b(6; -1; 1) .

    б) Выяснить, будут ли перпендикулярными отрезки KL и MN, если K(3;5), L(-2;0), M(8;-1), N(1;4).

    а) Выясним, будут ли ортогональны пространственные векторы. Вычислим их скалярное произведение: →ab = 1*6 + 2*(-1) + (-4)*1 = 0, следовательно

    Косинус угла между векторами доказательство

    б) Здесь речь идёт об обычных отрезках плоскости, а задача всё равно решается через векторы. Найдем их: →KL(-2-3; 0-5) = →KL(-5; -5), →MN(1-8; 4-(-1)) = →MN(-7;5)

    Вычислим их скалярное произведение: →KL*→MN = -5*(-7) + (-5)*5 = 10 ≠ 0, значит, отрезки KL и MN не перпендикулярны.

    Обратите внимание на два существенных момента:

    • В данном случае нас не интересует конкретное значение скалярного произведения, важно, что оно не равно нулю.
    • В окончательном выводе подразумевается, что если векторы не ортогональны, значит, соответствующие отрезки тоже не будут перпендикулярными. Геометрически это очевидно, поэтому можно сразу записывать вывод об отрезках, что они не перпендикулярны.

    Ответ: а) →a перпендикулярно →b, б) отрезки KL, MN не перпендикулярны.

    Пример 6.

    Даны три вершины треугольника A(-1; 0), B(3; 2), C(5; -4). Найти угол при вершине B — ∠ABC.

    По условию чертеж выполнять не требуется, но для удобства можно сделать:

    Косинус угла между векторами доказательство

    Требуемый угол ∠ABC помечен зеленой дугой. Сразу вспоминаем школьное обозначение угла: ∠ABC — особое внимание на среднюю букву B — это и есть нужная нам вершина угла. Для краткости можно также записать просто ∠B.

    Из чертежа видно, что угол ∠ABC треугольника совпадает с углом между векторами →BA и →BC, иными словами: ∠ABC = ∠(→BA; →BC).

    Косинус угла между векторами доказательство

    Вычислим скалярное произведение:

    Косинус угла между векторами доказательство

    Вычислим длины векторов:

    Косинус угла между векторами доказательство

    Найдем косинус угла:

    Косинус угла между векторами доказательство

    Когда такие примеры не будут вызывать трудностей, можно начать записывать вычисления в одну строчку:

    Косинус угла между векторами доказательство

    Полученное значение не является окончательным, поэтому нет особого смысла избавляться от иррациональности в знаменателе.

    Найдём сам угол:

    Косинус угла между векторами доказательство

    Если посмотреть на чертеж, то результат действительно похож на правду. Для проверки угол также можно измерить и транспортиром.

    Ответ: ∠ABC = arccos(1/5√2) ≈1,43 рад. ≈ 82°

    Важно не перепутать, что в задаче спрашивалось про угол треугольника, а не про угол между векторами. Поэтому указываем точный ответ: arccos(1/5√2) и приближенное значение угла: ≈1,43 рад. ≈ 82°, которое легко найти с помощью калькулятора.

    А те, кому мало и хочется еще порешать, могут вычислить углы ∠A, ∠C, и убедиться в справедливости канонического равенства ∠A + ∠B + ∠C = 180°.

    Видео:11 класс, 5 урок, Угол между векторамиСкачать

    11 класс, 5 урок, Угол между векторами

    Геометрия. 11 класс

    Конспект урока

    Геометрия, 11 класс

    Урок № 2. Скалярное произведение векторов

    Перечень вопросов, рассматриваемых в теме:

    — ввести понятие угла между векторами и скалярного произведения векторов, рассмотреть формулу скалярного произведения в координатах;

    — показать применение скалярного произведения векторов при решение задач.

    — рассмотреть основные свойства скалярного произведения;

    — сформировать умения вычислять скалярное произведение векторов и находить угол между векторами;

    — показать, как используется скалярное произведение векторов при решении задач на вычисление углов между двумя прямыми, а также между прямой и плоскостью.

    Глоссарий по теме:

    Два вектора называются перпендикулярными, если угол между ними равен 90°.

    Скалярным произведением двух векторов называется число, равное произведению длин этих векторов на косинус угла между ними.

    Формула вычисления скалярного произведения векторов по определению: Косинус угла между векторами доказательство

    Формула вычисления скалярного произведения векторов через координаты: Косинус угла между векторами доказательство

    Гусева В.А., Куланин Е.Д. Геометрия. Профильный уровень. 10 класс — М.: Бином, 2010 — с. 130-148

    Погорелов А.В. Геометрия. Учеб. для 7-11 кл. общеобразоват. Учреждение — 13-е изд-е. — М.: Просвещение, 2014. — с. 51-52

    Атанасян Л.С., Бутузов В.Ф. и др. Геометрия. 7-9 кл. 20-е изд-е. — М.: Просвещение, 2010. — с. 259-270.

    Открытые электронные ресурсы:

    Решу ЕГЭ образовательный портал для подготовки к экзаменам https://ege.sdamgia.ru/

    Теоретический материал для самостоятельного изучения

    Работа по теме урока. Объяснение новой темы

    Угол между векторами

    Если векторы не являются сонаправленными, то лучи ОА и ОB образуют угол АОВ.

    Косинус угла между векторами доказательствоКосинус угла между векторами доказательство

    Косинус угла между векторами доказательство

    Определение: Два вектора называются перпендикулярными, если угол между ними равен 90°.

    Скалярное произведение векторов:

    Определение: Скалярным произведением двух векторов называется число, равное произведению длин этих векторов на косинус угла между ними. Запишем формулу:

    Косинус угла между векторами доказательство

    Утверждение1. Скалярное произведение ненулевых векторов равно нулю тогда и только тогда, когда эти векторы перпендикулярны.

    Утверждение2. Скалярный квадрат вектора Косинус угла между векторами доказательстворавен квадрату его длины. Косинус угла между векторами доказательство

    Формула скалярного произведения двух векторов Косинус угла между векторами доказательствои Косинус угла между векторами доказательство

    Через их координаты Косинус угла между векторами доказательство

    Скалярное произведение двух векторов равно сумме произведений соответствующих координат этих векторов.

    Косинус угла между векторами доказательствоКосинус угла между векторами доказательство

    Угол между векторами.

    Косинус угла между векторами пространства Косинус угла между векторами доказательство, заданными в ортонормированном базисе Косинус угла между векторами доказательство, выражается формулой:
    Косинус угла между векторами доказательство

    Сформулируем основные свойства скалярного произведения векторов.

    Для любых векторов Косинус угла между векторами доказательствои любого числа k справедливы равенства:

    1) Косинус угла между векторами доказательствопричем Косинус угла между векторами доказательствопри Косинус угла между векторами доказательство

    2) Косинус угла между векторами доказательство(переместительный закон).

    3) Косинус угла между векторами доказательство(распределительный закон).

    4) Косинус угла между векторами доказательство(сочетательный закон).

    Вычисление углов между прямыми и плоскостями.

    Угол между двумя прямыми (пересекающимися или скрещивающимися), если известны координаты направляющих векторов.

    Косинус угла между векторами доказательство

    Примеры и разбор решения заданий тренировочного модуля

    Дано: Косинус угла между векторами доказательствопрямоугольный параллелепипед, где Косинус угла между векторами доказательство. Найти Косинус угла между векторами доказательствои Косинус угла между векторами доказательство.

    Решение: ранее в таких случаях мы пытались по рисунку находить величины углов.

    Но теперь мы владеем формулой косинуса угла между прямыми.

    Косинус угла между векторами доказательство

    Косинус угла между векторами доказательствоТолько для этого необходимо знать координаты направляющих векторов прямых. В данном случае, для прямой BD направляющим может является вектор BD , а для прямой
    CD — CD вектор (рис. 15)

    Для удобства изобразим прямоугольную систему координат так, чтобы точка B совпадала с точкой начала координат. Взяв длину рёбер AB и BC за единичные отрезки, можно утверждать, что длина отрезка BB равна 2.

    Тогда не трудно определить координаты точек B, D, C и D1.

    Точка B(0;0;0). Точка D(1;1;0). Точка C(0;1;0) . А точка D (1;1;2).

    Теперь не трудно найти координаты векторовBD и CD как разности соответствующих координат конца и начала вектора.

    Получаем, что вектор BD . А вектор

    Теперь можем воспользоваться формулой косинуса угла между прямыми. Подставим координаты направляющих векторов.

    Косинус угла между векторами доказательство

    Ответ: Косинус угла между векторами доказательство

    Найдите: косинус угла между прямыми DC и CM (СМ – высота треугольника АВС), поставьте ему в соответствие верный вариант ответа из предложенных ниже:

    Косинус угла между векторами доказательство

    Косинус угла между векторами доказательство

    Треугольник АВС правильный, поэтому тоска М является серединой стороны АВ.

    Введем систему координат как показано на рисунке.

    Найдем координаты векторов Косинус угла между векторами доказательство

    Косинус угла между векторами доказательство

    Косинус угла между векторами доказательство

    Применив формулу косинуса угла между векторами, получим Косинус угла между векторами доказательство.

    Ответ: Косинус угла между векторами доказательство

    🔍 Видео

    Математика без Ху!ни. Угол между векторами, применение скалярного произведения.Скачать

    Математика без Ху!ни. Угол между векторами, применение скалярного произведения.

    Скалярное произведение векторов. 9 класс.Скачать

    Скалярное произведение векторов. 9 класс.

    Задача 3. Найти косинус угла между векторами.Скачать

    Задача 3. Найти косинус угла между векторами.

    Угол между векторамиСкачать

    Угол между векторами

    ТЕОРЕМА СИНУСОВ И ТЕОРЕМА КОСИНУСОВ. Тригонометрия | МатематикаСкачать

    ТЕОРЕМА СИНУСОВ И ТЕОРЕМА КОСИНУСОВ. Тригонометрия | Математика

    Косинус угла между векторами в пространстве - 10 классСкачать

    Косинус угла между векторами в пространстве - 10 класс

    Вычисляем угол через координаты вершинСкачать

    Вычисляем угол через координаты вершин

    Вычислить синус угла между векторамиСкачать

    Вычислить синус угла между векторами

    ГЕОМЕТРИЯ 11 класс : Угол между векторами. Скалярное произведение векторовСкачать

    ГЕОМЕТРИЯ 11 класс : Угол между векторами. Скалярное произведение векторов

    Угол между векторамиСкачать

    Угол между векторами
    Поделиться или сохранить к себе: