Когда треугольник считается равносторонним

Свойства равностороннего треугольника: теория и пример задачи

В данной статье мы рассмотрим определение и свойства равностороннего (правильного) треугольника. Также разберем пример решения задачи для закрепления теоретического материала.

Видео:Всякий равносторонний треугольник является равнобедренным. | ОГЭ 2017 | ЗАДАНИЕ 13 | ШКОЛА ПИФАГОРАСкачать

Всякий равносторонний треугольник является равнобедренным. | ОГЭ 2017 | ЗАДАНИЕ 13 | ШКОЛА ПИФАГОРА

Определение равностороннего треугольника

Равносторонним (или правильным) называется треугольник, в котором все стороны имеют одинаковую длину. Т.е. AB = BC = AC.

Когда треугольник считается равносторонним

Примечание: правильный многоугольник – это выпуклый многоугольник, имеющий равные стороны и углы между ними.

Видео:Равнобедренный треугольник. Свойства равнобедренного треугольника | Математика | TutorOnlineСкачать

Равнобедренный треугольник. Свойства равнобедренного треугольника | Математика | TutorOnline

Свойства равностороннего треугольника

Свойство 1

В равностороннем треугольнике все углы равны 60°. Т.е. α = β = γ = 60°.

Когда треугольник считается равносторонним

Свойство 2

В равностороннем треугольнике высота, проведенная к любой из сторон, одновременно является биссектрисой угла, из которого она проведена, а также медианой и серединным перпендикуляром.

Когда треугольник считается равносторонним

CD – медиана, высота и серединный перпендикуляр к стороне AB, а также биссектриса угла ACB.

Свойство 3

В равностороннем треугольнике биссектрисы, медианы, высоты и серединные перпендикуляры, проведенные ко всем сторонам, пересекаются в одной точке.

Когда треугольник считается равносторонним

Свойство 4

Центры вписанной и описанной вокруг равностороннего треугольника окружностей совпадают и находятся на пересечении медиан, высот, биссектрис и серединных перпендикуляров.

Когда треугольник считается равносторонним

Свойство 5

Радиус описанной вокруг равностороннего треугольника окружности в 2 раза больше радиуса вписанной окружности.

Когда треугольник считается равносторонним

  • R – радиус описанной окружности;
  • r – радиус вписанной окружности;
  • R = 2r.

Свойство 6

В равностороннем треугольнике, зная длину стороны (условно примем ее за “a”), можно вычислить:

1. Высоту/медиану/биссектрису:
Когда треугольник считается равносторонним

2. Радиус вписанной окружности:
Когда треугольник считается равносторонним

3. Радиус описанной окружности:
Когда треугольник считается равносторонним

4. Периметр:
Когда треугольник считается равносторонним

5. Площадь:
Когда треугольник считается равносторонним

Видео:7 класс, 18 урок, Свойства равнобедренного треугольникаСкачать

7 класс, 18 урок, Свойства равнобедренного треугольника

Пример задачи

Дан равносторонний треугольник, сторона которого равна 7 см. Найдите радиус описанной вокруг и вписанной окружности, а также, высоту фигуры.

Решение
Применим формулы, приведеные выше, для нахождения неизвестных величин:

Видео:Равносторонний треугольник в окружностиСкачать

Равносторонний треугольник в окружности

Признаки равностороннего треугольника

Как определить, что треугольник — равносторонний? Это можно сделать, использовав либо определение, либо признаки равностороннего треугольника.

По определению, треугольник равносторонний, если все его стороны равны.

Признаки равностороннего треугольника

1) Если у треугольника все углы равны, то этот треугольник — равносторонний.

Когда треугольник считается равносторонним

то треугольник ABC — равносторонний.

2) Если у треугольника совпадают проведённые к двум сторонам

— медиана и высота

— биссектриса и высота

— медиана и биссектриса,

то этот треугольник — равносторонний.

Когда треугольник считается равносторонним

Если AK и BF (или AK и CD, или BF и CD)

— медианы и высоты

— или биссектрисы и высоты

— или медианы и биссектрисы,

то треугольник ABC — равносторонний.

3) Если у треугольника центр вписанной и описанной окружностей совпадают, то этот треугольник — равносторонний.

Когда треугольник считается равностороннимЕсли точка O для треугольника ABC —

Видео:Известна биссектриса равностороннего треугольника. Найти сторону этого треугольника. ОГЭ №16Скачать

Известна биссектриса равностороннего треугольника. Найти сторону этого треугольника. ОГЭ №16

Треугольник равносторонний: свойства, признаки, площадь, периметр

В школьном курсе геометрии огромное количество времени уделяется изучению треугольников. Ученики вычисляют углы, строят биссектрисы и высоты, выясняют, чем фигуры отличаются друг от друга, и как проще всего найти их площадь и периметр. Кажется, что это никак не пригодится в жизни, но иногда все-таки полезно узнать, например, как определить, что треугольник равносторонний или тупоугольный. Как же это сделать?

Видео:Высота, биссектриса, медиана. 7 класс.Скачать

Высота, биссектриса, медиана. 7 класс.

Типы треугольников

Три точки, которые не лежат на одной прямой, и отрезки, которые их соединяют. Кажется, что эта фигура — самая простая. Какими могут быть треугольники, если у них всего три стороны? На самом деле вариантов довольно большое количество, и некоторым из них уделяется особое внимание в рамках школьного курса геометрии. Правильный треугольник — равносторонний, то есть все его углы и стороны равны. Он обладает рядом примечательных свойств, о которых речь пойдет дальше.

У равнобедренного равны только две стороны, и он также довольно интересен. У прямоугольного и тупоугольного треугольников, как несложно догадаться, соответственно, один из углов прямой или тупой. При этом они также могут равнобедренными.

Когда треугольник считается равносторонним

Существует и особый вид треугольника, называемый египетским. Его стороны равны 3, 4 и 5 единицам. При этом он является прямоугольным. Считается, что такой треугольник активно использовался египетскими землемерами и архитекторами для построения прямых углов. Есть мнение, что с его помощью были возведены знаменитые пирамиды.

И все-таки все вершины треугольника могут лежать на одной прямой. В этом случае он будет называться вырожденным, в то время как все остальные — невырожденными. Именно они и являются одним из предметов изучения геометрии.

Видео:Геометрия 7 класс (Урок№13 - Равнобедренный треугольник.)Скачать

Геометрия 7 класс (Урок№13 - Равнобедренный треугольник.)

Треугольник равносторонний

Разумеется, правильные фигуры вызывают всегда наибольший интерес. Они кажутся более совершенными, более изящными. Формулы вычисления их характеристик зачастую проще и короче, чем для обычных фигур. Это относится и к треугольникам. Неудивительно, что при изучении геометрии им уделяется достаточно много внимания: школьников учат отличать правильные фигуры от остальных, а также рассказывают о некоторых их интересных характеристиках.

Видео:Формулы равностороннего треугольника #shortsСкачать

Формулы равностороннего треугольника #shorts

Признаки и свойства

Как нетрудно догадаться из названия, каждая сторона равностороннего треугольника равна двум другим. Кроме того, он обладает рядом признаков, благодаря которым можно определить, правильная ли фигура или нет.

  • все его углы равны, их величина составляет 60 градусов;
  • биссектрисы, высоты и медианы, проведенные из каждой вершины, совпадают;
  • правильный треугольник имеет 3 оси симметрии, он не изменяется при повороте на 120 градусов.
  • центр вписанной окружности также является центром описанной окружности и точкой пересечения медиан, биссектрис, высот и срединных перпендикуляров.

Когда треугольник считается равносторонним

Если наблюдается хотя бы один из вышеперечисленных признаков, то треугольник — равносторонний. Для правильной фигуры справедливы все упомянутые утверждения.

Все треугольники обладают рядом примечательных свойств. Во-первых, средняя линия, то есть отрезок, делящий две стороны пополам и параллельный третьей, равна половине основания. Во-вторых, сумма всех углов этой фигуры всегда равна 180 градусам. Кроме того, в треугольниках наблюдается еще одна любопытная взаимосвязь. Так, против большей стороны лежит больший угол и наоборот. Но это, конечно, к равностороннему треугольнику отношения не имеет, ведь у него все углы равны.

Видео:Окружность вписана в равносторонний треугольник, найти радиусСкачать

Окружность вписана в равносторонний треугольник, найти радиус

Вписанные и описанные окружности

Нередко в курсе геометрии учащиеся также изучают то, как фигуры могут взаимодействовать друг с другом. В частности, изучаются окружности, вписанные в многоугольники или описанные около них. О чем идет речь?

Вписанной называют такую окружность, для которой все стороны многоугольника являются касательными. Описанной — ту, которая имеет точки соприкосновения со всеми углами. Для каждого треугольника всегда можно построить как первую, так и вторую окружность, но только одну каждого вида. Доказательства двух этих

Когда треугольник считается равносторонним

Помимо вычисления параметров самих треугольников, некоторые задачи также подразумевают расчет радиусов этих окружностей. И формулы применительно к
равностороннему треугольнику выглядят следующим образом:

где r — радиус вписанной окружности, R — радиус описанной окружности, a — длина стороны треугольника.

Видео:Всякий равносторонний треугольник является остроугольным. | ОГЭ 2017 | ЗАДАНИЕ 13 | ШКОЛА ПИФАГОРАСкачать

Всякий равносторонний треугольник является остроугольным. | ОГЭ 2017 | ЗАДАНИЕ 13 | ШКОЛА ПИФАГОРА

Вычисление высоты, периметра и площади

Основные параметры, вычислением которых занимаются школьники во время изучения геометрии, остаются неизменными практически для любых фигур. Это периметр, площадь и высота. Для простоты расчетов существуют различные формулы.

Когда треугольник считается равносторонним

P = 3a = 3√ ̅3R = 6√ ̅3r, где a — сторона правильного треугольника, R — радиус описанной окружности, r — вписанной.

h = (√ ̅3/2)*a, где a — длина стороны.

Наконец, формула площади равностороннего треугольника выводится из стандартной, то есть произведения половины основания на его высоту.

S = (√ ̅3/4)*a 2 , где a — длина стороны.

Также эта величина может быть вычислена через параметры описанной или вписанной окружности. Для этого также существуют специальные формулы:

S = 3√ ̅3r 2 = (3√ ̅3/4)*R 2 , где r и R — соответственно радиусы вписанной и описанной окружностей.

Видео:Площадь треугольника. Как найти площадь треугольника?Скачать

Площадь треугольника. Как найти площадь треугольника?

Построение

Еще один интересный тип задач, касающийся в том числе и треугольников, связан с необходимостью начертить ту или иную фигуру, используя минимальный набор

Когда треугольник считается равносторонним

Для того чтобы построить правильный треугольник с помощью только этих приспособлений, необходимо выполнить несколько шагов.

  1. Нужно начертить окружность с любым радиусом и с центром в произвольно взятой точке А. Ее необходимо отметить.
  2. Далее нужно провести прямую через эту точку.
  3. Пересечения окружности и прямой необходимо обозначить как В и С. Все построения должны проводиться с максимально возможной точностью.
  4. Далее надо построить еще одну окружность с тем же радиусом и центром в точке С или дугу с соответствующими параметрами. Места пересечения будут обозначены как D и F.
  5. Точки B, F, D необходимо соединить отрезками. Равносторонний треугольник построен.

Решение подобных задач обычно представляет для школьников проблему, но это умение может пригодиться и в обычной жизни.

🎬 Видео

7 фактов про равносторонний треугольникСкачать

7 фактов про равносторонний треугольник

Геометрия Равносторонний треугольникСкачать

Геометрия  Равносторонний треугольник

Как построить равнобедренный или равносторонний треугольник по клеткам.Скачать

Как построить равнобедренный или равносторонний треугольник по клеткам.

Равносторонний треугольникСкачать

Равносторонний треугольник

Площадь равностороннего треугольникаСкачать

Площадь равностороннего треугольника

№225. Докажите, что каждый угол равностороннего треугольника равен 60°.Скачать

№225. Докажите, что каждый угол равностороннего треугольника равен 60°.

Равнобедренный треугольник. 7 класс.Скачать

Равнобедренный треугольник. 7 класс.

НАЙДИТЕ ВЫСОТУ РАВНОСТОРОННЕГО ТРЕУГОЛЬНИКАСкачать

НАЙДИТЕ ВЫСОТУ РАВНОСТОРОННЕГО ТРЕУГОЛЬНИКА

Задание 15 ОГЭ. Медиана равностороннего треугольникаСкачать

Задание 15 ОГЭ. Медиана равностороннего треугольника
Поделиться или сохранить к себе: