Какой треугольник называется прямоугольником элементы

Прямоугольный треугольник

Прямоугольный треугольник – треугольник, в котором один угол прямой (то есть равен 90˚).

Сторона, противоположная прямому углу, называется гипотенузой прямоугольного треугольника.

Стороны, прилежащие к прямому углу, называются катетами .

Какой треугольник называется прямоугольником элементы

Признаки равенства прямоугольных треугольников

Если катеты одного прямоугольного треугольника соответственно равны катетам другого прямоугольного треугольника, то такие треугольники равны ( по двум катетам ).

Какой треугольник называется прямоугольником элементы

Если катет и прилежащий к нему острый угол одного прямоугольного треугольника соответственно равны катету и прилежащему к нему острому углу другого прямоугольного треугольника, то такие треугольники равны ( по катету и острому углу ).

Какой треугольник называется прямоугольником элементыЕсли гипотенуза и острый угол одного прямоугольного треугольника соответственно равны гипотенузе и острому углу другого прямоугольного треугольника, то такие треугольники равны ( по гипотенузе и острому углу ).

Какой треугольник называется прямоугольником элементы

Если гипотенуза и катет одного прямоугольного треугольника равны гипотенузе и катету другого прямоугольного треугольника, то такие треугольники равны ( по гипотенузе и катету ).

Какой треугольник называется прямоугольником элементы

Свойства прямоугольного треугольника

1. Сумма острых углов прямоугольного треугольника равна 90˚.

2. Катет, противолежащий углу в 30˚, равен половине гипотенузы.

И обратно, если в треугольнике катет вдвое меньше гипотенузы, то напротив него лежит угол в 30˚.

Какой треугольник называется прямоугольником элементы

3. Теорема Пифагора:

Какой треугольник называется прямоугольником элементы, где Какой треугольник называется прямоугольником элементы– катеты, Какой треугольник называется прямоугольником элементы– гипотенуза. Видеодоказательство

Какой треугольник называется прямоугольником элементы

4. Площадь Какой треугольник называется прямоугольником элементыпрямоугольного треугольника с катетами Какой треугольник называется прямоугольником элементы:

Какой треугольник называется прямоугольником элементы

5. Высота Какой треугольник называется прямоугольником элементыпрямоугольного треугольника, проведенная к гипотенузе выражается через катеты Какой треугольник называется прямоугольником элементыи гипотенузу Какой треугольник называется прямоугольником элементыследующим образом:

Какой треугольник называется прямоугольником элементы

Какой треугольник называется прямоугольником элементы

6. Центр описанной окружности – есть середина гипотенузы.

Какой треугольник называется прямоугольником элементы

7. Радиус Какой треугольник называется прямоугольником элементыописанной окружности есть половина гипотенузы Какой треугольник называется прямоугольником элементы:

Какой треугольник называется прямоугольником элементы

8. Медиана, проведенная к гипотенузе, равна ее половине

9. Радиус Какой треугольник называется прямоугольником элементывписанной окружности выражается через катеты Какой треугольник называется прямоугольником элементыи гипотенузу Какой треугольник называется прямоугольником элементыследующим образом:

Какой треугольник называется прямоугольником элементы

Какой треугольник называется прямоугольником элементы

Тригонометрические соотношения в прямоугольном треугольнике смотрите здесь.

Видео:Геометрия 7 класс (Урок№9 - Треугольник.)Скачать

Геометрия 7 класс (Урок№9 - Треугольник.)

Плоские геометрические фигуры: свойства и основные формулы

Какой треугольник называется прямоугольником элементыВ статье описываются геометрические фигуры: определение, основные свойства и формулы.

Плоские геометрические фигуры:

Четырехугольник (общее для всех четырехугольников)
Квадрат
Прямоугольник
Параллелограмм
Трапеция
Треугольник
Окружность

Геометрические фигуры — это любое сочетание точек, линий и поверхностей. Геометрические фигуры разделяются на плоские и объемные.

Плоские геометрические фигуры — это фигуры, все точки которых лежат на одной плоскости. Объемные геометрические фигуры — это фигуры, не все точки которых лежат на одной плоскости.

Видео:Подобие треугольников. Признаки подобия треугольников (часть 1) | МатематикаСкачать

Подобие треугольников. Признаки подобия треугольников (часть 1) | Математика

Четырёхугольник

Четырёхугольник – это геометрическая фигура (многоугольник), состоящая из четырёх точек (вершин) и четырёх отрезков (сторон), которые последовательно соединяют вершины. При этом никакие три точки не лежат на одной прямой.

Основные свойства:

  • Сумма углов четырёхугольника равна 360°
  • Не существует четырёхугольников, у которых все углы острые или все углы тупые.
  • Каждый угол четырёхугольника всегда меньше суммы трёх остальных углов.
  • Каждая сторона четырёхугольника всегда меньше суммы трёх остальных сторон.

В четырёхугольник можно вписать окружность, если суммы его противолежащих сторон равны. Центр вписанной в четырёхугольник окружности является точкой пересечения биссектрис всех четырёх углов этого четырёхугольника.

Четырёхугольник можно описать окружностью, если сумма его противолежащих углов равна 180°.Центр описанной около четырёхугольника окружности является точкой пересечения всех четырёх серединных перпендикуляров сторон этого четырёхугольника.

Видео:Геометрия 7 класс (Урок№25 - Прямоугольные треугольники.)Скачать

Геометрия 7 класс (Урок№25 - Прямоугольные треугольники.)

Квадрат

Квадрат – правильный четырёхугольник, то есть четырёхугольник, у которого все углы равны и все стороны равны.

Основные формулы:

Периметр: P=4a, где P-периметр, a-сторона
Площадь: S=a 2 или S=d 2 /2
Сторона и диагональ связаны соотношениями: a=d/√2, d=a√2
Радиус описанной окружности: R=d или R=a/√(2)
Радиус вписанной окружности: r=a/2

Какой треугольник называется прямоугольником элементыгде a-сторона, d-диагональ, P-периметр, S-площадь
*Корень квадратный вычисляется из всего, что стоит в скобках после знака √, например, √(2) – корень квадратный из 2.

Свойства:

  • Все стороны равны, все углы равны и составляют 90°;
  • Диагонали квадрата равны и перпендикулярны;
  • У квадрата центры вписанной и описанной окружностей совпадают и находятся в точке пересечения его диагоналей;
  • Квадрат является одновременно частным случаем ромба и прямоугольника.

Видео:Признаки равенства треугольников | теорема пифагора | Математика | TutorOnlineСкачать

Признаки равенства треугольников | теорема пифагора | Математика | TutorOnline

Прямоугольник

Прямоугольник – четырехугольник, у которого все углы прямые.

Основные формулы:

Периметр: P=(a+b)*2
Площадь по сторонам: S = a*b
Площадь по диагонали и углу между ними: S = d²* sin γ. / 2
Стороны и диагональ связаны соотношением: d=√(a 2 +b 2 )/2 (теорема Пифагора)
Радиус описанной окружности: R= √(a 2 +b 2 )/2 (теорема Пифагора)

Какой треугольник называется прямоугольником элементыгде a, b – длины сторон прямоугольника, d-диагональ, P-периметр, S-площадь
γ угол между диагоналями
*Корень квадратный вычисляется из всего, что стоит в скобках после знака √, например, √(a 2 +b 2 ) – корень квадратный из (a 2 +b 2 ).

Свойства:

  • Диагонали прямоугольника равны и делятся точкой пересечения пополам.
  • Около любого прямоугольника можно описать окружность с центром в точке пересечения его диагоналей и радиусом, который равен половине диагонали.

Видео:Площадь прямоугольного треугольника. Как найти площадь прямоугольного треугольника?Скачать

Площадь прямоугольного треугольника. Как найти площадь прямоугольного треугольника?

Параллелограмм

Параллелограмм – четырёхугольник, у которого противоположные стороны попарно параллельны, то есть лежат на параллельных прямых.

Определения:

Высота параллелограмма – это перпендикуляр, проведённый из вершины параллелограмма к противоположной стороне.

Основные формулы:

Стороны и диагональ связаны соотношением: (d1) 2 +(d2) 2 =(a 2 +b 2 )*2
Периметр: P=(a+b)*2
Площадь по стороне и высоте: S = a*h
S (Площадь) по двум сторонам и углу между ними: S=a*b*sin α
S (Площадь) по двум диагоналям и углу между ними: S=(d1*d2)/2*sin γ

Какой треугольник называется прямоугольником элементыгде a, b – длины сторон, d1, d2 –диагонали, P-периметр, S-площадь,
h-высота, проведенная к противоположной стороне
α – угол между сторонами параллелограмма,
γ – угол между диагоналями параллелограмма (острый).

Свойства:

  • У параллелограмма противоположные стороны равны и противоположные углы равны.
  • Сумма любых двух соседних углов параллелограмма равна 180°.
  • Диагонали параллелограмма пересекаются и точкой пересечения делятся пополам.
  • Каждая диагональ делит параллелограмм на два равных треугольника.
  • Две диагонали параллелограмма делят его на четыре равновеликих треугольника (равны площади всех 4-х треугольников)
  • Сумма квадратов диагоналей параллелограмма равна сумме квадратов всех его сторон.
  • Частными случаями параллелограмма являются прямоугольник, квадрат и ромб.

Видео:Профильный ЕГЭ 2024. Задача 1. Прямоугольный треугольник. 10 классСкачать

Профильный ЕГЭ 2024. Задача 1. Прямоугольный треугольник. 10 класс

Ромб

Ромб – это параллелограмм, у которого все стороны равны.

Основные формулы:

Периметр: P=4*a
Площадь по стороне и высоте: S=a*h
Площадь по диагоналям: S = (d1*d2)/2
Радиус окружности, вписанной в ромб: r=h/2 или r =(d1*d2)/4a
Площадь по стороне и радиусу вписанной окружности: S=2*a*r
Площадь по стороне и углу: S = a 2 · sin α

Какой треугольник называется прямоугольником элементыгде a – длина стороны, d1, d2 –диагонали, P-периметр, S-площадь,
h -высота, проведенная к противоположной стороне
α – угол между сторонами ромба

Свойства:

  • Диагонали ромба пересекаются под прямым углом и являются биссектрисами его углов.
  • В любой ромб можно вписать окружность с центром в точке пересечения его диагоналей. Радиус окружности: r=h/2 или r = d1*d2/4a.

Видео:Нахождение стороны прямоугольного треугольникаСкачать

Нахождение стороны прямоугольного треугольника

Трапеция

Трапеция – четырёхугольник, у которого только две противолежащие стороны параллельны.

Определения:

  • Параллельные стороны называются основаниями трапеции, непараллельные – боковыми сторонами.
  • Высота трапеции – перпендикуляр, проведённый из произвольной точки одного основания трапеции к прямой, содержащей другое основание трапеции.
  • Средняя линия (первая средняя линия) трапеции – отрезок, который соединяет середины боковых сторон данной трапеции.Средняя линия трапеции параллельна её основаниям и равна их полусумме.
  • Средняя линия (вторая средняя линия) – отрезок, соединяющий середины оснований, проходит через точку пересечения диагоналей.
  • Равнобокая трапеция – трапеция,у которой боковые стороны равны (c=d). У равнобокой трапеции:диагонали равны, углы при основании равны, сумма противолежащих углов равна 180°.Около трапеции можно описать окружность тогда и только тогда, когда она равнобокая.
  • Прямоугольная трапеция – трапеция, у которой одна из её боковых сторон перпендикулярна основаниям.

Основные формулы:

Периметр: P=a+b+c+d
Площадь определить: S=h*(a+b)/2
Стороны и диагональ равнобокой трапеции: d² = ab+c²
Радиус вписанной окружности: r = h/2

Какой треугольник называется прямоугольником элементыгде a,b – основания, c,d – боковые стороны (с – боковые стороны в случае, если трапеция равнобокая), d1, d2 –диагонали,
P-периметр, S-площадь, h -высота, проведенная к противоположной стороне

Свойства:

В трапецию можно вписать окружность, если сумма её основ равна сумме боковых сторон (a+b=c+d). Центром вписанной в трапецию окружности является точка пересечения биссектрис внутренних углов трапеции.

Видео:Геометрия. 7 класс. Урок 1 "Прямоугольный треугольник и его элементы"Скачать

Геометрия. 7 класс. Урок 1 "Прямоугольный треугольник и его элементы"

Треугольник

Треугольник – это геометрическая фигура, которая состоит из трёх точек, не лежащих на одной прямой (вершин треугольника) и трёх отрезков с концами в этих точках (сторон треугольника).

Определения:

  • Углами (внутренними углами) треугольника называются три угла, каждый из которых образован лучами, выходящими из вершин треугольника и проходящими через две другие вершины.
  • Высота треугольника – перпендикуляр, опущенный из любой вершины треугольника на противолежащую сторону или на продолжение стороны
  • Медиана треугольника– отрезок, который соединяет вершину треугольника с серединой противолежащей стороны.
  • Биссектрисой треугольника, проведённой из данной вершины, называется отрезок биссектрисы угла треугольника, соединяющий эту вершину с точкой на противолежащей стороне
  • Равные треугольники – треугольники, у которых соответствующие стороны равны и соответствующие углы равны
  • Равнобедренный треугольник– треугольник, у которого две стороны равны. Равные стороны называют боковыми сторонами, а третью – основанием равнобедренного треугольника.
  • Равносторонний или правильный треугольник – треугольник, у которого все стороны равны.
  • Прямоугольный треугольник – треугольник, у которого есть прямой угол. Стороны, прилежащие к прямому углу, называются катетами, противолежащая прямому углу – гипотенузой.

Основные формулы:

Периметр: P=a+b+c
Площадь по стороне и высоте: S=(a*h)/2
Площадь: по сторонам и углу между ними: S=(a*b)/2* sin γ
по трем сторонам и радиусу описанной окружности: S=(a*b*c)/4R
по трем сторонам и радиусу вписанной окружности: S=(a+b+c)/2*r
Площадь прямоугольного треугольника: S=(a*b)/2
Стороны прямоугольного треугольника: c 2 =a 2 +b 2 (Теорема Пифагора)

Какой треугольник называется прямоугольником элементыгде a,b, c – стороны (a,b –катеты , с – гипотенуза в случае прямоугольного треугольника)
d1, d2 –диагонали, h -высота, проведенная к противоположной стороне,
P-периметр, S-площадь, γ – угол между сторонами a и b
r – радиус вписанной окружности, R – радиус описанной окружности

Свойства:

  • В треугольнике против большего угла лежит большая сторона, против большей стороны лежит больший угол.
  • Сумма углов треугольника равна 180°:
  • Длина каждой стороны треугольника больше разности и меньше суммы длин двух других сторон: |a-b| 2 =a 2 +b 2 (Теорема Пифагора).В прямоугольном треугольнике гипотенуза всегда больше любого из катетов.

Видео:Прямоугольник. Что такое прямоугольник?Скачать

Прямоугольник. Что такое прямоугольник?

Окружность

Окружность – замкнутая плоская кривая, все точки которой одинаково удалены от данной точки (центра окружности), которая лежит в той же плоскости, что и кривая.

Определения:

  • Радиус – отрезок, который соединяет центр окружности с любой её точкой.
  • Хорда – отрезок, который соединяет какие-либо две точки окружности (AB).
  • Диаметр – хорда, проходящая через центр окружности(d). Диаметр – наибольшая хорда окружности. Наименьшей хорды окружности не существует.
  • Касательная – прямая, которая лежит в одной плоскости с окружностью и имеет с ней только одну общую точку (E)
  • Секущая – прямая, которая пересекает окружность в двух различных точках.

Основные формулы:

Длина окружности: L = 2πR
Площадь круга: S = π*r 2 или S = π*d 2 /4

Какой треугольник называется прямоугольником элементыгде π = 3,14 (3,1415926535) – величина постоянная,
где r-радиус, d –диаметр, L – длина окружности, S-площадь.

Видео:Построение высоты в тупоугольном и прямоугольном треугольниках. 7 класс.Скачать

Построение высоты в тупоугольном и прямоугольном треугольниках. 7 класс.

Прямоугольный треугольник

Треугольник в геометрии представляет одну из основных фигур. Из предыдущих уроков вы знаете, что треугольник – это многоугольная фигура, которая имеет три угла и три стороны.

Треугольник называют прямоугольным, если у него есть прямой угол, который равен 90 градусов.
Прямоугольный треугольник имеет две взаимно перпендикулярные стороны, называемые катетами; третья его сторона называется гипотенузой. Гипотенуза является самой большой стороной этого треугольника.

Какой треугольник называется прямоугольником элементы

  • По свойствам перпендикуляра и наклонных гипотенуза длиннее каждого из катетов (но меньше их суммы).
  • Сумма двух острых углов прямоугольного треугольника равна прямому углу.
  • Две высоты прямоугольного треугольника совпадают с его катетами. Поэтому одна из четырех замечательных точек попадает в вершины прямого угла треугольника.
  • Центр описанной окружности прямоугольного треугольника лежит в середине гипотенузы.
  • Медиана прямоугольного треугольника, проведенная из вершины прямоуго угла на гипотенузу, является радиусом описанной около этого треугольника окружности.

Видео:#Урок2 Геометрия Прямоугольный треугольник. Проекция.Тригонометрические элементы в прям.треугольникеСкачать

#Урок2 Геометрия Прямоугольный треугольник. Проекция.Тригонометрические элементы в прям.треугольнике

Свойства и особенности прямоугольных треугольников

I – е свойство. В прямоугольном треугольнике сумма его острых углов равна 90°. Против большей стороны треугольника лежит больший угол, а против большего угла лежит большая сторона. В прямоугольном треугольнике наибольшим углом, является прямоугольный угол. Если же в треугольнике самый большой угол имеет более 90°, то такой треугольник перестает быть прямоугольным, так как сумма всех углов превысить 180 градусов. Со всего этого следует, что гипотенуза является наибольшей стороной треугольника.

II – е свойство. Катет прямоугольного треугольника, который лежит против угла в 30 градусов, равен половине гипотенузе.

III – е свойство. Если же в прямоугольном треугольнике катет равняется половине гипотенузы, то и угол, который лежит напротив данного катета будет равен 30 градусам.

🔥 Видео

Треугольники. 7 класс.Скачать

Треугольники. 7 класс.

Математика | Соотношения между сторонами и углами в прямоугольном треугольнике.Скачать

Математика | Соотношения между сторонами и углами в прямоугольном треугольнике.

Что такое угол? Виды углов: прямой, острый, тупой, развернутый уголСкачать

Что такое угол? Виды углов: прямой, острый, тупой,  развернутый угол

7 класс, 36 урок, Признаки равенства прямоугольных треугольниковСкачать

7 класс, 36 урок, Признаки равенства прямоугольных треугольников

Задача по геометрии на прямоугольный треугольник и теорему Пифагора из реального ОГЭ по математикеСкачать

Задача по геометрии на прямоугольный треугольник и теорему Пифагора из реального ОГЭ по математике

ПРЯМОУГОЛЬНЫЙ ТРЕУГОЛЬНИК §17 геометрия 7 классСкачать

ПРЯМОУГОЛЬНЫЙ ТРЕУГОЛЬНИК §17 геометрия 7 класс

Высота, биссектриса, медиана. 7 класс.Скачать

Высота, биссектриса, медиана. 7 класс.

Как ПОНЯТЬ ГЕОМЕТРИЮ за 5 минут — Подобие ТреугольниковСкачать

Как ПОНЯТЬ ГЕОМЕТРИЮ за 5 минут — Подобие Треугольников

Какой четырехугольник называется квадратом? Геометрия 8 класс. Глава 5Скачать

Какой четырехугольник называется квадратом? Геометрия 8 класс. Глава 5
Поделиться или сохранить к себе: