Как узнать лежат ли векторы в одной плоскости

Компланарные векторы, исследование системы векторов на компланарность.

В этой статье мы поговорим о компланарности векторов. Сначала вспомним определение компланарности и получим необходимое и достаточное условие компланарности трех векторов в трехмерном пространстве. Далее разберемся с задачей исследования системы из n векторов на компланарность, рассмотрим решения характерных примеров.

Навигация по странице.

Видео:Как проверить лежат ли 4 точки в одной плоскости Аналитическая геометрияСкачать

Как проверить лежат ли 4 точки в одной плоскости  Аналитическая геометрия

Необходимое и достаточное условие компланарности трех векторов.

Напомним определение компланарных векторов.

Векторы называются компланарными, если они принадлежат одной или параллельным плоскостям.

Два вектора Как узнать лежат ли векторы в одной плоскостии Как узнать лежат ли векторы в одной плоскоститрехмерного пространства всегда компланарны. Это утверждение легко доказать. Пусть a и b – прямые, на которых лежат векторы Как узнать лежат ли векторы в одной плоскостии Как узнать лежат ли векторы в одной плоскостисоответственно. Проведем через начало вектора Как узнать лежат ли векторы в одной плоскостипрямую b1 , параллельную прямой b , а через начало вектора Как узнать лежат ли векторы в одной плоскостипрямую a1 , праллельную прямой a . Плоскости, образуемые прямыми a и b1 , а так же прямыми b и a1 , параллельны по построению, а векторы Как узнать лежат ли векторы в одной плоскостии Как узнать лежат ли векторы в одной плоскостипринадлежат им. Следовательно, векторы Как узнать лежат ли векторы в одной плоскостии Как узнать лежат ли векторы в одной плоскостикомпланарны.

А как же определить, являются ли три вектора компланарными?

Для этого существует необходимое и достаточное условие компланарности трех векторов в пространстве. Оно основано на понятии смешанного произведения векторов. Сформулируем его в виде теоремы.

Для компланарности трех векторов Как узнать лежат ли векторы в одной плоскостии Как узнать лежат ли векторы в одной плоскоститрехмерного пространства необходимо и достаточно, чтобы их смешанное произведение равнялось нулю.

Пусть Как узнать лежат ли векторы в одной плоскости, докажем что векторы Как узнать лежат ли векторы в одной плоскостии Как узнать лежат ли векторы в одной плоскостикомпланарны.

Так как Как узнать лежат ли векторы в одной плоскости, то векторы Как узнать лежат ли векторы в одной плоскостии Как узнать лежат ли векторы в одной плоскостиперпендикулярны в силу необходимого и достаточного условия перпендикулярности двух векторов. С другой стороны, по определению векторного произведения вектор Как узнать лежат ли векторы в одной плоскостиперпендикулярен и вектору Как узнать лежат ли векторы в одной плоскостии вектору Как узнать лежат ли векторы в одной плоскости. Следовательно, векторы Как узнать лежат ли векторы в одной плоскостии Как узнать лежат ли векторы в одной плоскостикомпланарны, так как перпендикулярны одному вектору Как узнать лежат ли векторы в одной плоскости.

Пусть теперь векторы Как узнать лежат ли векторы в одной плоскостии Как узнать лежат ли векторы в одной плоскостикомпланарны, докажем равенство нулю смешанного произведения Как узнать лежат ли векторы в одной плоскости.

Так как векторы Как узнать лежат ли векторы в одной плоскостии Как узнать лежат ли векторы в одной плоскостикомпланарны, то вектор Как узнать лежат ли векторы в одной плоскостиперпендикулярен каждому из них, следовательно, скалярное произведение вектора Как узнать лежат ли векторы в одной плоскостина Как узнать лежат ли векторы в одной плоскостиравно нулю, что означает равенство нулю смешанного произведения Как узнать лежат ли векторы в одной плоскости.

Итак, теорема полностью доказана.

Покажем применение доказанного условия компланарности трех векторов к решению задач.

Компланарны ли векторы Как узнать лежат ли векторы в одной плоскости, заданные в прямоугольной системе координат.

Вычислим их смешанное произведение по координатам:
Как узнать лежат ли векторы в одной плоскости

Так как мы получили ноль, то условие компланарности выполнено, следовательно, заданные векторы компланарны.

Необходимое и достаточное условие компланарности векторов можно использовать для проверки принадлежности четырех точек пространства А, В, С и D одной плоскости. Для этого находим координаты векторов Как узнать лежат ли векторы в одной плоскостии вычисляем их смешанное произведение. Если оно равно нулю, то точки лежат в одной плоскости, в противном случае – не лежат в одной плоскости.

Принадлежат ли точки Как узнать лежат ли векторы в одной плоскостиодной плоскости?

Найдем координаты векторов Как узнать лежат ли векторы в одной плоскости(при необходимости смотрите статью нахождение координат вектора по координатам точек его начала и конца):
Как узнать лежат ли векторы в одной плоскости

Теперь вычисляем смешанное произведение этих векторов
Как узнать лежат ли векторы в одной плоскости

Так как смешанное произведение векторов отлично от нуля, то векторы Как узнать лежат ли векторы в одной плоскостине компланарны, следовательно, точки А, В, С и D не лежат в одной плоскости.

Видео:Доказать, что точки лежат в одной плоскости - bezbotvyСкачать

Доказать, что точки лежат в одной плоскости - bezbotvy

Исследование системы векторов на компланарность, примеры и решения.

А как же быть, если требуется установить компланарность системы векторов, число векторов которой больше трех?

Давайте ответим на этот вопрос и получим условие компланарности системы из n векторов трехмерного пространства.

В предыдущем пункте мы показали, что для компланарности трех векторов Как узнать лежат ли векторы в одной плоскостии Как узнать лежат ли векторы в одной плоскостинеобходимо и достаточно равенство нулю их смешанного произведения: Как узнать лежат ли векторы в одной плоскости. Так как смешанное произведение трех векторов в координатной форме представляет собой определитель матрицы, строками которой являются координаты векторов Как узнать лежат ли векторы в одной плоскостии Как узнать лежат ли векторы в одной плоскости, то условие компланарности можно записать в виде Как узнать лежат ли векторы в одной плоскости. Вспомнив понятие ранга матрицы, последнее равенство можно интерпретировать следующим образом: ранг матрицы, строками которой являются координаты компланарных векторов Как узнать лежат ли векторы в одной плоскостии Как узнать лежат ли векторы в одной плоскости, меньше трех.

Обобщив последнее утверждение, мы получим необходимое и достаточное условие компланарности системы из n векторов трехмерного пространства: для компланарности системы из n векторов трехмерного пространства необходимо и достаточно, чтобы ранг матрицы, строками которой являются координаты векторов системы, был меньше трех.

Компланарны ли векторы
Как узнать лежат ли векторы в одной плоскости

Составим матрицу, строками которой примем координаты данных векторов
Как узнать лежат ли векторы в одной плоскости

Сразу легко отыскать минор второго порядка, отличный от нуля, Как узнать лежат ли векторы в одной плоскости.

Переберем окаймляющие его миноры третьего порядка:
Как узнать лежат ли векторы в одной плоскости

Все они равны нулю, следовательно, ранг матрицы равен двум, поэтому, векторы заданной системы векторов компланарны в силу выполнения необходимого и достаточного условия компланарности.

Видео:Компланарны ли векторы: a=(2;5;8), b=(1;-3;-7) и c=(0;5;10)?Скачать

Компланарны ли векторы: a=(2;5;8), b=(1;-3;-7) и c=(0;5;10)?

Компланарные векторы и условие компланарности

В данной статье мы рассмотрим такие темы, как:

  • определение компланарных векторов;
  • условия компланарности векторов;
  • примеры задач на компланарность векторов.

Видео:Доказать, что векторы a, b, c образуют базис и найти координаты вектора d в этом базисеСкачать

Доказать, что векторы a, b, c образуют базис и найти координаты вектора d в этом базисе

Определение компланарных векторов

Компланарные векторы — это векторы, которые параллельны одной плоскости или лежат на одной плоскости.

Два любых вектора всегда компланарны, поскольку всегда можно найти плоскости параллельные 2-м произвольным векторам.

Видео:Математика без Ху!ни. Уравнение плоскости.Скачать

Математика без Ху!ни. Уравнение плоскости.

Условия компланарности векторов

  • Для 3-х векторов выполняется условие: если смешанное произведение 3-х векторов равно нулю, то эти три вектора компланарны.
  • Для 3-х векторов выполняется условие: если три вектора линейно зависимы, то они компланарны.
  • Для n-векторов выполняется условие: если среди векторов не более 2-х линейно независимых векторов, то они компланарны.

Примеры решения задач на компланарность векторов

Исследуем на компланарность векторы

a ¯ = ( 1 ; 2 ; 3 ) , b = ( 1 ; 1 ; 1 ) и c ¯ = ( 1 ; 2 ; 1 )

Как решить?

Векторы будут являться компланарными, если их смешанное произведение равно нулю, поэтому вычисляем смешанное произведение заданных векторов. Для этого составляем определитель, по строкам которого записываются координаты векторов-сомножителей:

( a ¯ , b ¯ , c ¯ ) = 1 2 3 1 1 1 1 2 1 = = 1 × 1 × 1 + 1 × 2 × 3 + 2 × 1 × 1 — 1 × 1 × 3 — 2 × 1 × 1 — 1 × 2 × 1 = 2 ≠ 0

Отсюда следует, что смешанное произведение не равняется нулю, поэтому векторы не являются компланарными.

Ответ: векторы не являются компланарными.

Докажем, что три вектора

a ¯ = ( 1 ; — 1 ; 2 ) , b = ( 0 ; 1 ; — 1 ) и c ¯ = ( 2 ; — 2 ; 4 ) компланарны.

Как решить?

Находим смешанное произведение данных векторов:

( a ¯ , b ¯ , c ¯ ) = 1 — 1 2 0 1 — 1 2 — 2 4 = = 1 × 1 × 4 + 0 × ( — 2 ) × 2 + ( — 1 ) × ( — 1 ) × × 2 — 2 × 1 × 2 — ( — 2 ) × ( — 1 ) × 1 — 0 × ( — 1 )

Из данного примера видно, что смешанное произведение равняется нулю.

Ответ: векторы являются компланарными.

Проверим, компланарны ли векторы

Как решить?

Необходимо найти количество линейно независимых векторов: записываем значения векторов в матрицу и выполняем элементарные преобразования:

1 1 1 1 2 0 0 — 1 1 3 3 3

Из 2-ой строки вычитаем 1-ю, из 4-ой вычитаем 1-ю, умноженную на 3:

1 1 1 1 — 1 2 — 1 0 — 1 0 — 1 1 3 — 3 3 — 3 3 — 3

1 1 1 0 1 — 1 0 — 1 1 0 0 0

К 3-ей строке прибавляем 2-ю:

1 1 1 0 1 — 1 0 + 0 — 1 + 1 1 + ( — 1 ) 3 — 3 3 — 3 3 — 3

1 1 1 0 1 — 1 0 0 0 0 0 0

Поскольку в матрице только две ненулевые строки, делаем вывод, что среди них всего два линейно независимых вектора.

Ответ: векторы являются компланарными, поскольку среди них всего два линейно независимых вектора.

Видео:№4. Точки А, В, С и D не лежат в одной плоскости, а) Могут ли какие-то три изСкачать

№4. Точки А, В, С и D не лежат в одной плоскости, а) Могут ли какие-то три из

Компланарность векторов. Условия компланарности векторов.

Как узнать лежат ли векторы в одной плоскости
рис. 1

Всегда возможно найти плоскости параллельную двум произвольным векторам, по этому любые два вектора всегда компланарные.

Видео:Как разложить вектор по базису - bezbotvyСкачать

Как разложить вектор по базису - bezbotvy

Условия компланарности векторов

Видео:Компланарные векторы. Видеоурок 18. Геометрия 10 классСкачать

Компланарные векторы. Видеоурок 18. Геометрия 10 класс

Примеры задач на компланарность векторов

Решение: найдем смешанное произведение векторов

a · [ b × с ] =123=
111
121

= 1·1·1 + 1·1·2 + 1·2·3 — 1·1·3 — 1·1·2 — 1·1·2 = 1 + 2 + 6 — 3 — 2 — 2 = 2

Ответ: вектора не компланарны так, как их смешанное произведение не равно нулю.

Решение: найдем смешанное произведение векторов

a · [ b × с ] =111=
131
222

= 1·2·3 + 1·1·2 + 1·1·2 — 1·2·3 — 1·1·2 — 1·1·2 = 6 + 2 + 2 — 6 — 2 — 2 = 0

Ответ: вектора компланарны так, как их смешанное произведение равно нулю.

Решение: найдем количество линейно независимых векторов, для этого запишем значения векторов в матрицу, и выполним над ней элементарные преобразования

Как узнать лежат ли векторы в одной плоскости111Как узнать лежат ли векторы в одной плоскости
120
0-11
333

из 2-рой строки вычтем 1-вую; из 4-той строки вычтем 1-вую умноженную на 3

Как узнать лежат ли векторы в одной плоскости111Как узнать лежат ли векторы в одной плоскостиКак узнать лежат ли векторы в одной плоскости111Как узнать лежат ли векторы в одной плоскости1 — 12 — 10 — 101-10-110-113 — 33 — 33 — 3000

к 3-тей строке добавим 2-рую

Как узнать лежат ли векторы в одной плоскости111Как узнать лежат ли векторы в одной плоскости

Как узнать лежат ли векторы в одной плоскости111Как узнать лежат ли векторы в одной плоскости01-101-10 + 0-1 + 11 + (-1)0003 — 33 — 33 — 3000

Так как осталось две ненулевые строки, то среди приведенных векторов лишь два линейно независимых вектора.

Ответ: вектора компланарны так, как среди приведенных векторов лишь два линейно независимых вектора.

🎥 Видео

Координаты точки и координаты вектора 1.Скачать

Координаты точки и координаты вектора 1.

№12. Точки А, В, С, D не лежат в одной плоскости. Пересекаются ли плоскости, проходящие через точкиСкачать

№12. Точки А, В, С, D не лежат в одной плоскости. Пересекаются ли плоскости, проходящие через точки

№3. Верно ли, что: а) любые три точки лежат в одной плоскости;Скачать

№3. Верно ли, что: а) любые три точки лежат в одной плоскости;

Аналитическая геометрия, 1 урок, Векторы в пространствеСкачать

Аналитическая геометрия, 1 урок, Векторы в пространстве

Математика без Ху!ни. Смешанное произведение векторовСкачать

Математика без Ху!ни. Смешанное произведение векторов

На рисунке представлены три вектора сил, лежащих в одной плоскости - №22717Скачать

На рисунке представлены три вектора сил, лежащих в одной плоскости - №22717

18+ Математика без Ху!ни. Скалярное произведение векторов. Угол между векторами.Скачать

18+ Математика без Ху!ни. Скалярное произведение векторов. Угол между векторами.

Вектор. Сложение и вычитание. 9 класс | МатематикаСкачать

Вектор. Сложение и вычитание. 9 класс | Математика

Найдите разложение вектора по векторам (базису)Скачать

Найдите разложение вектора по векторам (базису)

10 класс, 43 урок, Компланарные векторыСкачать

10 класс, 43 урок, Компланарные векторы

4. Уравнение плоскости проходящей через три точки / в отрезках / доказательство и примерыСкачать

4. Уравнение плоскости проходящей через три точки / в отрезках / доказательство и примеры

ВЫЧИТАНИЕ ВЕКТОРОВ ЧАСТЬ I #егэ #огэ #математика #геометрия #профильныйегэСкачать

ВЫЧИТАНИЕ ВЕКТОРОВ ЧАСТЬ I #егэ #огэ #математика #геометрия #профильныйегэ
Поделиться или сохранить к себе: