Координаты вектора комплексные числа

Комплексные числа
Координаты вектора комплексные числаАлгебраическая форма записи комплексных чисел
Координаты вектора комплексные числаСложение, вычитание и умножение комплексных чисел, записанных в алгебраической форме
Координаты вектора комплексные числаКомплексно сопряженные числа
Координаты вектора комплексные числаМодуль комплексного числа
Координаты вектора комплексные числаДеление комплексных чисел, записанных в алгебраической форме
Координаты вектора комплексные числаИзображение комплексных чисел радиус-векторами на координатной плоскости
Координаты вектора комплексные числаАргумент комплексного числа
Координаты вектора комплексные числаТригонометрическая форма записи комплексного числа
Координаты вектора комплексные числаФормула Эйлера. Экспоненциальная форма записи комплексного числа
Координаты вектора комплексные числаУмножение, деление и возведение в натуральную степень комплексных чисел, записанных в экспоненциальной форме
Координаты вектора комплексные числаИзвлечение корня натуральной степени из комплексного числа

Координаты вектора комплексные числа

Видео:Изображение комплексных чисел. Модуль комплексного числа. 11 класс.Скачать

Изображение комплексных чисел. Модуль комплексного числа. 11 класс.

Алгебраическая форма записи комплексных чисел

Пусть x и y — произвольные вещественные числа.

Множеством комплексных чисел называют множество всевозможных пар (x, y) вещественных чисел, на котором определены операции сложения, вычитания и умножения по правилам, описанным чуть ниже.

Множество комплексных чисел является расширением множества вещественных чисел, поскольку множество вещественных чисел содержится в нём в виде пар (x, 0) .

Комплексные числа, заданные парами (0, y) , называют чисто мнимыми числами .

Для комплексных чисел существует несколько форм записи: алгебраическая форма записи, тригонометрическая форма записи и экспоненциальная (показательная) форма записи .

Алгебраическая форма — это такая форма записи комплексных чисел, при которой комплексное число z, заданное парой вещественных чисел (x, y) , записывается в виде

z = x + i y .(1)

где использован символ i , называемый мнимой единицей .

Число x называют вещественной (реальной) частью комплексного числа z = x + i y и обозначают Re z .

Число y называют мнимой частью комплексного числа z = x + i y и обозначают Im z .

Комплексные числа, у которых Im z = 0 , являются вещественными числами .

Комплексные числа, у которых Re z = 0 , являются чисто мнимыми числами .

Тригонометрическая и экспоненциальная формы записи комплексных чисел будут изложены чуть позже.

Видео:Координаты вектора. 9 класс.Скачать

Координаты вектора. 9 класс.

Сложение, вычитание и умножение комплексных чисел, записанных в алгебраической форме

Умножение комплексных чисел z1 = x1 + i y1 и z2 = x2 + i y2 , так же, как и операции сложения и вычитания, осуществляется по правилам умножения двучленов (многочленов), однако при этом учитывается важнейшее равенство, имеющее вид:

i 2 = – 1 .(2)

По этой причине

Видео:КОМПЛЕКСНЫЕ ЧИСЛА ДЛЯ ЧАЙНИКОВ ЗА 7 МИНУТСкачать

КОМПЛЕКСНЫЕ ЧИСЛА ДЛЯ ЧАЙНИКОВ ЗА 7 МИНУТ

Комплексно сопряженные числа

Два комплексных числа z = x + iy и Координаты вектора комплексные числау которых вещественные части одинаковые, а мнимые части отличаются знаком, называются комплексно сопряжёнными числами .

Операция перехода от комплексного числа к комплексно сопряженному с ним числу называется операцией комплексного сопряжения , обозначается горизонтальной чертой над комплексным числом и удовлетворяет следующим свойствам:

Координаты вектора комплексные числаКоординаты вектора комплексные числа
Координаты вектора комплексные числаКоординаты вектора комплексные числа
Координаты вектора комплексные числаКоординаты вектора комплексные числа
Координаты вектора комплексные числаКоординаты вектора комплексные числа
Координаты вектора комплексные числаКоординаты вектора комплексные числа

Видео:10 класс, 33 урок, Комплексные числа и координатная плоскостьСкачать

10 класс, 33 урок, Комплексные числа и координатная плоскость

Модуль комплексного числа

Модулем комплексного числа z = x + i y называют вещественное число, обозначаемое | z | и определенное по формуле

Координаты вектора комплексные числа

Для произвольного комплексного числа z справедливо равенство:

Координаты вектора комплексные числа

а для произвольных комплексных чисел z1 и z2 справедливы неравенства:

Координаты вектора комплексные числаКоординаты вектора комплексные числа
Координаты вектора комплексные числаКоординаты вектора комплексные числа
Координаты вектора комплексные числаКоординаты вектора комплексные числа
Координаты вектора комплексные числаКоординаты вектора комплексные числа

Замечание . Если z — вещественное число, то его модуль | z | равен его абсолютной величине.

Видео:Координаты вектора в пространстве. 11 класс.Скачать

Координаты вектора  в пространстве. 11 класс.

Деление комплексных чисел, записанных в алгебраической форме

Деление комплексного числа z1 = x1 + i y1 на отличное от нуля комплексное число z2 = x2 + i y2 осуществляется по формуле

Координаты вектора комплексные числа

Координаты вектора комплексные числа

Координаты вектора комплексные числа

Используя обозначения модуля комплексного числа и комплексного сопряжения, частное от деления комплексных чисел можно представить в следующем виде:

Координаты вектора комплексные числа

Деление на нуль запрещено.

Видео:Математика это не ИсламСкачать

Математика это не Ислам

Изображение комплексных чисел радиус-векторами координатной плоскости

Рассмотрим плоскость с заданной на ней прямоугольной декартовой системой координат Oxy и напомним, что радиус-вектором на плоскости называют вектор, начало которого совпадает с началом системы координат.

Назовем рассматриваемую плоскость комплексной плоскостью , и будем представлять комплексное число z = x + i y радиус–вектором с координатами (x , y).

Координаты вектора комплексные числа

Назовем ось абсцисс Ox вещественной осью , а ось ординат Oy – мнимой осью .

При таком представлении комплексных чисел сумме комплексных чисел соответствует сумма радиус-векторов, а произведению комплексного числа на вещественное число соответствует произведение радиус–вектора на это число.

Видео:Математика без Ху!ни. Комплексные числа, часть 1. Введение.Скачать

Математика без Ху!ни. Комплексные числа, часть 1. Введение.

Аргумент комплексного числа

Рассмотрим радиус–вектор произвольного, но отличного от нуля, комплексного числа z .

Аргументом комплексного числа z называют угол φ между положительным направлением вещественной оси и радиус-вектором z .

Аргумент комплексного числа z считают положительным, если поворот от положительного направления вещественной оси к радиус-вектору z происходит против часовой стрелки, и отрицательным — в случае поворота по часовой стрелке (см. рис.).

Координаты вектора комплексные числа

Считается, что комплексное число нуль аргумента не имеет.

Поскольку аргумент любого комплексного числа определяется с точностью до слагаемого 2kπ , где k — произвольное целое число, то вводится, главное значение аргумента , обозначаемое arg z и удовлетворяющее неравенствам:

Координаты вектора комплексные числа

Тогда оказывается справедливым равенство:

Координаты вектора комплексные числа

Если для комплексного числа z = x + i y нам известны его модуль r = | z | и его аргумент φ , то мы можем найти вещественную и мнимую части по формулам

Координаты вектора комплексные числа(3)

Если же комплексное число z = x + i y задано в алгебраической форме, т.е. нам известны числа x и y , то модуль этого числа, конечно же, определяется по формуле

Координаты вектора комплексные числа(4)

а аргумент определяется в соответствии со следующей Таблицей 1.

Для того, чтобы не загромождать запись, условимся, не оговаривая этого особо, символом k обозначать в Таблице 1 произвольное целое число.

Таблица 1. – Формулы для определения аргумента числа z = x + i y

y z

Расположение
числа z
Знаки x и yГлавное значение аргументаАргументПримеры
Положительная
вещественная
полуось
0φ = 2kπКоординаты вектора комплексные числа
Первый
квадрант
Координаты вектора комплексные числаКоординаты вектора комплексные числаКоординаты вектора комплексные числа
Положительная
мнимая
полуось
Координаты вектора комплексные числаКоординаты вектора комплексные числаКоординаты вектора комплексные числа
Второй
квадрант
Координаты вектора комплексные числаКоординаты вектора комплексные числаКоординаты вектора комплексные числа
Отрицательная
вещественная
полуось
Положительная
вещественная
полуось
Знаки x и y
Главное
значение
аргумента
0
Аргументφ = 2kπ
ПримерыКоординаты вектора комплексные числа
Расположение
числа z
Первый
квадрант
Знаки x и y
Главное
значение
аргумента
Координаты вектора комплексные числа
АргументКоординаты вектора комплексные числа
ПримерыКоординаты вектора комплексные числа
Расположение
числа z
Положительная
мнимая
полуось
Знаки x и y
Главное
значение
аргумента
Координаты вектора комплексные числа
АргументКоординаты вектора комплексные числа
ПримерыКоординаты вектора комплексные числа
Расположение
числа z
Второй
квадрант
Знаки x и y
Главное
значение
аргумента
Координаты вектора комплексные числа
АргументКоординаты вектора комплексные числа
ПримерыКоординаты вектора комплексные числа

x z

x z

y z

Положительная вещественная полуось

Главное значение аргумента:

Координаты вектора комплексные числа

Расположение числа z :

Главное значение аргумента:

Координаты вектора комплексные числа

Координаты вектора комплексные числа

Координаты вектора комплексные числа

Расположение числа z :

Положительная мнимая полуось

Главное значение аргумента:

Координаты вектора комплексные числа

Координаты вектора комплексные числа

Координаты вектора комплексные числа

Расположение числа z :

Главное значение аргумента:

Координаты вектора комплексные числа

Координаты вектора комплексные числа

Координаты вектора комплексные числа

Расположение числа z :

Отрицательная вещественная полуось

Отрицательная мнимая полуось

x z = x + i y может быть записано в виде

Расположение
числа z
Отрицательная
вещественная
полуось
Знаки x и yТретий
квадрант
Знаки x и yОтрицательная
мнимая
полуось
Знаки x и yЧетвёртый
квадрант
Знаки x и y
z = r (cos φ + i sin φ) ,(5)

где r и φ — модуль и аргумент этого числа, соответственно, причем модуль удовлетворяет неравенству r > 0 .

Запись комплексного числа в форме (5) называют тригонометрической формой записи комплексного числа .

Видео:Тригонометрическая форма комплексного числаСкачать

Тригонометрическая форма комплексного числа

Формула Эйлера. Экспоненциальная форма записи комплексного числа

В курсе «Теория функций комплексного переменного», который студенты изучают в высших учебных заведениях, доказывается важная формула, называемая формулой Эйлера :

cos φ + i sin φ = e iφ .(6)

Из формулы Эйлера (6) и тригонометрической формы записи комплексного числа (5) вытекает, что любое отличное от нуля комплексное число z = x + i y может быть записано в виде

z = r e iφ ,(7)

где r и φ — модуль и аргумент этого числа, соответственно, причем модуль удовлетворяет неравенству r > 0 .

Запись комплексного числа в форме (7) называют экспоненциальной (показательной) формой записи комплексного числа .

Из формулы (7) вытекают, в частности, следующие равенства:

Координаты вектора комплексные числа

Координаты вектора комплексные числа

а из формул (4) и (6) следует, что модуль комплексного числа

или, что то же самое, числа e iφ , при любом значении φ равен 1.

Видео:Координаты точки и координаты вектора 1.Скачать

Координаты точки и координаты вектора 1.

Умножение, деление и возведение в натуральную степень комплексных чисел, записанных в экспоненциальной форме

Экспоненциальная запись комплексного числа очень удобна для выполнения операций умножения, деления и возведения в натуральную степень комплексных чисел.

Действительно, умножение и деление двух произвольных комплексных чисел Координаты вектора комплексные числаи Координаты вектора комплексные числазаписанных в экспоненциальной форме, осуществляется по формулам

Координаты вектора комплексные числа

Координаты вектора комплексные числа

Таким образом, при перемножении комплексных чисел их модули перемножаются, а аргументы складываются.

При делении двух комплексных чисел модуль их частного равен частному их модулей, а аргумент частного равен разности аргументов делимого и делителя.

Возведение комплексного числа z = r e iφ в натуральную степень осуществляется по формуле

Координаты вектора комплексные числа

Другими словами, при возведении комплексного числа в степень, являющуюся натуральным числом, модуль числа возводится в эту степень, а аргумент умножается на показатель степени.

Видео:2. Геометрическая интерпретация комплексных чисел. Модуль и аргумент комплексного числаСкачать

2. Геометрическая интерпретация комплексных чисел. Модуль и аргумент комплексного числа

Извлечение корня натуральной степени из комплексного числа

Пусть Координаты вектора комплексные числа— произвольное комплексное число, отличное от нуля.

Корнем n — ой степени из числа z0 , где Координаты вектора комплексные числаназывают такое комплексное число z = r e iφ , которое является решением уравнения

z n = z0 .(8)

Для того, чтобы решить уравнение (8), перепишем его в виде

Координаты вектора комплексные числа

и заметим, что два комплексных числа, записанных в экспоненциальной форме, равны тогда и только тогда, когда их модули равны, а разность аргументов равна 2kπ , где k — произвольное целое число. По этой причине справедливы равенства

Координаты вектора комплексные числа

следствием которых являются равенства

Координаты вектора комплексные числа(9)

Из формул (9) вытекает, что уравнение (8) имеет n различных корней

Координаты вектора комплексные числа(10)

Координаты вектора комплексные числа

Координаты вектора комплексные числа

причем на комплексной плоскости концы радиус-векторов zk при k = 0 , . , n – 1 располагаются в вершинах правильного n — угольника, вписанного в окружность радиуса Координаты вектора комплексные числас центром в начале координат.

Замечание . В случае n = 2 уравнение (8) имеет два различных корня z1 и z2 , отличающихся знаком:

Пример 1 . Найти все корни уравнения

Координаты вектора комплексные числа

то по формуле (10) получаем:

Координаты вектора комплексные числа

Координаты вектора комплексные числа

Координаты вектора комплексные числа

Пример 2 . Решить уравнение

Решение . Поскольку дискриминант этого квадратного уравнения отрицателен, то вещественных корней оно не имеет. Для того, чтобы найти комплексные корни, выделим, как и в вещественном случае, полный квадрат:

Видео:Математика без Ху!ни. Комплексные числа, часть 3. Формы записи. Возведение в степень.Скачать

Математика без Ху!ни. Комплексные числа, часть 3. Формы записи. Возведение в степень.

Комплексные числа и операции с ними

DSPL-2.0 — свободная библиотека алгоритмов цифровой обработки сигналов

Распространяется под лицензией LGPL v3

Известно, что область определения некоторых функций на множестве вещественных чисел ограничена. Например функция определена для , аналогично можно вспомнить, что функция определена для 0″/>, а функция определена для .

Однако, ограниченная область определения функций на множестве вещественных чисел не означает, что , или не имеют смысла. Ограниченная область определения функций на множестве вещественных чисел говорит лишь о том, что не может быть представлено вещественным числом. Действительно, среди вещественных чисел не найти такого числа , квадрат которого был бы равен .

При решении квадратных уравнений часто возникает ситуация, когда дискриминант отрицательный. В этом случае это означает что парабола не пересекает прямую абсцисс ни в одной точке. Другими словами, корни квадратного уравнения не существуют среди вещественных значений и их также надо искать за пределами вещественных чисел.

Все бесконечное множество вещественных чисел можно представить в виде одной числовой прямой (смотри рисунок 1), на которой мы можем откладывать рациональные и иррациональные вещественные числа. Но на этой прямой нет числа , значит его надо искать вне числовой прямой. Таким образом мы должны расширить множество вещественных чисел до множества в котором значения , или уже не бессмысленны, а являются такими же обычными числами в этом расширенном множестве, как на множестве вещественных чисел.

Естественным расширением числовой прямой является плоскость, которую называют комплексной плоскостью. Числовая прямая вещественных чисел и ее расширение до комплексной плоскости показано на рисунке 1. Любая точка на комплексной плоскости определяет одно комплексное число. Например на рисунке 1 показано число .

Координаты вектора комплексные числа

Значение вещественного числа однозначно определяет его позицию на числовой прямой, однако для определения позиции на плоскости одного числа недостаточно.

Для «навигации» по комплексной плоскости вводятся две прямые и , которые пересекаются в начале координат. Прямая это числовая прямая, называемая реальной осью, на которой лежат все вещественные числа. Прямая называется мнимой осью и она перпендикулярна реальной оси . Оси и делят комплексную плоскость на четверти, как это показано на рисунке 1.

Любая точка комплексной плоскости задается двумя координатами и по осям и соответственно. При этом само комплексное число можно записать как , где называется реальной частью и задает координату точки комплексной плоскости на вещественной прямой , а называется мнимой частью и задает координату точки комплексной плоскости на мнимой оси .

Для того чтобы отделить одну координату от другой (реальную и мнимую части) вводят число , называемое мнимой единицей. Это так раз то число, которого не существует на множестве действительных чисел. Оно обладает особым свойством: . Тогда комплексное число может не только перемещаться по вещественной прямой вправо и влево, но и двигаться по комплексной плоскости потому что мы добавили ему слагаемое с мнимой единицей .

Мнимую единицу в математической литературе принято обозначать как , но в технике буква уже закреплена за обозначением электрического тока, поэтому чтобы избежать путаницы мы будем обозначать мнимую единицу буквой .

Если и , тогда число является действительным и располагается на реальной оси .

Если и , тогда число является чисто мнимым и располагается на мнимой оси .

Если и , тогда число располагается в одной из четвертей комплексной плоскости.

Представление комплексного числа как называют алгебраической формой записи. Если из начала координат комплексной плоскости к точке восстановить вектор (смотри рисунок 1), то можно вычислить длину этого вектора как

Связь реальной и мнимой частей комплексного числа с его амплитудой и фазой представлено следующим выражением:

Видео:9 класс, 2 урок, Координаты вектораСкачать

9 класс, 2 урок, Координаты вектора

Координаты вектора комплексные числа

VII .1. Формы записи комплексных чисел и действия над ними

Комплексным числом называется выражение вида z = x + iy , (7.1)

где x и y – действительные числа, а i так называемая мнимая единица. Соотношение для мнимой единицы

Если x =0, то число 0+ iy = iy называется чисто мнимым; если y =0, то число x + i 0= x отождествляется с действительным числом x , а это означает, что множество R всех действительных чисел является подмножеством множества C всех комплексных чисел, то есть Координаты вектора комплексные числа .

Число x называется действительной частью комплексного числа z и обозначается x = Re z , а yмнимой частью комплексного числа z и обозначается y = Im z .

Понятия «больше» и «меньше» для комплексных чисел не вводятся.

Числа z = x + iy и Координаты вектора комплексные числа называются комплексно сопряженными.

Всякое комплексное число z = x + iy можно изобразить точкой M ( x ; y ) плоскости x 0 y такой, что x = Re z , y = Im z . Верно и обратное: каждую точку M ( x ; y ) координатной плоскости можно рассматривать как образ комплексного числа z = x + iy (рис. 7.1).

Координаты вектора комплексные числа

Комплексное число z = x + iy можно задавать с помощью радиус-вектора Координаты вектора комплексные числа . Длина вектора Координаты вектора комплексные числа , изображающего комплексное число z , называется модулем этого числа и обозначается | z | или r . Величина угла между положительным направлением действительной оси и вектором Координаты вектора комплексные числа называется аргументом комплексного числа, обозначается Arg z или φ.

Для комплексного числа z =0 аргумент не определен. Аргумент комплексного числа Координаты вектора комплексные числа – величина многозначная и определяется с точностью до слагаемого k ( k =0;1;1;2;2…): Координаты вектора комплексные числа , где arg zглавное значение аргумента, заключенное в промежутке (–π;π). Иногда в качестве главного значения аргумента берут величину, принадлежащую промежутку [0;2π).

Алгебраической формой комплексного числа называется з апись числа z в виде z = x + iy.

Модуль r и аргумент φ можно рассматривать как полярные координаты вектора Координаты вектора комплексные числа , изображающего комплексное число z = x + iy (см. рис. 7.1). Тогда из соотно­шений сторон в прямоугольном треугольнике получа­ем

Равенство (7.3) есть тригонометрическая форма комплексного числа. Модуль r = |z| однозначно определяется по формуле

Аргумент определяется из формул:

При переходе от алгебраической формы комплексного числа к тригонометрической достаточно определить главное значение аргумента комплексного числа z , то есть считать φ= arg z . Знаки полученных значений cos φ и sin φ по формулам (7.5), дают возможность определить, какой координатной четверти принадлежит угол φ.

Используя формулу Эйлера

комплексное число Координаты вектора комплексные числа можно записать в так назы­ваемой показательной (или экспоненциальной) форме

где r =| z | — модуль комплексного числа, а угол Координаты вектора комплексные числа ( k =0;1;1;2;2…).

Функция e i φ – периодическая с основным пери­одом 2 π, поэтому для записи комплексного числа в показательной форме по формуле 7.7 достаточно найти главное значение его аргумента, то есть считать φ = arg z .

Пример 7.1. Записать комплексные числа Координаты вектора комплексные числа в тригонометрической и показательной формах.

Решение. Для z 1 имеем Координаты вектора комплексные числа . Поэтому Координаты вектора комплексные числа .

Для действительного числа Координаты вектора комплексные числа . Поэтому

Координаты вектора комплексные числа

На множестве комплексны х чисел определен ряд операций.

Координаты вектора комплексные числа

Из равенства (7.9) следует, что геометрически комплексные числа вычитаются как векторы. При этом число z = z 1 z 2 изображается вектором, соединяющим концы векторов Координаты вектора комплексные числа , и исходящим из конца вычитаемого Координаты вектора комплексные числа в конец уменьшаемого Координаты вектора комплексные числа (см. рис. 7.2). Таким образом, модуль разности двух комплексных чисел равен расстоянию d между точками, изображающими эти числа на плоскости:

Из (7.11) следует важнейшее соотношение i 2 = 1. Действительно,

Найдем произведение комплексных чисел Координаты вектора комплексные числа и Координаты вектора комплексные числа . Производя все необходимые выкладки согласно формуле (7.11), получим формулу произведения комплексных чисел, заданных в тригонометрической форме :

Видно, что при умножении комплексных чисел в тригонометрической форме их модули перемножаются, а аргументы складываются. Это правило распространяется на любое конечное число множителей. Нетрудно видеть, что если есть n множителей и все они одинаковые, то частным случаем равенства (7.12) является формула возведения комплексного числа в натуральную степень:

(7.13) называется первой формулой Муавра.

Произведение двух комплексных чисел в показательной (экспоненциальной) форме имеет вид:

4. Частным двух комплексных чисел z 1 и Координаты вектора комплексные числа называется комплексное число z , которое, будучи умноженным на z 2, дает число z 1, то есть Координаты вектора комплексные числа , если Координаты вектора комплексные числа .

Пусть Координаты вектора комплексные числа , тогда с использованием этого определения получаем:

На практике при нахождении частного двух комплексных чисел удобно умножить числитель и знаменатель дроби Координаты вектора комплексные числа на число, сопряженное знаменателю, с дальнейшим применением равенства i 2 = 1 и формулы разности квадратов.

Деление комплексных чисел осуществляется также и в тригонометрической форме, при этом имеет место формула:

Видно, что при делении комплексных чисел их модули делятся, а аргументы вычитаются соответственно.

Частное двух комплексных чисел в показательной (экспоненциальной) форме имеет вид:

Пример 7.2. Найти сумму, разность, произведение и частное комплексных чисел Координаты вектора комплексные числа .

Решение. По формуле (7.8) сумма заданных чисел равна Координаты вектора комплексные числа .

Согласно формуле (7.9) разность заданных чисел равна Координаты вектора комплексные числа .

Пользуясь формулой (7.11), вычислим их произведение

На основании формулы (7.14) вычислим их частное

Координаты вектора комплексные числа

Пример 7.3. Найти произведение и частное комплексных чисел Координаты вектора комплексные числа , представив их в тригонометрической и показательной форме.

Решение. Используя (7.4) и (7.5), получаем:

Аналогично, для z 2 можно записать:

По формулам (7.12) и (7.16) получим в тригонометрической форме:

Координаты вектора комплексные числа

Пользуясь формулами (7.14) и (7.17), получим в показательной форме:

Координаты вектора комплексные числа

5. Извлечение корня n -ой степени – операция, обратная возведению

в натуральную степень, определенному ранее формулой (7.13).

Корнем n -ой степени из комплексного числа z называется комплексное число ω, удовлетворяющее равенству ω n = z , то есть Координаты вектора комплексные числа , если ω n = z .

Пусть Координаты вектора комплексные числа , тогда по данному определению и формуле (7.13) Муавра можно записать: Координаты вектора комплексные числа . Сравнивания части этого равенства, получим: Координаты вектора комплексные числа . Отсюда Координаты вектора комплексные числа (корень арифметический). Окончательно получаем:

(7.18) называется второй формулой Муавра.

Видно, что для любого Координаты вектора комплексные числа корень n -ой степени из комплексного числа z имеет равно n различных значений.

Пример 7.4. Найти все корни уравнения z 4 +16=0.

Решение. Запишем уравнение в виде z 4 =–16+0∙ i . Отсюда по формуле (7.18) получим:

Координаты вектора комплексные числа

Сформулируем несколько иначе основную теорему алгебры 3.2 над полем комплексных чисел .

Теорема 7.1 (основная теорема алгебры). Для всякого многочлена с комплексными коэффициентами

Приведем еще одну теорему, имеющую место над множеством комплексных чисел.

Теорема 7.2. Если многочлен Pn ( x ) с действительными коэффициентами имеет комплексный корень a + ib , то он имеет и сопряженный корень a ib Координаты вектора комплексные числа

В разложение многочлена Координаты вектора комплексные числа комплексные корни входят сопряженными парами. Пусть корни многочлена x 1 = a + ib и x 2 = a – ib . Перемножив линейные множители разложения Координаты вектора комплексные числа , получим трехчлен второй степени с действительными коэффициентами x 2 + px + q и отрицательным дискриминантом. Действительно,

Координаты вектора комплексные числа

Таким образом, произведение линейных множителей, соответствующих сопряженным корням, можно заменить квадратным трехчленом с действительными коэффициентами, а соответствующее квадратное уравнение будет иметь отрицательный дискриминант.

📽️ Видео

Найти модуль и аргумент комплексного числа #maths #complexnumbers #complexanalysis #тфкп #calculusСкачать

Найти модуль и аргумент комплексного числа #maths #complexnumbers #complexanalysis #тфкп  #calculus

Координаты вектора.Скачать

Координаты вектора.

Александр Чирцов про комплексные числа и вектораСкачать

Александр Чирцов про комплексные числа и вектора

Нахождение длины вектора через координаты. Практическая часть. 9 класс.Скачать

Нахождение длины вектора через координаты. Практическая часть. 9 класс.

10 класс, 34 урок, Тригонометрическая форма записи комплексного числаСкачать

10 класс, 34 урок, Тригонометрическая форма записи комплексного числа

Векторы. Метод координат. Вебинар | МатематикаСкачать

Векторы. Метод координат. Вебинар | Математика

Реакция на результаты ЕГЭ 2022 по русскому языкуСкачать

Реакция на результаты ЕГЭ 2022 по русскому языку

Нахождение координат вектора. Практическая часть. 9 класс.Скачать

Нахождение координат вектора. Практическая часть. 9 класс.
Поделиться или сохранить к себе: