Равноускоренное движение по окружности графики

Формулы равноускоренного движения по прямой и по окружности. Пример решения задачи

Равноускоренное движение по окружности графики

В физике, в разделах кинематики и динамики, изучают различные типы механического движения по разным видам траекторий. Данная статья посвящена рассмотрению графиков и формул равноускоренного движения тел по прямой траектории и по окружности.

Видео:Физика - движение по окружностиСкачать

Физика - движение по окружности

Понятие об ускорении

Равноускоренное движение по окружности графики

Прежде чем мы перейдем к анализу формул равноускоренного движения, следует дать определение самому ускорению. Под ним в физике полагают векторную величину, которая описывается изменение скорости во времени. Математическая формулировка этого определения выглядит так:

Например, изменение скорости на 1 м/с за одну секунду характеризуется ускорением 1 м/с 2 .

Записанное выражение позволяет вычислить так называемую мгновенную скорость. На практике же часто необходимо знать не значение a¯ в данный момент времени, а некоторую среднюю величину acp¯ за определенный промежуток времени. В таком случае применяют следующую формулу:

Здесь Δv¯ — вектор изменения скорости за время Δt.

Отметим, что вектор ускорения всегда направлен в сторону изменения скорости, поэтому напрямую от вектора скорости он не зависит. В свою очередь, скорость направлена всегда по касательной к траектории в данной точке.

Видео:Равноускоренное движение по окружности. Видеоурок 51. Физика 10 классСкачать

Равноускоренное движение по окружности. Видеоурок 51. Физика 10 класс

Движение равноускоренное прямолинейное

Данный вид движения часто появляется в физических задачах. На практике он также реализуется, например, при разгоне автомобиля с места, при свободном падении тяжелого тела или во время торможения транспортного средства. Во всех этих случаях речь идет о перемещении объектов с постоянным ускорением. Именно поэтому само движение называется равноускоренным (a = const).

Равноускоренное движение по окружности графики

Скорость и ускорение равноускоренного движения связаны следующим выражением:

Здесь v0 — скорость, которую тело имело до появления ускорения a. При начале движения с ускорением из состояния относительного покоя значение v0 можно опустить. Тогда получим:

Как видно, графиками равноускоренного движения для функции v(t) будут прямые, которые начинаются либо из точки (0; v0), либо из точки (0; 0). Угол между осью абсцисс и прямой равен арктангенсу от значения ускорения.

В случае наличия начальной скорости v0, ускорение a может быть отрицательным, что на практике соответствует торможению тела. Графиком v(t) при этом будет также прямая линия, но она будет стремиться к нулевому значению скорости. Соответствующая формула принимает вид:

Поскольку ускорение равноускоренного движения от времени не зависит, то графиком функции a(t) будет прямая, параллельная оси времени t.

Видео:УСКОРЕНИЕ - Что такое равноускоренное движение? Как найти ускорение // Урок Физики 9 классСкачать

УСКОРЕНИЕ - Что такое равноускоренное движение? Как найти ускорение // Урок Физики 9 класс

Перемещение при равноускоренном движении прямолинейном

Выше были приведены три формулы равноускоренного движения по прямой, которые связывают скорость и время (ускорение — постоянная величина). Чтобы рассчитать путь, который тело пройдет за время t при таком типе перемещения, следует проинтегрировать записанные выражения по времени. В результате операции интегрирования мы получим следующие три формулы для пути S:

Все три выражения показывают, что для пути графики равноускоренного движения являются параболами, вернее, правой ее веткой. Для формул 1) и 2) речь идет о возрастающей ветви параболы, поскольку вектор ускорения совпадает с вектором скорости. Для третьего выражения правая ветвь параболы стремится к некоторому постоянному положительному значению S0, соответствующему пути, который тело пройдет до того, как полностью остановится.

Равноускоренное движение по окружности графики

Видео:Выполнялка 168. Равноускоренное движение. Как строить графики.Скачать

Выполнялка 168.   Равноускоренное движение. Как строить графики.

Равноускоренное движение по окружности

Этот тип движения во многом отличается от прямолинейного. Во-первых, при ускоренном вращении скорость изменяет свой модуль и свой вектор, что приводит к появлению двух компонент ускорения: касательного и центростремительного. Во-вторых, при вращении нет никакого смысла оценивать, какое расстояние прошло тело, ведь оно движется под одной и той же окружности.

В связи со сказанным для описания движения по окружности пользуются угловыми скоростями и ускорениями. Угловое ускорение показывает, как быстро изменяется угловая скорость в радианах в секунду. С линейным ускорением a угловое α связано следующим выражением:

Где r — радиус траектории вращения.

Для равноускоренного движения по круглой траектории справедливы следующие кинематические формулы:

Здесь θ — угол поворота в радианах за время t. Его можно использовать для вычисления линейного расстояния L, которое тело пройдет вдоль окружности:

Видео:О терминах равноускоренное и равнозамедленное движениеСкачать

О терминах равноускоренное и равнозамедленное движение

Задача со свободным падением

Рассмотрев все важные формулы равноускоренного движения, решим такую задачу: тело брошено вертикально вверх с начальной скоростью 35 м/с. Необходимо определить, на какую высоту оно сможет подняться и через какое время оно упадет на землю. Силами трения можно пренебречь.

Равноускоренное движение по окружности графики

Во время подъема на тело действует ускорение свободного падения g, направленное против скорости, то есть время подъема будет равно:

Пренебрегая силами трения, можно с уверенностью сказать, что время подъема будет равно времени падения, поэтому полное время движения тела равно:

Высоту подъема h можно вычислить по такой формуле:

Таким образом, тело после броска вверх достигнет высоты 62,4 метра, и упадет на поверхность земли через 7,1 секунду после начала движения.

Видео:Криволинейное, равномерное движение материальной точки по окружности. 9 класс.Скачать

Криволинейное, равномерное движение материальной точки по окружности. 9 класс.

Виды движения по окружности

Угловое движение можно условно разделить на два вида:

  1. Когда изменяется только направление вектора линейной скорости, а его длина не изменяется.
  2. Или, когда изменяются обе характеристики вектора линейной скорости.

Во втором случае, для описания движения будем применять более сложные формулы кинематики. Так как появится еще один вид ускорения.

Центростремительное (нормальное) ускорение есть всегда, когда есть движение по окружности, при этом не важно, меняется ли скорость тела по модулю, или не меняется.

Видео:Физика | Равномерное движение по окружностиСкачать

Физика | Равномерное движение по окружности

Движение по окружности с постоянной по модулю скоростью

Пусть тело движется по окружности, но при этом длина вектора линейной скорости не меняется (рис. 1).

[left|vec right| = const]

Равноускоренное движение по окружности графики

На рисунке 1 указаны: а) – вид сбоку, б) вид сверху, вектор угловой скорости направлен к нам перпендикулярно рисунку.

Скорость будет меняться только по направлению от точки к точке, потому, что на тело действует центростремительная сила (displaystyle vec<F_<text>>) , тело обладает центростремительным (displaystyle vec<a_<text>>) (нормальным) ускорением.

Кроме линейной, тело обладает угловой скоростью. Если линейная скорость не изменяется по модулю, то длина вектора угловой скорости не меняется.

На рисунке 1а изображен вектор угловой скорости (displaystyle vec), на рисунке 1б вектор угловой скорости направлен к нам перпендикулярно плоскости рисунка. Направление, в котором тело движется по окружности, указано синей стрелкой.

Видео:РАВНОУСКОРЕННОЕ ДВИЖЕНИЕ физика 9 ПерышкинСкачать

РАВНОУСКОРЕННОЕ ДВИЖЕНИЕ физика 9 Перышкин

Тангенциальное ускорение – когда модуль скорости меняется

Тело может увеличивать или уменьшать свою скорость, когда движется по окружности.

В таком случае, дополнительно к нормальному ускорению возникает тангенциальное (displaystyle vec<a_>) ускорение.

Тангенциальное ускорение играет роль линейного ускорения при прямолинейном движении тела. Вектор (displaystyle vec<a_>) направлен параллельно вектору (displaystyle vec) скорости.

Подобно движению по прямой, вектор ускорения – это первая производная скорости по времени, или вторая производная перемещения по времени.

Когда векторы скорости (vec) и ускорения (vec<a_>) сонаправлены (рис. 2), линейная и угловая скорости возрастают.

Равноускоренное движение по окружности графики

А когда ускорение (vec<a_>) направлено противоположно (рис. 3) вектору скорости (vec), угловая и линейная скорости уменьшаются.

Равноускоренное движение по окружности графики

С линейной скоростью (vec) связана угловая (vec) скорость.

Из рисунков 2, 3 следует: когда появляется тангенциальное ускорение, меняется и угловая скорость. Значит, тангенциальное ускорение (vec<a_>) появляется совместно с угловым (vec) ускорением и между ними есть связь.

Связь между тангенциальным и угловым ускорением выглядит аналогично связи между линейной и угловой скоростью.

В векторном виде

В скалярном виде

[ large boxed < a_= beta cdot R >]

(displaystyle vec left( frac<text><c^>right)) – угловое ускорение;

(displaystyle vec< a_> left( frac<text><c^>right)) – тангенциальное ускорение;

(R left( textright)) – радиус окружности.

Видео:Урок 43. Криволинейное движение. Равномерное движение по окружности. Центростремительное ускорениеСкачать

Урок 43. Криволинейное движение. Равномерное движение по окружности. Центростремительное ускорение

Равноускоренное движение по окружности

Угловая скорость увеличивается (рис. 2), когда угловое ускорение сонаправлено с вектором угловой скорости. Когда движение происходит с постоянным ускорением, его называют равноускоренным.

Для решения задач на равноускоренное движение по окружности, поступаем аналогично равноускоренному движению по прямой. Применяем систему из двух уравнений:

[ large boxed < beginomega = omega _ + beta cdot t \ displaystyle varphi = omega_ cdot t + beta cdot frac end > ]

Первое уравнение системы – это связь между начальной (omega_ ) и конечной (omega ) скоростью. Второе уравнение – это уравнение движения.

Видео:Урок 89. Движение по окружности (ч.1)Скачать

Урок 89. Движение по окружности (ч.1)

Равнозамедленное движение по окружности

Когда векторы (vec) и (vec) направлены в противоположные стороны, угловая скорость (vec) уменьшается (рис. 3).

Для решения задач кинематики, в которых угловая скорость уменьшается и, движение равнозамедленное, используем систему, состоящую из таких уравнений:

[ large boxed < beginomega = omega _ — beta cdot t \ displaystyle varphi = omega_ cdot t — beta cdot frac end > ]

Видео:Движение тела по окружности с постоянной по модулю скоростью | Физика 9 класс #18 | ИнфоурокСкачать

Движение тела по окружности с постоянной по модулю скоростью | Физика 9 класс #18 | Инфоурок

Общее ускорение при движении по окружности

Пусть точка движется по окружности и линейная (vec) скорость ее изменяется по модулю. При этом, точка обладает двумя видами ускорения — нормальным и тангенциальным. Эти виды ускорения обозначают символом (vec).

Примечание: Любое ускорение, обозначаемое символом «a», измеряется в метрах, деленных на секунду в квадрате.

Равноускоренное движение по окружности графики

Направление вектора общего ускорения указано на рисунке 4а, а для равнозамедленного – на рисунке 4б.

Так как векторы (vec<a_>) и (vec<a_>) всегда перпендикулярны, длину вектора общего ускорения (vec) можно найти из теоремы Пифагора:

Видео:Равномерное движение точки по окружности | Физика 10 класс #7 | ИнфоурокСкачать

Равномерное движение точки по окружности | Физика 10 класс #7 | Инфоурок

Равноускоренное движение: формулы, примеры

Видео:Физика 10 класс (Урок№4 - Равномерное движение точки по окружности.)Скачать

Физика 10 класс (Урок№4 - Равномерное движение точки по окружности.)

Равноускоренное движение

Равноускоренное движение — это движение, при котором вектор ускорения не меняется по модулю и направлению. Примеры такого движения: велосипед, который катится с горки; камень брошенный под углом к горизонту. Равномерное движение — частный случай равноускоренного движения с ускорением, равным нулю.

Рассмотрим случай свободного падения (тело брошено под уголом к горизонту) более подробно. Такое движение можно представить в виде суммы движений относительно вертикальной и горизонтальной осей.

В любой точке траектории на тело действует ускорение свободного падения g → , которое не меняется по величине и всегда направлено в одну сторону.

Равноускоренное движение по окружности графики

Вдоль оси X движение равномерное и прямолинейное, а вдоль оси Y — равноускоренное и прямолинейное. Будем рассматривать проекции векторов скорости и ускорения на оси.

Видео:Равноускоренное движение по окружностиСкачать

Равноускоренное движение по окружности

Формулы для равноускоренного движения

Формула для скорости при равноускоренном движении:

Здесь v 0 — начальная скорость тела, a = c o n s t — ускорение.

Покажем на графике, что при равноускоренном движении зависимость v ( t ) имеет вид прямой линии.

Равноускоренное движение по окружности графики​​​​​​​

Ускорение можно определить по углу наклона графика скорости. На рисунке выше модуль ускорения равен отношению сторон треугольника ABC.

a = v — v 0 t = B C A C

Чем больше угол β , тем больше наклон (крутизна) графика по отношению к оси времени. Соответственно, тем больше ускорение тела.

Для первого графика: v 0 = — 2 м с ; a = 0 , 5 м с 2 .

Для второго графика: v 0 = 3 м с ; a = — 1 3 м с 2 .

По данному графику можно также вычислить перемещение тела за время t . Как это сделать?

Выделим на графике малый отрезок времени ∆ t . Будем считать, что он настолько мал, что движение за время ∆ t можно считать равномерным движением со скоростью, равной скорости тела в середине промежутка ∆ t . Тогда, перемещение ∆ s за время ∆ t будет равно ∆ s = v ∆ t .

Разобьем все время t на бесконечно малые промежутки ∆ t . Перемещение s за время t равно площади трапеции O D E F .

s = O D + E F 2 O F = v 0 + v 2 t = 2 v 0 + ( v — v 0 ) 2 t .

Мы знаем, что v — v 0 = a t , поэтому окончательная формула для перемещения тела примет вид:

s = v 0 t + a t 2 2

Для того, чтобы найти координату тела в данный момент времени, нужно к начальной координате тела добавить перемещение. Изменение координаты в зависимости от времени выражает закон равноускоренного движения.

Видео:Урок 47. Неравномерное движение по окружности. Тангенциальное ускорениеСкачать

Урок 47. Неравномерное движение по окружности. Тангенциальное ускорение

Закон равноускоренного движения

y = y 0 + v 0 t + a t 2 2 .

Еще одна распространенная задача кинематики, которая возникает при анализе равноускоренного движения — нахождение координаты при заданных значениях начальной и конечной скоростей и ускорения.

Исключая из записанных выше уравнений t и решая их, получаем:

s = v 2 — v 0 2 2 a .

По известным начальной скорости, ускорению и перемещению можно найти конечную скорость тела:

v = v 0 2 + 2 a s .

При v 0 = 0 s = v 2 2 a и v = 2 a s

Величины v , v 0 , a , y 0 , s , входящие в выражения, являются алгебраическими величинами. В зависимости от характера движения и направления координатных осей в условиях конкретной задачи они могут принимать как положительные, так и отрицательные значения.

📸 Видео

Кинематика за 8 минСкачать

Кинематика за 8 мин

Решение графических задач на равномерное движениеСкачать

Решение графических задач на равномерное движение

Скорость прямолинейного равноускоренного движения. График скорости | Физика 9 класс #6 | ИнфоурокСкачать

Скорость прямолинейного равноускоренного движения. График скорости | Физика 9 класс #6 | Инфоурок

Равноускоренное движение по окружности [Физзадачи #15]Скачать

Равноускоренное движение по окружности [Физзадачи #15]

Урок 15. Решение задач на графики движенияСкачать

Урок 15. Решение задач на графики движения
Поделиться или сохранить к себе: