Как вычислить значение выражения используя единичную окружность

Единичная окружность

Как вычислить значение выражения используя единичную окружность

О чем эта статья:

10 класс, ЕГЭ/ОГЭ

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Содержание
  1. Единичная окружность в тригонометрии
  2. Геометрия. Урок 1. Тригонометрия
  3. Тригонометрия в прямоугольном треугольнике
  4. Тригонометрия: Тригонометрический круг
  5. Основное тригонометрическое тождество
  6. Тригонометрия: Таблица значений тригонометрических функций
  7. Тригонометрия: градусы и радианы
  8. Тригонометрия: Формулы приведения
  9. Тригонометрия: Теорема синусов
  10. Тригонометрия: Расширенная теорема синусов
  11. Тригонометрия: Теорема косинусов
  12. Примеры решений заданий из ОГЭ
  13. Тригонометрия: Тригонометрические уравнения
  14. Вычисление значений тригонометрических функций с помощью формул приведения и единичной окружности. 10-й класс
  15. Ход урока
  16. I. Организационный момент
  17. II. Повторение табличных значений тригонометрических функций для углов 0°, 30°, 45°, 60°, 90°
  18. III. Этап подготовки учащихся к активному и сознательному усвоению и закреплению материала:
  19. IV. Мнемоническое правило
  20. V. Работа с единичной окружностью
  21. VI. Практическая работа
  22. V. Итог урока:
  23. VI. Домашнее задание
  24. 🎥 Видео

Видео:Тригонометрическая окружность. Как выучить?Скачать

Тригонометрическая окружность. Как выучить?

Единичная окружность в тригонометрии

Все процессы тригонометрии изучают на единичной окружности. Сейчас узнаем, какую окружность называют единичной и дадим определение.

Единичная окружность — это окружность с центром в начале прямоугольной декартовой системы координат и радиусом, равным единице.

Прямоугольная система координат — прямолинейная система координат с взаимно перпендикулярными осями на плоскости или в пространстве. Наиболее простая и поэтому часто используемая система координат.

Радиус — отрезок, который соединяет центр окружности с любой точкой, лежащей на окружности, а также длина этого отрезка. Радиус составляет половину диаметра.

Единичную окружность с установленным соответствием между действительными числами и точками окружности называют числовой окружностью.

Как вычислить значение выражения используя единичную окружность

Поясним, как единичная окружность связана с тригонометрией.

В тригонометрии мы постоянно сталкиваемся с углами поворота. А углы поворота связаны с вращением по окружности.

Угол поворота — это угол, который образован положительным направлением оси OX и лучом OA.

Величины углов поворота не зависят от радиуса окружности, по которой происходит вращение, поэтому удобно работать именно с окружностью единичного радиуса. Это позволяет избавиться от коэффициентов при математическом описании. Вот и все объяснение полезности единичной тригонометрической окружности.

Все углы, которые принадлежат одному семейству, дают одинаковые абсолютные значения тригонометрических функций, но эти значения могут различаться по знаку. Вот как:

  • Если угол находится в первом квадранте, все тригонометрические функции имеют положительные значения.
  • Для угла во втором квадранте все функции, за исключением sin и cos, отрицательны.
  • В третьем квадранте значения всех функций, кроме tg и ctg, меньше нуля.
  • В четвертом квадранте все функции, за исключением cos и sec, имеют отрицательные значения.

Градусная мера окружности равна 360°. Чтобы решать задачи быстро, важно запомнить, где находятся углы 0°; 90°; 180°; 270°; 360°. Единичная окружность с градусами выглядит так:

Как вычислить значение выражения используя единичную окружность

Радиан — одна из мер для определения величины угла.

Один радиан — это величина угла между двумя радиусами, проведенными так, что длина дуги между ними равна величине радиуса.

Число радиан для полной окружности — 360 градусов.

Длина окружности равна 2πr, что превышает длину радиуса в 2π раза.

Поскольку по определению 1 радиан — это угол между концами дуги, длина которой равна радиусу, в полной окружности заключен угол, равный 2π радиан.

Потренируемся переводить радианы в градусы. В полной окружности содержится 2π радиан, или 360 градусов. Таким образом:

  • 2π радиан = 360°
  • 1 радиан = (360/2π) градусов
  • 1 радиан = (180/π) градусов
  • 360° = 2π радиан
  • 1° = (2π/360) радиан
  • 1° = (π/180) радиан

Кстати, определение синуса, косинуса, тангенса и котангенса в тригонометрии дается через координаты точек на единичной окружности. Эти определения дают возможность раскрыть свойства синуса, косинуса, тангенса и котангенса.

Уравнение единичной окружности

При помощи этого уравнения, вместе с определениями синуса и косинуса, можно записать основное тригонометрическое тождество:

Как вычислить значение выражения используя единичную окружность

Как вычислить значение выражения используя единичную окружность

Курсы по математике в онлайн-школе Skysmart помогут подтянуть оценки, подготовиться к контрольным, ВПР и экзаменам.

Видео:Как искать точки на тригонометрической окружности.Скачать

Как искать точки на тригонометрической окружности.

Геометрия. Урок 1. Тригонометрия

Смотрите бесплатные видео-уроки по теме “Тригонометрия” на канале Ёжику Понятно.

Как вычислить значение выражения используя единичную окружность

Видео-уроки на канале Ёжику Понятно. Подпишись!

Содержание страницы:

Видео:10 класс, 11 урок, Числовая окружностьСкачать

10 класс, 11 урок, Числовая окружность

Тригонометрия в прямоугольном треугольнике

Рассмотрим прямоугольный треугольник. Для каждого из острых углов найдем прилежащий к нему катет и противолежащий.

Как вычислить значение выражения используя единичную окружность

Синус угла – отношение противолежащего катета к гипотенузе.

sin α = Противолежащий катет гипотенуза

Косинус угла – отношение прилежащего катета к гипотенузе.

cos α = Прилежащий катет гипотенуза

Тангенс угла – отношение противолежащего катета к прилежащему (или отношение синуса к косинусу).

tg α = Противолежащий катет Прилежащий катет

Котангенс угла – отношение прилежащего катета к противолежащему (или отношение косинуса к синусу).

ctg α = Прилежащий катет Противолежащий катет

Рассмотрим прямоугольный треугольник A B C , угол C равен 90 °:

sin ∠ A = C B A B

cos ∠ A = A C A B

tg ∠ A = sin ∠ A cos ∠ A = C B A C

ctg ∠ A = cos ∠ A sin ∠ A = A C C B

sin ∠ B = A C A B

cos ∠ B = B C A B

tg ∠ B = sin ∠ B cos ∠ B = A C C B

ctg ∠ B = cos ∠ B sin ∠ B = C B A C

Видео:Как запомнить тригонометрический круг специально ничего не выучивая?Скачать

Как запомнить тригонометрический круг специально ничего не выучивая?

Тригонометрия: Тригонометрический круг

Тригонометрия на окружности – это довольно интересная абстракция в математике. Если понять основной концепт так называемого “тригонометрического круга”, то вся тригонометрия будет вам подвластна. В описании к видео есть динамическая модель тригонометрического круга.

Тригонометрический круг – это окружность единичного радиуса с центром в начале координат.

Такая окружность пересекает ось х в точках ( − 1 ; 0 ) и ( 1 ; 0 ) , ось y в точках ( 0 ; − 1 ) и ( 0 ; 1 )

На данной окружности будет три шкалы отсчета – ось x , ось y и сама окружность, на которой мы будем откладывать углы.

Углы на тригонометрической окружности откладываются от точки с координатами ( 1 ; 0 ) , – то есть от положительного направления оси x , против часовой стрелки. Пусть эта точка будет называться S (от слова start). Отметим на окружности точку A . Рассмотрим ∠ S O A , обозначим его за α . Это центральный угол, его градусная мера равна дуге, на которую он опирается, то есть ∠ S O A = α = ∪ S A .

Давайте найдем синус и косинус этого угла. До этого синус и косинус мы искали в прямоугольном треугольнике, сейчас будем делать то же самое. Для этого опустим перпендикуляры из точки A на ось x (точка B ) и на ось игрек (точка C ) .

Отрезок O B является проекцией отрезка O A на ось x , отрезок O C является проекцией отрезка O A на ось y .

Рассмотрим прямоугольный треугольник A O B :

cos α = O B O A = O B 1 = O B

sin α = A B O A = A B 1 = A B

Поскольку O C A B – прямоугольник, A B = C O .

Итак, косинус угла – координата точки A по оси x (ось абсцисс), синус угла – координата точки A по оси y (ось ординат).

Давайте рассмотрим еще один случай, когда угол α – тупой, то есть больше 90 ° :

Опускаем из точки A перпендикуляры к осям x и y . Точка B в этом случае будет иметь отрицательную координату по оси x . Косинус тупого угла отрицательный .

Можно дальше крутить точку A по окружности, расположить ее в III или даже в IV четверти, но мы пока не будем этим заниматься, поскольку в курсе 9 класса рассматриваются углы от 0 ° до 180 ° . Поэтому мы будем использовать только ту часть окружности, которая лежит над осью x . (Если вас интересует тригонометрия на полной окружности, смотрите видео на канале). Отметим на этой окружности углы 0 ° , 30 ° , 45 ° , 60 ° , 90 ° , 120 ° , 135 ° , 150 ° , 180 ° . Из каждой точки на окружности, соответствующей углу, опустим перпендикуляры на ось x и на ось y .

Координата по оси x – косинус угла , координата по оси y – синус угла .

Ещё одно замечание.

Синус тупого угла – положительная величина, а косинус – отрицательная.

Тангенс – это отношение синуса к косинусу. При делении положительной величины на отрицательную результат отрицательный. Тангенс тупого угла отрицательный .

Котангенс – отношение косинуса к синусу. При делении отрицательной величины на положительную результат отрицательный. Котангенс тупого угла отрицательный .

Видео:ТРИГОНОМЕТРИЯ ЗА 10 МИНУТ — Синус, Косинус, Тангенс, Котангенс // Подготовка к ЕГЭ по МатематикеСкачать

ТРИГОНОМЕТРИЯ ЗА 10 МИНУТ —  Синус, Косинус, Тангенс, Котангенс // Подготовка к ЕГЭ по Математике

Основное тригонометрическое тождество

sin 2 α + cos 2 α = 1

Данное тождество – теорема Пифагора в прямоугольном треугольнике O A B :

A B 2 + O B 2 = O A 2

sin 2 α + cos 2 α = R 2

sin 2 α + cos 2 α = 1

Видео:Формулы приведения - как их легко выучить!Скачать

Формулы приведения - как их легко выучить!

Тригонометрия: Таблица значений тригонометрических функций

0 °30 °45 °60 °90 °sin α01 22 23 21cos α13 22 21 20tg α03 313нетctg αнет313 30

Видео:Как видеть тангенс? Тангенс угла с помощью единичного круга.Скачать

Как видеть тангенс? Тангенс угла с помощью единичного круга.

Тригонометрия: градусы и радианы

Как перевести градусы в радианы, а радианы в градусы? Как и когда возникла градусная мера угла? Что такое радианы и радианная мера угла? Ищите ответы в этом видео!

Видео:ТРИГОНОМЕТРИЯ С НУЛЯ - Единичная Окружность // Подготовка к ЕГЭ по МатематикеСкачать

ТРИГОНОМЕТРИЯ С НУЛЯ - Единичная Окружность // Подготовка к ЕГЭ по Математике

Тригонометрия: Формулы приведения

Тригонометрия на окружности имеет некоторые закономерности. Если внимательно рассмотреть данный рисунок,

можно заметить, что:

sin 180 ° = sin ( 180 ° − 0 ° ) = sin 0 °

sin 150 ° = sin ( 180 ° − 30 ° ) = sin 30 °

sin 135 ° = sin ( 180 ° − 45 ° ) = sin 45 °

sin 120 ° = sin ( 180 ° − 60 ° ) = sin 60 °

cos 180 ° = cos ( 180 ° − 0 ° ) = − cos 0 °

cos 150 ° = cos ( 180 ° − 30 ° ) = − cos 30 °

cos 135 ° = cos ( 180 ° − 45 ° ) = − cos 45 °

cos 120 ° = cos ( 180 ° − 60 ° ) = − cos 60 °

Рассмотрим тупой угол β :

Для произвольного тупого угла β = 180 ° − α всегда будут справедливы следующие равенства:

sin ( 180 ° − α ) = sin α

cos ( 180 ° − α ) = − cos α

tg ( 180 ° − α ) = − tg α

ctg ( 180 ° − α ) = − ctg α

Видео:Математика| Преобразование тригонометрических выражений. Формулы и задачиСкачать

Математика| Преобразование тригонометрических выражений. Формулы и задачи

Тригонометрия: Теорема синусов

В произвольном треугольнике стороны пропорциональны синусам противолежащих углов.

a sin ∠ A = b sin ∠ B = c sin ∠ C

Видео:18+ Математика без Ху!ни. Формулы ПриведенияСкачать

18+ Математика без Ху!ни. Формулы Приведения

Тригонометрия: Расширенная теорема синусов

Отношение стороны к синусу противолежащего угла равно двум радиусам описанной вокруг данного треугольника окружности.

a sin ∠ A = b sin ∠ B = c sin ∠ C = 2 R

Видео:Вычисление значений тригонометрических функцийСкачать

Вычисление значений тригонометрических функций

Тригонометрия: Теорема косинусов

Квадрат стороны треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними.

a 2 = b 2 + c 2 − 2 b c ⋅ cos ∠ A

b 2 = a 2 + c 2 − 2 a c ⋅ cos ∠ B

c 2 = a 2 + b 2 − 2 a b ⋅ cos ∠ C

Видео:Отбор корней по окружностиСкачать

Отбор корней по окружности

Примеры решений заданий из ОГЭ

Модуль геометрия: задания, связанные с тригонометрией.

Видео:Найти знак тригонометрической функции (bezbotvy)Скачать

Найти знак тригонометрической функции (bezbotvy)

Тригонометрия: Тригонометрические уравнения

Это тема 10-11 классов.

Из серии видео ниже вы узнаете, как решать простейшие тригонометрические уравнения, что такое обратные тригонометрические функции, зачем они нужны и как их использовать. Если вы поймёте эти базовые темы, то вскоре сможете без проблем решать любые тригонометрические уравнения любого уровня сложности!

Видео:🔴 ТРИГОНОМЕТРИЯ С НУЛЯ (Тригонометрическая Окружность на ЕГЭ 2024 по математике)Скачать

🔴 ТРИГОНОМЕТРИЯ С НУЛЯ (Тригонометрическая Окружность на ЕГЭ 2024 по математике)

Вычисление значений тригонометрических функций с помощью формул приведения и единичной окружности. 10-й класс

Разделы: Математика

Класс: 10

Цели и задачи:

  • Образовательная: формирование умений и навыков применения формул приведения и единичной окружности для вычисления значений синуса, косинуса, тангенса углов, использование мнемонического правила для этих формул к преобразованию тригонометрических выражений
  • Развивающая: учить анализировать, сравнивать, строить аналогии, обобщать и систематизировать, доказывать и опровергать.
  • Воспитательная: воспитание добросовестного отношения к труду и положительного отношения к знаниям.
  • Здоровьесберегающая: создание комфортного психологического климата на уроке, атмосферы сотрудничества: ученик – учитель.

Тип урока: комбинированный

Ход урока

I. Организационный момент

“Однажды царь решил выбрать из своих придворных первого помощника. Он подвёл всех к огромному дверному замку. «Кто откроет, тот и будет первым помощником.» Никто не притронулся даже к замку. Лишь один визирь подошёл и толкнул замок, который открылся. Он не был закрыт на ключ.

Тогда царь сказал: «Ты получишь эту должность, потому что полагаешься не только на то, что видишь и слышишь, но надеешься, на собственные силы и не боишься сделать попытку”.

Сегодня на уроке мы будем полагаться не только на то, что видим и слышим, но и на собственные силы и не будем бояться сделать попытку.

II. Повторение табличных значений тригонометрических функций для углов 0°, 30°, 45°, 60°, 90°

Изучая раздел “Тригонометрия” мы часто пользуемся табличными значениями тригонометрических функций для углов 0°, 30°, 45°, 60°, 90°. Давайте их вспомним (слайд)

Но как быть, если какое-нибудь значение забудется? К уроку вам было дано задание найти способ или правило быстрого запоминания этих значений.

“Тригонометрия на ладони” Мнемоническое правило (объясняет ученик) (Слайд 2)

В этом случае нам поможет наша рука. На экране вы видите изображение руки и формулу Как вычислить значение выражения используя единичную окружностьгде n – номер пальца.

Давайте внимательно посмотрим на нашу руку. Если провести линии через мизинец и большой палец, то они пересекутся в точке, называемой “лунный бугор”. Образуется угол 90°. Линия мизинца образует угол 0°. Проведя лучи из “лунного бугра” через безымянный, средний, указательный пальцы, получаем углы соответственно 30°, 45°, 60°. Подставляя вместо n, 0, 1, 2, 3, 4, получаем значения sin, для углов 0°, 30°, 45°, 60°, 90°. Давайте попробуем.

Как вычислить значение выражения используя единичную окружность, Как вычислить значение выражения используя единичную окружность, Как вычислить значение выражения используя единичную окружность, Как вычислить значение выражения используя единичную окружность, Как вычислить значение выражения используя единичную окружность

Для cos отсчет происходит в обратном порядке.

III. Этап подготовки учащихся к активному и сознательному усвоению и закреплению материала:

А как вы думаете, можно ли вычислить значения тригонометрических функций для тупых углов? Конечно можно, и в этом нам помогут формулы приведения, которые приводят значения тригонометрических функций остальных углов к значениям тригонометрических функций для острых углов.

Формулами приведения называют формулы, которые сводят значения тригонометрических функций для углов вида Как вычислить значение выражения используя единичную окружностьк значениям острых углов. (Слайд 3)

На прошлом уроке мы с вами с помощью формул сложения вывели и доказали эти формулы, сейчас вы видите их перед вами.

Формул приведения много, а точнее 32. (Слайд 4) И все формулы надо знать. К счастью существует простое мнемоническое правило, позволяющее быстро воспроизвести любую формулу приведения. Правда для этого надо хорошо знать основы тригонометрии – единичную окружность и способы работы с ней.

IV. Мнемоническое правило

Давайте внимательно посмотрим на эти формулы и выявим сходство и различия в них.

Каждая формула связывает между собой либо синус с косинусом, либо тангенс с котангенсом. Причём, первая функция либо меняется на вторую, либо нет.

В левой части формулы аргумент представляет собой сумму или разность одного из “основных координатных углов”: Как вычислить значение выражения используя единичную окружностьи острого угла Как вычислить значение выражения используя единичную окружность, а в правой части аргумент Как вычислить значение выражения используя единичную окружность

В правой части знак перед функцией либо “плюс”, либо “минус”.

Достаточно задать себе два вопроса: (Слайд 5)

1. Меняется ли функция?

Ответ: Если в формуле присутствуют углы Как вычислить значение выражения используя единичную окружностьили Как вычислить значение выражения используя единичную окружность– это углы вертикальной оси (рабочие), киваем головой по вертикали и сами себе отвечаем: “Да”, если же присутствуют углы горизонтальной оси Как вычислить значение выражения используя единичную окружностьили (спящие), то киваем головой по горизонтали и получаем ответ: “Нет”.

2. Какой знак надо поставить в правой части формулы?

Ответ: Знак определяем по левой части. Смотрим, в какую четверть попадает угол, и вспоминаем, какой знак в этой четверти имеет функция, стоящая в левой части.

Например: Как вычислить значение выражения используя единичную окружность

1) “Меняется функция или нет?”

Как вычислить значение выражения используя единичную окружность– угол вертикальной оси, киваем головой по вертикали: “Да, меняется”. Значит, в правой части будет cos Как вычислить значение выражения используя единичную окружность.

Угол Как вычислить значение выражения используя единичную окружностьпопадает в ІV ч. sin в ІV ч. имеет знак “минус”. Значит, в правой части ставим знак “минус”.

Итак, получили формулу,

Как вычислить значение выражения используя единичную окружность

Где же применяются формулы приведения?

Одно из применений – нахождение значений тригонометрических функций различных углов с помощью приведения к углу 1-ой четверти.

Как вычислить значение выражения используя единичную окружность

Как вычислить значение выражения используя единичную окружность

Решение упражнений с комментированием учащихся с места:

Верна ли запись?

Как вычислить значение выражения используя единичную окружность

Как вычислить значение выражения используя единичную окружность

tgКак вычислить значение выражения используя единичную окружность

Второе применение – упрощение тригонометрических выражений. Но об этом мы поговорим на следующем уроке.

V. Работа с единичной окружностью

Значения тригонометрических функций для углов больших 90 градусов удобно находить с помощью единичной окружности. (Слайды 7-9) (Комментирует учитель).

VI. Практическая работа

1 вариант проходит к компьютерам и выполняет тест, 2 вариант вычисляет значения тригонометрических функций с помощью единичной окружности. Поднимите руки, у кого за тест 5 и 4. Молодцы, справились с заданием. Теперь поменяйтесь местами.

V. Итог урока:

Сегодня на уроке мы рассмотрели только 3 приёма: быстрого запоминания тригонометрических значений, формул приведения, вычисления тригонометрических функций с помощью единичной окружности. Какой приём вам больше понравился? Применение различных приёмов и способов в математике развивает познавательную деятельность и помогает добиться лучших результатов.

VI. Домашнее задание

С помощью единичной окружности выполнить №155, формул приведения №157 стр. 296.
Спасибо за урок!

🎥 Видео

Синус, косинус произвольного угла. 9 класс.Скачать

Синус, косинус произвольного угла. 9 класс.

Синус, косинус, тангенс, котангенс за 5 МИНУТСкачать

Синус, косинус, тангенс, котангенс за 5 МИНУТ

Алгебра 10 класс. 2 октября. Тангенс и котангенс на окружностиСкачать

Алгебра 10 класс. 2 октября. Тангенс и котангенс на окружности

Реакция на результаты ЕГЭ 2022 по русскому языкуСкачать

Реакция на результаты ЕГЭ 2022 по русскому языку

Таблица значений тригонометрических функций - как её запомнить!!!Скачать

Таблица значений тригонометрических функций - как её запомнить!!!

РЕШЕНИЕ ТРИГОНОМЕТРИЧЕСКИХ УРАВНЕНИЙ😉 #shorts #егэ #огэ #математика #профильныйегэСкачать

РЕШЕНИЕ ТРИГОНОМЕТРИЧЕСКИХ УРАВНЕНИЙ😉 #shorts #егэ #огэ #математика #профильныйегэ
Поделиться или сохранить к себе: