Касательная к вектору скорости

Кинематика материальной точки

Касательная к вектору скорости

Видео:10 класс, 43 урок, Уравнение касательной к графику функцииСкачать

10 класс, 43 урок, Уравнение касательной к графику функции

Основные формулы кинематики материальной точки

Приведем основные формулы кинематики материальной точки. После чего дадим их вывод и изложение теории.

Радиус-вектор материальной точки M в прямоугольной системе координат Oxyz :
,
где – единичные векторы (орты) в направлении осей x, y, z .

Скорость точки:
;
;
;
Единичный вектор в направлении касательной к траектории точки:
.
Вектор можно выбрать двумя способами во взаимно противоположных направлениях. Обычно его выбирают в направлении увеличения дуговой координаты. Тогда, наряду с модулем скорости , вводят алгебраическую величину скорости . При , вектор скорости сонаправлен с . При – имеет противоположное с направление.

Касательная к вектору скоростиСкорость и ускорение точки M

Тангенциальное (касательное) ускорение:
;
;
.
Здесь, как и для скорости, – это алгебраическое касательное ускорение, . Если , то вектор касательного ускорения сонаправлен с . При – имеет противоположное с направление.

Единичный вектор, направленный к центру кривизны траектории точки (вдоль главной нормали):
.

Радиус кривизны траектории:
.

Далее приводится вывод этих формул и изложение теории кинематики материальной точки.

Видео:Уравнение касательной в точке. Практическая часть. 1ч. 10 класс.Скачать

Уравнение касательной в точке. Практическая часть. 1ч. 10 класс.

Радиус-вектор и траектория точки

Рассмотрим движение материальной точки M . Выберем неподвижную прямоугольную систему координат Oxyz с центром в некоторой неподвижной точке O . Тогда положение точки M однозначно определяются ее координатами ( x, y, z ) . Эти координаты являются компонентами радиус-вектора материальной точки.

Радиус-вектор точки M – это вектор , проведенный из начала неподвижной системы координат O в точку M .
,
где – единичные векторы в направлении осей x, y, z .

При движении точки, координаты изменяются со временем . То есть они являются функциями от времени . Тогда систему уравнений
(1)
можно рассматривать как уравнение кривой, заданной параметрическими уравнениями. Такая кривая является траекторией точки.

Траектория материальной точки – это линия, вдоль которой происходит движение точки.

Если движение точки происходит в плоскости, то можно выбрать оси и системы координат так, чтобы они лежали в этой плоскости. Тогда траектория определяется двумя уравнениями

В некоторых случаях, из этих уравнений можно исключить время . Тогда уравнение траектории будет иметь зависимость вида:
,
где – некоторая функция. Эта зависимость содержит только переменные и . Она не содержит параметр .

Видео:Касательная к графику функции в точке. 10 класс.Скачать

Касательная к графику функции в точке. 10 класс.

Скорость материальной точки

Согласно определению скорости и определению производной:

Производные по времени, в механике, обозначают точкой над символом. Подставим сюда выражение для радиус-вектора:
,
где мы явно обозначили зависимость координат от времени. Получаем:

,
где
,
,

– проекции скорости на оси координат. Они получаются дифференцированием по времени компонент радиус-вектора
.

Таким образом
.
Модуль скорости:
.

Касательная к траектории

С математической точки зрения, систему уравнений (1) можно рассматривать как уравнение линии (кривой), заданной параметрическими уравнениями. Время , при таком рассмотрении, играет роль параметра. Из курса математического анализа известно, что направляющий вектор для касательной к этой кривой имеет компоненты:
.
Но это есть компоненты вектора скорости точки. То есть скорость материальной точки направлена по касательной к траектории.

Касательная к вектору скорости

Все это можно продемонстрировать непосредственно. Пусть в момент времени точка находится в положении с радиус-вектором (см. рисунок). А в момент времени – в положении с радиус-вектором . Через точки и проведем прямую . По определению, касательная – это такая прямая , к которой стремится прямая при .
Введем обозначения:
;
;
.
Тогда вектор направлен вдоль прямой .

При стремлении , прямая стремится к касательной , а вектор – к скорости точки в момент времени :
.
Поскольку вектор направлен вдоль прямой , а прямая при , то вектор скорости направлен вдоль касательной .
То есть вектор скорости материальной точки направлен вдоль касательной к траектории.

Введем направляющий вектор касательной единичной длины:
.
Покажем, что длина этого вектора равна единице. Действительно, поскольку
, то:
.

Здесь мы направили вектор по направлению к вектору скорости, поскольку это более удобно. Но могут возникнуть случаи, когда точка останавливается и движется по той же траектории в обратном направлении. Чтобы не вводить для одной и той же точки траектории два единичных касательных вектора, нужно охватить случай, когда направлен противоположно скорости. Для этого вводят алгебраическую величину скорости:
.
Если направления векторов и совпадают, то . Если они противоположны, то .
– это проекция скорости на направление единичного вектора . Она равна скалярному произведению этих векторов:
.

Абсолютную величину (модуль) вектора скорости мы обозначаем символом с прямыми скобками, или символом без стрелки:
;
Алгебраическая величина скорости:
.

Тогда вектор скорости точки можно представить в следующем виде:
.

Видео:Скорость и наклон касательнойСкачать

Скорость и наклон касательной

Ускорение материальной точки

Аналогично предыдущему, получаем компоненты ускорения (проекции ускорения на оси координат):
;
;
;
.
Модуль ускорения:
.

Тангенциальное (касательное) и нормальное ускорения

Теперь рассмотрим вопрос о направлении вектора ускорения по отношению к траектории. Для этого применим формулу:
.
Дифференцируем ее по времени, применяя правило дифференцирования произведения:
.

Вектор направлен по касательной к траектории. В какую сторону направлена его производная по времени ?

Чтобы ответить на этот вопрос, воспользуемся тем, что длина вектора постоянна и равна единице. Тогда квадрат его длины тоже равен единице:
.
Здесь и далее, два вектора в круглых скобках обозначают их скалярное произведение. Продифференцируем последнее уравнение по времени:
;
;
.
Поскольку скалярное произведение векторов и равно нулю, то эти векторы перпендикулярны друг другу. Так как вектор направлен по касательной к траектории, то вектор перпендикулярен к касательной.

Касательная к вектору скоростиСкорость, касательное и нормальное ускорение точки M

Первую компоненту называют тангенциальным или касательным ускорением:
.
Вторую компоненту называют нормальным ускорением:
.
Тогда полное ускорение:
(2) .
Эта формула представляет собой разложение ускорения на две взаимно перпендикулярные компоненты – касательную к траектории и перпендикулярную к ней.

Тангенциальное (касательное) ускорение

Также как и для скорости, введем алгебраическую величину вектора касательного ускорения :
.
Если , то вектор касательного ускорения сонаправлен с . Если , то эти векторы противоположны. Абсолютную величину касательного ускорения будем обозначать прямыми скобками: . Тогда
.

Умножим обе части уравнения (2) скалярно на :
.
Поскольку , то . Тогда
;
.
Здесь мы положили: .
Отсюда видно, что алгебраическая величина тангенциального ускорения равна проекции полного ускорения на направление касательной к траектории. Она также равна производной по времени алгебраической величины скорости точки: .

Подставив , имеем:
.
Здесь мы учли, что .

Найдем производную по времени модуля скорости . Применяем правила дифференцирования:

;
.

Итак,
.
Отсюда следует, что если между векторами ускорения и скорости острый угол: , то движение ускоренное. Абсолютное значение скорости возрастает. Если между ними тупой угол: , то движение замедленное. Абсолютное значение скорости убывает.

Выразим ускорение через тангенциальное и нормальное: , и учтем, что . Получим:
.
Тогда предыдущую формулировку можно выразить посредством тангенциального ускорения. Если векторы касательного ускорения и скорости направлены в одну сторону, то движение ускоренное. Если их направления противоположны, то движение замедленное.

Радиус кривизны траектории

Теперь исследуем вектор .

Касательная к вектору скорости

Рассмотрим вектор в два момента времени – в момент времени t и в момент t 1 . Введем обозначения: . По определению производной:
.
Пусть в момент времени t , точка находится в положении M , а в момент t 1 – в положении M 1 (см. рисунок).

Рассмотрим случай, когда алгебраическая скорость положительна: . То есть направления векторов и совпадают. Тогда точка M 1 находится справа от M . Через точки и проведем плоскости, перпендикулярные векторам и . Пересечение этих плоскостей образует прямую. Она проходит через точку C перпендикулярно плоскости рисунка. MC – это перпендикуляр, опущенный из точки M на эту прямую.

При , точка стремится к точке , а длина отрезка CM стремится к радиусу кривизны траектории ρ . Поскольку и , то угол между отрезками и равен углу между векторами и . Отложим их для наглядности из одного центра.

Абсолютное значение производной:
.
Здесь мы учли, что .

Вектор , как указывалось выше, перпендикулярен . В данном случае он направлен вдоль единичного вектора главной нормали , направленной к центру кривизны C траектории. Поэтому при имеем:
.

Теперь рассмотрим случай, когда алгебраическое значение скорости отрицательно: . В этом случае, вектор скорости противоположен . Получается тот же рисунок, только точка располагается слева от M . В результате абсолютное значение производной остается прежней:
.
Но ее направление меняется на противоположное:
.
Поскольку , то формула сохраняет прежний вид и в этом случае:
.

Нормальное ускорение

Теперь находим нормальное ускорение:
.
Перепишем результат в следующем виде:
,
где ; – единичный вектор в направлении главной нормали траектории – то есть вектор, направленный к мгновенному центру кривизны перпендикулярно касательной к траектории. Поскольку , то также является модулем нормального ускорения. Для него не нужно вводить алгебраическое значение, как мы это делали для скорости и касательного ускорения.
Нормальное ускорение всегда направлено к центру кривизны траектории.

Из формулы (2) имеем:
(4) .
Из формулы (3) находим модуль нормального ускорения:
.

Умножим обе части уравнения (2) скалярно на :
(2) .
.
Поскольку , то . Тогда
;
.
Отсюда видно, что модуль нормального ускорения равен проекции полного ускорения на направление главной нормали.

Выпишем еще раз следующую формулу:
.
Отсюда видно, что нормальное ускорение вызывает изменение направления скорости точки, и оно связано с радиусом кривизны траектории.

Радиус кривизны траектории:
.

И в заключении заметим, что формулу (4) можно переписать в следующем виде:
.
Здесь мы применили формулу для векторного произведения трех векторов:
,
в которую подставили
.

Итак, мы получили:
;
.
Приравняем модули левой и правой частей:
.
Но векторы и взаимно перпендикулярны. Поэтому
.
Тогда
.
Это известная формула из дифференциальной геометрии для кривизны кривой.

Автор: Олег Одинцов . Опубликовано: 09-02-2016 Изменено: 27-01-2020

Видео:Математика Без Ху!ни. Касательная плоскость и нормаль к поверхности.Скачать

Математика Без Ху!ни. Касательная плоскость и нормаль к поверхности.

Касательное и нормальное и полное ускорения движущейся точки.

Определим ускорение точки, когда её движение задано естественным способом. Подставив выражение (6) в формулу (2), получим:

Касательная к вектору скорости.

Касательное ускорение точки характеризует изменение вектора её скорости по величине. Вектор касательного ускорения направлен по касательной к траектории движущейся точки в ту же сторону, что и вектор скорости точки, когда движение точки ускоренное, и в обратную сторону, когда – замедленное. Величина касательного ускорения равна первой производной по времени от величины скорости точки:

Касательная к вектору скорости. (7)

Если касательное ускорение точки равно нулю, то точка движется равномерно.

Нормальное ускорение точки характеризует изменение вектора её скорости по направлению. Вектор нормального ускорения направлен по главной нормали к траектории движущейся точки в сторону вогнутости траектории. Величина нормального ускорения равна отношению квадрата скорости точки к радиусу кривизны её траектории:

Касательная к вектору скорости. (8)

Если нормальное ускорение точки равно нулю, то точка движется прямолинейно.

Читайте также:

  1. III. Когда выгодно рассматривать движение из движущейся системы отсчета (решения двух задач учителем)?
  2. Ordm;. Векторный способ задания движения точки.
  3. Ordm;. Связь между составляющими движениями в сложном движении материальной точки.
  4. P.S. Регистрация означает ваше полное согласие с правилами турнира.
  5. Алгебраическая величина скорости движущейся точки.
  6. В которой читатель впервые встречается с героиней повествования и где он находит полное объяснение тайны дарованного ей имени
  7. В — пигопаги; г — неполное расхождение близнецов.
  8. ВВЕДЕНИЕ В КИНЕМАТИКУ. ВЕКТОРНЫЙ СПОСОБ ЗАДАНИЯ ДВИЖЕНИЯ ТОЧКИ.
  9. Вектор скорости движущейся точки.
  10. Вектор скорости точки.
Касательная к вектору скоростиРис. 14.

Зная касательное и нормальное ускорение точки, её полное ускорение Касательная к вектору скоростиможно построить (рис. 14), как диагональ прямоугольника со сторонами, равными Касательная к вектору скоростиt и Касательная к вектору скоростиn.

Величина полного ускорения точки определяется по теореме Пифагора:

Касательная к вектору скорости.

Полное ускорение точки характеризует изменение вектора скорости этой точки во времени (и по величине и по направлению).

На рис. 14 полное ускорение точки построено для случая её замедленного движения, так как направление векторов скорости и касательного ускорения противоположно.

Дата добавления: 2015-04-15 ; просмотров: 14 ; Нарушение авторских прав

Видео:Лекция 4.1 | Радиус-вектор, скорость и ускорение | Александр Чирцов | ЛекториумСкачать

Лекция 4.1 | Радиус-вектор, скорость и ускорение | Александр Чирцов | Лекториум

Касательное и нормальное ускорения точки в теоретической механике

Касательное и нормальное ускорения точки

Касательное ускорение характеризует изменение в данное мгновение вектора скорости по величине, а нормальное — по направлению

Видео:Что такое касательная | Осторожно, спойлер! | Борис Трушин |Скачать

Что такое касательная | Осторожно, спойлер! | Борис Трушин |

Проекция ускорения на касательную и на нормаль

Если движение точки задано в векторной или в координатной форме, то часто встречается необходимость определить проекции ускорения на касательную и главную нормаль к траектории точки в том ‘ месте, где в данное мгновение находится точка (рис. 91, а).

При естественной форме определения движения точки сначала определяют проекции ускорения на касательную и на нормаль, а затем уже по этим проекциям находят величину и направление полного ускорения точки.

Проекцию ускорения точки на касательную к ее траектории называют касательным ускорением, или тангенциальным ускорением (от латинского слова tangens—касающийся), и обозначают aN.

Проекцию ускорения на нормаль называют нормальным ускорением и обозначают ar.
Часто касательное и нормальное ускорения рассматривают не как проекции, а как составляющие полного ускорения, т. е. как векторные величины. В таком случае над аr и aN ставят стрелку, указывающую на их векторный характер.

Разложение ускорения по касательной и нормали имеет физический смысл: касательная составляющая ускорения направлена по касательной (как и скорость), а потому не может повлиять на направление скорости, но влияет на ее величину; составляющая ускорения по нормали направлена перпендикулярно к скорости, а потому не может повлиять на величину скорости, но влияет на ее направление.
Касательная к вектору скорости

Касательное ускорение равно первой производной от величины скорости по времени:
Касательная к вектору скорости

Видео:Лекция 6.5 | Нормальное и тангенциальное ускорение | Александр Чирцов | ЛекториумСкачать

Лекция 6.5 | Нормальное и тангенциальное ускорение | Александр Чирцов | Лекториум

Касательное ускорение

Пусть точка M движется по траектории, расположенной в плоскости хОу.
Проведем касательную и нормаль к кривой в точке M (рис. 91, б), нанесем на чертеж вектор ускорения Касательная к вектору скороститочки M и его составляющие Касательная к вектору скоростии Касательная к вектору скоростипо координатным осям. Чтобы определить касательное ускорение, надо спроецировать на касательную вектор полного ускорения или найти алгебраическую сумму проекций на касательную составляющих Касательная к вектору скоростии Касательная к вектору скоростиполного ускорения по осям координат. Воспользовавшись вторым из этих способов, спроецируем Касательная к вектору скоростии Касательная к вектору скоростина касательную:

Касательная к вектору скорости

Составляющие ускорения Касательная к вектору скоростии Касательная к вектору скоростинаправлены по координатным осям, а направление касательной совпадает с направлением скорости, поэтому косинусы углов а и β равны направляющим косинусам скорости:

Касательная к вектору скорости(62′)

Касательная к вектору скорости(62»)

Подставляя значения направляющих косинусов, получаем

Касательная к вектору скорости

По формуле (68) удобно вычислять касательное ускорение точки, если ее движение задано в координатной форме уравнениями (58′) и (58″).

Можно дать еще другой изящный вывод формулы (68) тангенциального ускорения, для чего спроецировать на касательную вектор полного ускорения, не раскладывая его предварительно по осям декартовых координат. В самом деле, тангенциальное ускорение равно проекции полного ускорения на касательную (рис. 91, а):

ar = a cos δ,
но угол δ, как внутренний угол треугольника, равен внешнему αа без другого внутреннего αυ, поэтому:

Подставляя сюда вместо направляющих косинусов их выражения (67) n (62′), получим

Касательная к вектору скорости

Напомним, что в числителе этой формулы проекции имеют свой знак, а знаменатель определяется по (64), т. е. существенно положителен.

Задача №1

Движение точки задано в декартовых координатах уравнениями:

x=21,2 sin 2 t, y=21,2 cos 2 t

Определить касательное ускорение точки (см. задачу № 36, стр. 132).

Решение. Дифференцируя уравнения движения, найдем υx = 21,2 sin 2t, υy = -21,2 sin 2t. Определим теперь полную скорость:

Касательная к вектору скорости

Дифференцируя уравнения движения вторично, найдем

Касательное ускорение определим по формуле (68):

Касательная к вектору скорости

Ответ. Касательное ускорение равно 60 cos 2t.

Задача №2

Точка M движется в системе координат хОу согласно уравнениям x=r cos πt, y=r sin πt. Найти касательное ускорение точки М.

Решение. Проекции скорости и ускорения на оси координат, а также и полная скорость точки M были уже нами получены при решении задачи № 44 (см. стр. 142). Для определения касательного ускорения точки M нам остается только подставить эти величины в формулу (68):Касательная к вектору скорости

Ответ. Касательное ускорение равняется нулю.

Для случая задания движения в естественной форме преобразуем формулу (68) следующим образом:
Касательная к вектору скорости

и, сокращая на υ, найдем касательное ускорение

Касательная к вектору скорости(69)

Принимая во внимание (53), можно придать этой формуле несколько иной вид:

Касательная к вектору скорости(69′)

Итак, касательное ускорение—это проекция ускорения точки на касательную к траектории, равная первой производной от величины скорости по времени. Чтобы получить касательное ускорение в векторном выражении, нужно его умножить на единичный вектор касательной:

Касательная к вектору скорости(69»)

Как уже было сказано, касательное ускорение не может изменить направления скорости, оно характеризует быстроту изменения величины скорости, т. е. соответствует изменению вектора скорости вдоль его направления.

Если с течением времени величина скорости увеличивается, то касательное ускорение направлено в ту же сторону, что и скорость. Такое движение называют ускоренным.

Если же величина скорости уменьшается, то касательное ускорение направлено в сторону, противоположную скорости. Такое движение называют замедленным.

Каждое из этих движений называют переменным движением.

Если величина скорости точки постоянна, то производная Касательная к вектору скорости, а потому равно нулю и касательное ускорение. Движение точки с постоянной по величине скоростью по любой траектории называют равномерным. Следовательно, при равномерном движении точки касательное ускорение равно нулю.

Обратное заключение можно сделать лишь с некоторой оговоркой: если касательное ускорение постоянно равняется нулю, то, следовательно, величина скорости постоянна и движение равномерно; если же касательное ускорение точки равняется нулю не в течение всего рассматриваемого промежутка времени, а только в какое-то мгновение, то движение точки не является равномерным, и равенство Касательная к вектору скоростиозначает, что в это мгновение величина скорости достигла экстремального (максимального или минимального) значения.

При равномерном движении точки по любой траектории

Касательная к вектору скорости(70)

Формулы (70) справедливы только для равномерного движения точки и неприменимы при других движениях.

Видео:Геометрический смысл производной. Уравнение касательнойСкачать

Геометрический смысл производной. Уравнение касательной

Равнопеременное движение точки

Из переменных движений точки в задачах наиболее часто встречается равнопеременное движение — такое движение, при котором касательное ускорение остается постоянным.

При равнопеременном движении точки по любой траектории
Касательная к вектору скорости(71)

Формулы (71) справедливы только для равнопеременного движения и неприменимы при других движениях. Они даны здесь без вывода и известны из элементарной физики. Вывод этих формул приведен в решении задачи № 48.

Задача №3

Точка А начала двигаться с начальной скоростью υ0= 1 м/сек и с ускорением aT =2 м/сек 2 . Через одну секунду следом за точкой А по той же траектории с такой же начальной скоростью и с таким же касательным ускорением стала двигаться точка В. Определить расстояние (по траектории) между точками А и В через t сек после выхода первой точки. Построить графики движения точек.

Решение. Определим сначала уравнение движения точек. Нам дано, что

Касательная к вектору скорости

Разделяя переменные и интегрируя, получим

Постоянную C1 определим из начальных данных:

Написав υ по (53), разделяя переменные и интегрируя, найдем

Касательная к вектору скорости

Подставляя вместо υ0 и аT заданные величины, найдем расстояние (в м), пройденное точкой А за время t:

Касательная к вектору скорости

В то же мгновение t расстояние, пройденное точкой В, будет меньше, так как точка В будет находиться в пути лишь t—1 сек. Для точки В

Касательная к вектору скорости

Расстояние между A и B найдем как разность пройденных ими путей:

Касательная к вектору скорости

Это расстояние растет пропорционально времени, хотя точка В во времени не отстает от точки А и каждую точку траектории проходит через 1 сек после того, как через нее прошла точка А.

Графики движения точек А и В изображаются одинаковыми параболами (рис. 92), но парабола, представляющая движение точки В, смещена по оси времени относительно параболы, представляющей движение точки А, на 1 сек вправо. Чтобы определить расстояние (в м) между А и В в какое-либо мгновение, надо восставить перпендикуляр к оси времени в точке, соответствующей этому мгновению, и измерить расстояние по вертикали между параболами. Чтобы определить интервал времени (в сек) между прохождениями точками А и В какой-либо точки К траектории, надо восставить перпендикуляр к оси расстояний в точке, соответствующей расстоянию точки К от начала отсчета, и измерить расстояние по горизонтали между параболами. Графики наглядно показывают, что точка В отстает от точки А по расстоянию, так как А В непрерывно увеличивается, но не отстает по времени, и точка В проходит каждый отрезок траектории за такое же время, как и точка А.
Касательная к вектору скорости
Рис. 92

Нормальное ускорение равно отношению квадрата скорости точки к радиусу кривизны траектории:
Касательная к вектору скорости

Видео:Рассмотрение темы: "Тангенциальное, нормальное и полное ускорение"Скачать

Рассмотрение темы: "Тангенциальное, нормальное и полное ускорение"

Нормальное ускорение

Чтобы получить формулы нормального ускорения, мы опять воспользуемся тем, что проекция вектора на ось равна сумме проекций его составляющих на ту же ось, и определим aN как алгебраическую сумму проекций составляющих ax и ay на нормаль к траектории точки. Выберем за положительное направление нормали то, которое получается от поворота положительного направления касательной на прямой угол против хода часов (см. рис. 91) в сторону вогнутости кривой.
Как видно из чертежа (см. рис. 91, б)

Подставляем значения (62) направляющих косинусов:

Касательная к вектору скорости(72)

По этой формуле удобно вычислять нормальное ускорение точки, если ее движение задано в координатной форме уравнениями (58′) и (58″).

Эту же формулу (72) можно получить, спроецировав полное ускорение а на нормаль Mn (рис. 91, а):

Подставляя эти значения и сокращая на а, получим:

Касательная к вектору скорости

Задача №4

Движение точки задано уравнениями X= 21,2 sin 2 t, у= 212 cos 2 t. Определить нормальное ускорение точки.

Решение. Дифференцируя эти же уравнения движения при решении задачи № 36 (см. стр. 132), мы уже определили нужные нам величины: υx, υy, υ, ax, ау. Подставляя их в формулу (72), найдем

Касательная к вектору скорости

Ответ. Нормальное ускорение равно нулю.

Задача №5

Точка M движется согласно уравнениям x= r cos πt, y= r sin πt. Найти нормальное ускорение точки М.
Решение. Дифференцируя при решении задачи № 44 (см. стр. 142) эти уравнения движения, мы уже нашли проекции скорости и проекции ускорения. Полную скорость определим по ее проекциям согласно (64):

Касательная к вектору скорости

Подставляя все эти величины в формулу (72), найдем

Касательная к вектору скорости

Ответ. Нормальное ускорение равно rπ 2 .

Чтобы преобразовать формулу (72) для случая, когда движение точки задано в естественной форме, припомним из курса высшей математики выражение кривизны плоской кривой, представленной в параметрической форме уравнениями (58′) и (58″),

Касательная к вектору скорости

Если параметр t означает время, то эту геометрическую формулу можно переписать в обозначениях кинематики:
Касательная к вектору скорости(73)

Сравнивая равенства (72) и (73), находим

Касательная к вектору скорости(74)

Мы получили положительное значение проекции, следовательно, нормальное ускорение направлено от точки M в положительном направлении оси Mn (см. рис. 91), т. е. в ту сторону от касательной, по которую лежит траектория точки.

Чтобы получить нормальное ускорение в векторном выражении, надо (74) умножить на единичный вектор Касательная к вектору скоростинормали:

Касательная к вектору скорости(74 / )

Как уже было сказано, нормальное ускорение не влияет на величину скорости, потому что оно направлено перпендикулярно к скорости. Оно влияет на направление скорости.

Итак, нормальное ускорение—это проекция ускорения точки на нормаль к траектории, направленная в сторону вогнутости, равная квадрату скорости, деленному на радиус кривизны траектории.
Если движение точки прямолинейное, то радиус кривизны траектории (прямой линии) равен бесконечности, а нормальное ускорение равно нулю.

Обратное заключение можно сделать лишь с некоторой оговоркой: если в каждое мгновение данного промежутка времени нормальное ускорение движущейся точки равняется нулю, то точка движется по прямой; если же нормальное ускорение точки не постоянно равно нулю, а только в какое-либо мгновение, то движение точки не а потому

Касательная к вектору скорости
является прямолинейным и равенство Касательная к вектору скоростиозначает, что в это мгновение положение точки совпадает с точкой перегиба траектории или же направление скорости меняется на обратное. На чертеже (рис. 93) изображено нормальное ускорение точки в различных местах траектории при равномерном движении.

Касательная к вектору скорости
Рис. 93

Величина ускорения точки равна квадратному корню из суммы квадратов касательного и нормального ускорений:
Касательная к вектору скорости

Видео:Уравнения касательной и нормали к кривой, заданной в неявном видеСкачать

Уравнения касательной и нормали к кривой, заданной в неявном виде

Ускорение при естественном способе задания движения

Если движение точки задано в естественной форме, то проекции ускорения на нормаль и на касательную можно определить по формулам (69) и (74) и по проекциям определить величину полного ускорения точки (см. рис. 91):

Касательная к вектору скорости(75)

Касательная к вектору скорости(75 / )

Перед радикалом стоит знак « + », потому что величина ускорения существенно положительна.

Вектор полного ускорения Касательная к вектору скоростинаправлен по диагонали прямоугольника, построенного на векторах касательного и нормального ускорений. Можно точно установить направление ускорения Касательная к вектору скоростипо тангенсу угла, составляемого им с нормалью к траектории:

Касательная к вектору скорости

Касательное ускорение направлено по касательной к траектории, а нормальное к центру кривизны траектории, поэтому вектор полного ускорения лежит с той стороны от касательной, с которой расположена траектория точки.

При криволинейном ускоренном движений точки полное ускорение составляет со скоростью острый угол, а при замедленном—тупой.

Вектор ускорения лежит в соприкасающейся плоскости, и проекция ускорения на бинормаль равна нулю:
Касательная к вектору скорости

Разложение ускорения при движении точки по кривой двоякой кривизны. Если кривая не лежит в одной плоскости, то ее называют пространственной кривой, или кривой двоякой кривизны. В каждой точке к кривой можно провести только одну касательную и бесчисленное множество нормалей, расположенных в плоскости, перпендикулярной к касательной и называемой нормальной плоскостью (рис. 94).

Касательная к вектору скорости
рис. 94

Пусть в мгновение t точка занимает на кривой двоякой кривизны положение М. В это мгновение скорость точки направлена по касательной к кривой в точке М. Через эту касательную и через близкую точку M1 (не показанную на чертеже)., в которую движущаяся точка придет в мгновение t + Δt, проведем плоскость и будем стремить Δt к нулю. Тогда точка M1 будет стремиться к точке М. При этом плоскость будет поворачиваться около касательной, проведенной в точке М и стремиться к некоторому определенному положению, в котором она называется соприкасающейся плоскостью. Следовательно, в соприкасающейся плоскости находится вектор скорости движущейся точки в то мгновение, когда эта точка совпадает с точкой М, а также когда она занимает положение, предельно близкое к точке M. А так как ускорение характеризует изменение скорости в данное мгновение, то вектор ускорения тоже находится в соприкасающейся плоскости.

Плоскость, проведенную через точку M перпендикулярно к соприкасающейся и к нормальной плоскостям, называют спрямляющей плоскостью.

Нормаль, лежащую в спрямляющей плоскости, называют бинормалью, а нормаль, лежащую в соприкасающейся плоскости,—главной нормалью (главную нормаль плоской кривой обычно называют просто нормалью).

Касательная Mτ главная нормаль Mn и бинормаль Mb пересекаются в точке M под прямыми углами. Эти три взаимно перпендикулярные прямые в механике часто принимают в качестве координатных осей и называют естественными осями, или осями натурального триэдра. По мере движения точки по траектории естественные оси движутся вместе с ней, поворачиваются относительно основных (неподвижных) осей xOyz.

Положительные направления на естественных осях примем такими, чтобы трехгранный угол τMnb можно было привести в совпадение с углом xОyz. Касательная Mτ играет роль оси Ох, главная нормаль Mn— оси Oy и бинормаль Mb— оси Oz.

Так как вектор ускорения лежит в соприкасающейся плоскости τМn, а бинормаль Mb перпендикулярна к соприкасающейся плоскости, то проекция ускорения на бинормаль всегда равна нулю (αb = 0), и при проецировании ускорения на три естественные оси мы имеем только две проекции: касательное ускорение и нормальное ускорение.

Таким образом, мы установили, что формулы (69), (69′) и (69″) касательного ускорения, формулы (74) и (74′) нормального ускорения, а также формулы (75) и (75′) полного ускорения, выведенные нами в предположении, что точка движется по плоской траектории, остаются справедливыми для любого движения точки.

Именно потому, что проекция ускорения на бинормаль всегда равна нулю, в формуле (75) величина полного ускорения определяется по двум проекциям, а не по трем, как это имеет место в формуле (66). Приравнивая выражение (66) модуля полного ускорения точки через проекции на неподвижные оси координат его же выражению (75) через проекции на естественные оси, получим для движения точки по любой траектории соотношение

Касательная к вектору скорости(76)

Касательная к вектору скорости(76 / )

Эти равенства часто бывают полезны при решении задач.

Задача №6

Найти касательное и нормальное ускорения точки, движение которой выражается уравнениями:
Касательная к вектору скорости

Решение. Найдем проекции скорости и ускорения на оси координат:

Подставляя найденные величины в (68), найдем касательное ускорение

Касательная к вектору скорости

Подставляя те же величины в формулу (72), найдем нормальное ускорение

Касательная к вектору скорости

Нормальное ускорение всегда направлено во внутрь траектории, отрицательный знак получился потому, что в этой задаче естественные оси взяты по левой системе, (ось М,— вправо, ось Mn — вниз), а неподвижные — по правой.

Ответ. Касательная к вектору скорости Касательная к вектору скоростигде υ — скорость точки.

Задача №7

Найти скорость, полное, касательное и нормальное ускорения точки, описывающей фигуру Лиссажу, по уравнениям движения точки, заданным в координатной форме:

х= 3 sin 2t, у = 4 sin 2t.

Решение. Найдем сначала проекции скорости:

υχ = 6 cos 2t, υy = 8 cos 2t.

Затем определим величину полной скорости точки:
Касательная к вектору скорости

Для определения касательного и нормального ускорений определим проекции ускорения на декартовы оси координат, затем найдем полное ускорение и разложим его на касательное и нормальное. Имеем

Касательная к вектору скорости

Найдем сначала касательное ускорение, для чего продифференцируем по времени полную скорость или воспользуемся формулой (68):
Касательная к вектору скорости

Мы видим, что полное ускорение по величине равно касательному ускорению, т. е. что нормальное ускорение равно нулю. Это возможно только в случае, если траектория — прямая линия. Для проверки можно определить кривизну траектории или найти уравнение траектории. По первому способу имеем

Касательная к вектору скорости

По второму способу найдем Касательная к вектору скорости(прямая).

Ответ. υ=10 cos 2t; α = 20 sin 2t; ат= —20sin 2t; αN = 0.

Задача №8

Точка обода колеса, катящегося без скольжения и без буксования по прямолинейному рельсу, движется согласно уравнениям x=r (ct-sin сt), y=r(l — cos ct). Найти нормальное ускорение точки.
Решение. Для решения задачи можно наметить следующий путь: найти проекции скорости, величину полной скорости, проекции ускорения и полное ускорение; затем, продифференцировав по времени величину полной скорости, найти касательное ускорение и, вычитая его геометрически из полного, найти нормальное.

Дифференцируя уравнения движения, найдем

Далее получаем
Касательная к вектору скорости
Касательная к вектору скорости

Дифференцируя проекции скорости, найдем

ax = rc 2 sin ct, ay = rc 2 cos ct

Дифференцируя υ, найдем касательное ускорение:

Касательная к вектору скорости

Вектор aτ перпендикулярен вектору Касательная к вектору скоростии в сумме с ним равняется вектору полного ускорения, поэтому

Касательная к вектору скорости

Задачи такого типа быстрее и короче решать с применением формулы (72). По этой формуле непосредственно получаем:
Касательная к вектору скорости

Ответ: Касательная к вектору скорости

Задача №9

Тяжелое тело, размерами которого можно пренебречь, брошено с большой высоты с горизонтальной скоростью υ0 и движется согласно уравнениям x-υ0t, Касательная к вектору скорости. Найти траекторию, скорость, касательное и нормальное ускорения в любом положении, выразив их через скорость тела в этом положении.

Решение. Определяя из первого уравнения t и подставляя во второе, найдем уравнение траектории:

Касательная к вектору скорости

Траектория—парабола (рис. 95). Дифференцируя уравнения движения по времени, найдем проекции скорости и по ним полную скорость:

Касательная к вектору скорости

Касательная к вектору скорости

В начальное мгновение (t = 0), скорость точки υ = υo, а затем с течением времени величина скорости непрерывно возрастает. Из полученного равенства определим время t, в течение которого тело приобретает скорость у:

Касательная к вектору скорости

Вторично дифференцируя уравнения движения точки, найдем проекции ускорения на оси координат и полное ускорение:

Касательная к вектору скорости

В данном случае тело движется с постоянным по модулю и направлению ускорением, параллельным оси Оу.
Обращаем внимание на то, что, хотя здесь a = const, движение точки не является равнопеременным, так как условием равнопеременного движения является не условие a = const, а условие aт= const. В данном же случае, как мы сейчас увидим, ат непостоянно.

Дифференцируя величину полной скорости по времени или непосредственно по (68), получим касательное ускорение
Касательная к вектору скорости

Подставляя вместо t найденное нами значение, выразим касательное ускорение aт через скорость υ:

Касательная к вектору скорости

Отсюда следует, что в начальное мгновение, когда υ = υ0, aт=0. Затем с увеличением υ величина ат растет и в пределе стремится к полному ускорению g.
Для нахождения нормального ускорения обратимся к (72). Имеем
Касательная к вектору скорости

В начальное мгновение (при t = 0 и υ=v0) aN=g, а затем с увеличением υ аN убывает, стремясь в пределе к нулю.
Ответ. Парабола

Касательная к вектору скорости

Касательная к вектору скорости

Задача №10

Определить радиус кривизны траектории точки в начале движения, если уравнения ее движения имеют вид: x = 2t, y = t 2 (t— в cек; х, у— в м).
Решение. Из формулы кривизны (73) имеем
Касательная к вектору скорости

Для получения проекций скорости и ускорения в начальное мгновение продифференцируем уравнения движения и подставим t = 0:

Касательная к вектору скорости

Касательная к вектору скорости

Полную скорость в начальное мгновение определяем по ее проекциям:

Касательная к вектору скорости

Подставляя эти величины в формулу (73), получим ответ.
Ответ. р = 2 м

Задача №11

Через 20 сек после начала движения автомобиль, двигаясь иа закруглении радиуса 400 м, приобрел скорость 108 км/ч. Считая, что величина скорости автомобиля пропорциональна квадрату времени, определить полное ускорение автомобиля в конце 20-й секунды н пройденное за это время расстояние.
Решение. За единицы принимаем метр и секунду. Траектория задана—дорога с закруглением радиуса 400 м, и для решения задачи необходимо определить Уравнение движения автомобиля по траектории. (Применять формулы (71) здесь нельзя, так как при равиоперемениом движении величина скорости пропорциональна времени, а в данной задаче она пропорциональна квадрату времени.)
В условии дано

υ=bt 2 .

Найдем коэффициент пропорциональности

Касательная к вектору скорости

Выражая скорость по (53) и разделяя переменные, получим

Касательная к вектору скорости

откуда, интегрируя, получаем

Касательная к вектору скорости

Постоянную C определим из начальных данных: в начальное мгновение (t = 0) автомобиль не прошел еще никакого расстояния, а потому C = 0. Дважды дифференцируя по времени полученное уравнение, найдем касательное ускорение

Касательная к вектору скорости

или в конце 20-й секунды

Скорость в конце 20-й секунды была 30 м/сек, и по (74)

Касательная к вектору скорости

Полное ускорение в конце 20-й секунды было

Касательная к вектору скорости

Чтобы определить расстояние, пройденное автомобилем за 20 сек, положим в уравнении движения t = 20 сек:

Касательная к вектору скорости

Ответ. а = 3,75 м/сек 2 , s = 200 м.

Рекомендую подробно изучить предмет:
  • Теоретическая механика
Ещё лекции с примерами решения и объяснением:
  • Основные законы динамики
  • Колебания материальной точки
  • Количество движения
  • Момент количества движения
  • Приведение системы сил к данной точке
  • Система сил на плоскости
  • Естественный и векторный способы определения движения точки
  • Координатный способ определения движения точки

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

💥 Видео

Центростремительное ускорение. 9 класс.Скачать

Центростремительное ускорение. 9 класс.

Вектор скорости и траекторияСкачать

Вектор скорости и траектория

Урок 8. Векторные величины. Действия над векторами.Скачать

Урок 8. Векторные величины. Действия над векторами.

Физика: Понятие Вектор, Вектор СкоростиСкачать

Физика: Понятие Вектор, Вектор Скорости

Движение по окружности. Нормальное и тангенциальное ускорение | 50 уроков физики (4/50)Скачать

Движение по окружности. Нормальное и тангенциальное ускорение | 50 уроков физики (4/50)

Мгновенная скорость (видео 6)| Векторы. Прямолинейное движение | ФизикаСкачать

Мгновенная скорость (видео 6)| Векторы. Прямолинейное движение  | Физика

Скорости и ускорения точек вращающегося телаСкачать

Скорости и ускорения точек вращающегося тела

Математический анализ, 33 урок, Касательная плоскость и нормаль к поверхностиСкачать

Математический анализ, 33 урок, Касательная плоскость и нормаль к поверхности

Скорость направлена по касательнойСкачать

Скорость направлена по касательной
Поделиться или сохранить к себе: