Координаты центра окружности примеры

Найти центр и радиус окружности

Если окружность задана уравнением вида

Координаты центра окружности примеры

найти центр (a;b) и радиус R такой окружности несложно.

Определить по уравнению окружности координаты её центра и радиуса:

Координаты центра окружности примеры

Координаты центра окружности примеры

Координаты центра окружности примеры

Координаты центра окружности примеры

Координаты центра окружности примеры

Координаты центра окружности примеры

Таким образом, центр данной окружности — точка (3;7), радиус R=2.

Координаты центра окружности примеры

a=-2, b=5, R²=1. Окружность с центром в точке (-2;5) и радиусом 1.

Координаты центра окружности примеры

Центр окружности — (0;-3), радиус R=3.

Координаты центра окружности примеры

Центр — в точке (6;0), радиус R=√5.

Координаты центра окружности примеры

Это уравнение задаёт окружность с центром в начале координат. Центр — O(0;0), радиус R=√11.

Чтобы найти центр и радиус окружности, заданной уравнением вида

Координаты центра окружности примеры

нужно дополнить его до полных квадратов, чтобы привести к привычному виду.

Для этого сначала сгруппируем слагаемые

Координаты центра окружности примеры

затем прибавим и вычтем квадрат второго слагаемого из формулы квадрата разности (2ax- удвоенное произведение первого слагаемого на второе. Первое — x, второе — a)

Координаты центра окружности примеры

Координаты центра окружности примеры

Координаты центра окружности примеры

При a²+b²-c>0 это уравнение задаёт окружность с радиусом

Координаты центра окружности примеры

При a²+b²-c=0 уравнению удовлетворяют координаты единственной точки (a;b).

При a²+b²-c Координаты центра окружности примеры

Координаты центра окружности примеры

Координаты центра окружности примеры

Координаты центра окружности примеры

Координаты центра окружности примеры

Выделяем в уравнении полные квадраты. В первых скобках удвоенное слагаемое 10x представляем как 10x=2·a·5 (чтобы получить 2ab для формулы a²+2ab+b²=(a+b)²). Получается, что b=5. Если прибавить и вычесть b², результат не изменится:

Координаты центра окружности примеры

Координаты центра окружности примеры

Координаты центра окружности примеры

Координаты центра окружности примеры

Координаты центра окружности примеры

Центром этой окружности является точка (-5;3), радиус R=7.

Координаты центра окружности примеры

Координаты центра окружности примеры

Координаты центра окружности примеры

Координаты центра окружности примеры

Координаты центра окружности примеры

Центр окружности — точка (2,5;0), радиус R=1,5.

Видео:начертить окружность. Привести уравнение окружности к стандартному виду. Координаты центра и радиус.Скачать

начертить окружность. Привести уравнение окружности к стандартному виду. Координаты центра и радиус.

Как найти координаты центр окружности??

Инструкция
1
Аналитически окружность задается уравнением вида (x-x0)²+(y-y0)²=R², где x0 и y0 − координаты центра окружности, R − ее радиус. Итак, центр окружности (x0;y0) здесь задан в явном виде.
2
Пример. Установите центр фигуры, заданной в декартовой системе координат уравнением (x-2)²+(y-5)²=25.
Решение. Данное уравнение является уравнением окружности. Ее центр имеет координаты (2;5). Радиус такой окружности равен 5.
3
Уравнение x²+y²=R² соответствует окружности с центром в начале координат, то есть, в точке (0;0). Уравнение (x-x0)²+y²=R² означает, что центр окружности имеет координаты (x0;0) и лежит на оси абсцисс. Вид уравнения x²+(y-y0)²=R² говорит о расположении центра с координатами (0;y0) на оси ординат.
4
Общее уравнение окружности в аналитической геометрии запишется как: x²+y²+Ax+By+C=0. Чтобы привести такое уравнение к выше обозначенному виду, надо сгруппировать члены и выделить полные квадраты: [x²+2(A/2)x+(A/2)²]+[y²+2(B/2)y+(B/2)²]+C-(A/2)²-(B/2)²=0. Для выделения полных квадратов, как можно заметить, требуется добавлять дополнительные величины: (A/2)² и (B/2)². Чтобы знак равенства сохранялся, эти же величины надо вычесть. Прибавление и вычитание одного и того же числа не меняет уравнения.
5
Таким образом, получается: [x+(A/2)]²+[y+(B/2)]²=(A/2)²+(B/2)²-C. Из этого уравнения уже видно, что x0=-A/2, y0=-B/2, R=√[(A/2)²+(B/2)²-C]. Кстати, выражение для радиуса можно упростить. Домножьте обе части равенства R=√[(A/2)²+(B/2)²-C] на 2. Тогда: 2R=√[A²+B²-4C]. Отсюда R=1/2·√[A²+B²-4C].
6
Окружность не может быть графиком функции в декартовой системе координат, так как, по определению, в функции каждому x соответствует единственное значение y, а для окружности таких «игреков» будет два. Чтобы убедиться в этом, проведите перпендикуляр к оси Ox, пересекающий окружность. Вы увидите, что точек пересечения две.
7
Но окружность можно представить как объединение двух функций: y=y0±√[R²-(x-x0)²]. Здесь x0 и y0, соответственно, представляют собой искомые координаты центра окружности. При совпадении центра окружности с началом координат объединение функций принимает вид: y=√[R²-x²].

Видео:Уравнение окружности (1)Скачать

Уравнение окружности (1)

Декартовы координаты точек плоскости. Уравнение окружности

Координаты центра окружности примерыЧисловая ось
Координаты центра окружности примерыПрямоугольная декартова система координат на плоскости
Координаты центра окружности примерыФормула для расстояния между двумя точками координатной плоскости
Координаты центра окружности примерыУравнение окружности на координатной плоскости

Координаты центра окружности примеры

Видео:Найти центр и радиус окружностиСкачать

Найти центр и радиус окружности

Числовая ось

Определение 1 . Числовой осью ( числовой прямой, координатной прямой ) Ox называют прямую линию, на которой точка O выбрана началом отсчёта (началом координат) (рис.1), направление

указано в качестве положительного направления и отмечен отрезок, длина которого принята за единицу длины.

Координаты центра окружности примеры

Координаты центра окружности примеры

Определение 2 . Отрезок, длина которого принята за единицу длины, называют масштабом .

Каждая точка числовой оси имеет координату , являющуюся вещественным числом. Координата точки O равна нулю. Координата произвольной точки A , лежащей на луче Ox , равна длине отрезка OA . Координата произвольной точки A числовой оси, не лежащей на луче Ox , отрицательна, а по абсолютной величине равна длине отрезка OA .

Видео:УРАВНЕНИЕ ОКРУЖНОСТИСкачать

УРАВНЕНИЕ ОКРУЖНОСТИ

Прямоугольная декартова система координат на плоскости

Определение 3 . Прямоугольной декартовой системой координат Oxy на плоскости называют две взаимно перпендикулярных числовых оси Ox и Oy с одинаковыми масштабами и общим началом отсчёта в точке O , причём таких, что поворот от луча Ox на угол 90° до луча Oy осуществляется в направлении против хода часовой стрелки (рис.2).

Координаты центра окружности примеры

Координаты центра окружности примеры

Замечание . Прямоугольную декартову систему координат Oxy , изображённую на рисунке 2, называют правой системой координат , в отличие от левых систем координат , в которых поворот луча Ox на угол 90° до луча Oy осуществляется в направлении по ходу часовой стрелки. В данном справочнике мы рассматриваем только правые системы координат, не оговаривая этого особо.

Если на плоскости ввести какую-нибудь систему прямоугольных декартовых координат Oxy , то каждая точка плоскости приобретёт две координатыабсциссу и ординату, которые вычисляются следующим образом. Пусть A – произвольная точка плоскости. Опустим из точки A перпендикуляры AA1 и AA2 на прямые Ox и Oy соответственно (рис.3).

Координаты центра окружности примеры

Координаты центра окружности примеры

Определение 4 . Абсциссой точки A называют координату точки A1 на числовой оси Ox , ординатой точки A называют координату точки A2 на числовой оси Oy .

Обозначение . Координаты (абсциссу и ординату) точки A в прямоугольной декартовой системе координат Oxy (рис.4) принято обозначать A (x ; y) или A = (x ; y).

Координаты центра окружности примеры

Координаты центра окружности примеры

Замечание . Точка O , называемая началом координат , имеет координаты O (0 ; 0) .

Определение 5 . В прямоугольной декартовой системе координат Oxy числовую ось Ox называют осью абсцисс , а числовую ось Oy называют осью ординат (рис. 5).

Определение 6 . Каждая прямоугольная декартова система координат делит плоскость на 4 четверти ( квадранта ), нумерация которых показана на рисунке 5.

Координаты центра окружности примеры

Координаты центра окружности примеры

Определение 7 . Плоскость, на которой задана прямоугольная декартова система координат, называют координатной плоскостью .

Замечание . Ось абсцисс задаётся на координатной плоскости уравнением y = 0 , ось ординат задаётся на координатной плоскости уравнением x = 0.

Видео:9 класс, 6 урок, Уравнение окружностиСкачать

9 класс, 6 урок, Уравнение окружности

Формула для расстояния между двумя точками координатной плоскости

Утверждение 1 . Расстояние между двумя точками координатной плоскости

вычисляется по формуле

Координаты центра окружности примеры

Доказательство . Рассмотрим рисунок 6.

Координаты центра окружности примеры

Координаты центра окружности примеры

| A1A2| 2 =
= ( x2x1) 2 + ( y2y1) 2 .
(1)

Координаты центра окружности примеры

что и требовалось доказать.

Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

Уравнение окружности на координатной плоскости

Координаты центра окружности примеры

Координаты центра окружности примеры

Поскольку расстояние от любой точки окружности до центра равно радиусу, то, в соответствии с формулой (1), получаем:

Уравнение (2) и есть искомое уравнение окружности радиуса R с центром в точке A0 (x0 ; y0) .

Следствие . Уравнение окружности радиуса R с центром в начале координат имеет вид

💡 Видео

Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачиСкачать

Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачи

№578. Найдите координаты центра и радиус сферы, заданной уравнением: а) х2+y2+z2 = 49; б) (x — 3)2Скачать

№578. Найдите координаты центра и радиус сферы, заданной уравнением: а) х2+y2+z2 = 49; б) (x — 3)2

Координаты и радиус окружностиСкачать

Координаты и радиус окружности

Задание 23 из ОГЭ Построение графиков функций с модулем | МатематикаСкачать

Задание 23 из ОГЭ Построение графиков функций с модулем | Математика

ГЕОМЕТРИЯ 9 класс: Уравнение окружности и прямойСкачать

ГЕОМЕТРИЯ 9 класс: Уравнение окружности и прямой

Coordinates on Circle - Координаты точек окружностиСкачать

Coordinates on Circle - Координаты точек окружности

Самый короткий тест на интеллект Задача Массачусетского профессораСкачать

Самый короткий тест на интеллект Задача Массачусетского профессора

10 класс, 11 урок, Числовая окружностьСкачать

10 класс, 11 урок, Числовая окружность

№967. Напишите уравнение окружности с центром в начале координат, проходящей через точку В (-1; 3).Скачать

№967. Напишите уравнение окружности с центром в начале координат, проходящей через точку В (-1; 3).

Длина окружности. Площадь круга. 6 класс.Скачать

Длина окружности. Площадь круга. 6 класс.

Урок 6. Уравнение окружности. Декартовы координаты. Геометрия 9 класс.Скачать

Урок 6. Уравнение окружности. Декартовы координаты. Геометрия 9 класс.

Осевая симметрия. 6 класс.Скачать

Осевая симметрия. 6 класс.

Найти центр кругаСкачать

Найти центр круга

Как найти центр и радиус нарисованной окружности #математика #егэ2023 #школа #fyp #shortsСкачать

Как найти центр и радиус нарисованной окружности #математика #егэ2023 #школа #fyp #shorts
Поделиться или сохранить к себе: