Разделы: Математика
Задачи на вписанные в треугольник и описанные около треугольника окружности вызывают даже у сильных учащихся затруднения при их решении. Попытка провести классификацию этих задач по содержанию и методам решения привела к положительным результатам. Учащиеся полюбили этот тип задач. Хотим поделиться нашим опытом.
- Замечательное открытие: люди изобрели колесо.
- Окружность, описанная около треугольника.
- Окружность, вписанная в треугольник.
- Задачи на вписанные и описанные окружности.
На востоке от Аравийского полуострова с севера на юг текут две большие реки – Евфрат и Тигр. Между ними тянется узкая длинная полоса земли. В древности она называлась Месопотамией, что в переводе означает “ Междуречье’’. Самым известным государством Месопотамии был Вавилон. Земля в Междуречье плодородная, но там не было ни металлов, ни камня, ни леса, чтобы строить дома. Всё это вавилонянам приходилось покупать у других народов. Поэтому Вавилон раньше других стран стал вести большую торговлю. Торговля помогала науке. В математике вавилонские учёные добились больших успехов.
Около шести тысяч лет назад в Вавилоне было сделано замечательное открытие: люди изобрели колесо. Колесо? Что же тут замечательного? Но так кажется только на первый взгляд. Представьте себе на секунду, что вдруг случилось чудо, и на земле исчезли все колёса. Это было бы настоящей катастрофой! Остановятся автомобили и поезда, замрут заводы и фабрики, перестанут давать ток электростанции. Выходит, что неизвестный вавилонский изобретатель первого колеса действительно сделал великое открытие.
Вавилонские инженеры и мастера стали пользоваться блоками. Они поднимали и перетаскивали такие тяжести, справиться с которыми без колеса было бы не под силу. Колесо и рычаг стали первыми настоящими помощниками человека в работе с большими тяжестями.Так изобретение колеса сыграло очень большую роль в истории Вавилона.
Окружность называется описанной около многоугольника, если все вершины многоугольника лежат в окружности.
Окружность называется вписанной в многоугольник, если все стороны многоугольника касаются окружности.
Теорема. Около любого треугольника можно описать окружность.
Доказательство: Рассмотрим произвольный В треугольник АВС. Обозначим буквой О точку пересечения серединных перпендикуляров к его сторонам и проведём отрезки ОА, ОВ и ОС. Так как точка О равноудалена от вершин треугольника АВС, то ОА=ОВ=ОС. Поэтому окружность с центром О радиуса ОА проходит через О все три вершины треугольника и, значит, является описанной около треугольника АВС.
Вывод: Центр описанной около треугольника окружности лежит А С на пересечении серединных перпендикуляров и расположен:
а) в треугольнике, если он остроугольный;
б) на середине гипотенузы, если он прямоугольный;
в) вне треугольника, если он тупоугольный.
Рассмотрим задачи на нахождение радиуса описанной около треугольника окружности. (См. Приложение1.)
Окружность называется вписанной в многоугольник, если все стороны многоугольника касаются окружности.
Теорема. В любой треугольник можно вписать окружность.
Доказательство: Рассмотрим произвольный треугольник АВС и обозначим М буквой О точку пересечения его биссектрис. Проведём из точки О перпендикуляры А К В ОК, ОL и ОМ соответственно к сторонам АВ, ВС и СА.
Так как точка О равноудалена A k B от сторон треугольника АВС то ОК = ОL=ОМ. Поэтому окружность с центром О радиуса ОК проходит через точки К, L и М.
Стороны треугольника АВС касаются этой окружности в точках К, L и М, так как они перпендикулярны к радиусам ОК, ОL и ОМ.
Значит, окружность с центром О радиуса ОК является вписанной в треугольник АВС.
Выводы. Центр вписанной в треугольник окружности лежит в точке пересечения биссектрис треугольника. Касательная к окружности (стороны треугольника) перпендикулярна к радиусу, проведённому в точку касания.
Рассмотрим задачи на нахождение радиуса вписанной в треугольник окружности.
Задачи на вписанную и описанную окружность. (См. Приложение 3.)
Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать
Вписанные и описанные треугольники. Еще две формулы площади треугольника. Теорема синусов
Вписанный треугольник — треугольник, все вершины которого лежат на окружности. Тогда окружность называется описанной вокруг треугольника.
Очевидно, расстояние от центра описанной окружности до каждой из вершин треугольника одинаково и равно радиусу этой окружности.
Вокруг любого треугольника можно описать окружность, причем только одну.
Окружность вписана в треугольник, если она касается всех его сторон. Тогда сам треугольник будет описанным вокруг окружности. Расстояние от центра вписанной окружности до каждой из сторон треугольника равно радиусу этой окружности.
В любой треугольник можно вписать окружность, причем только одну.
Попробуйте сами описать окружность вокруг треугольника и вписать окружность в треугольник.
Как вы думаете, почему центр вписанной окружности — это точка пересечения биссектрис треугольника, а центр описанной окружности — точка пересечения серединных перпендикуляров к его сторонам?
В задачах ЕГЭ чаще всего встречаются вписанные и описанные правильные треугольники.
Есть и другие задачи. Для их решения вам понадобятся еще две формулы площади треугольника, а также теорема синусов.
Вот еще две формулы для площади.
Площадь треугольника равна половине произведения его периметра на радиус вписанной окружности.
— радиус окружности, вписанной в треугольник.
Есть и еще одна формула, применяемая в основном в задачах части :
где — стороны треугольника, — радиус описанной окружности.
Для любого треугольника верна теорема синусов:
Ты нашел то, что искал? Поделись с друзьями!
. Радиус окружности, вписанной в равнобедренный прямоугольный треугольник, равен . Найдите гипотенузу c этого треугольника. В ответе укажите .
Треугольник прямоугольный и равнобедренный. Значит, его катеты одинаковы. Пусть каждый катет равен . Тогда гипотенуза равна .
Запишем площадь треугольника АВС двумя способами:
Приравняв эти выражения, получим, что . Поскольку , получаем, что . Тогда .
В ответ запишем .
. Сторона АС треугольника АВС с тупым углом В равна радиусу описанной около него окружности. Найдите угол В. Ответ дайте в градусах.
По теореме синусов,
Получаем, что . Угол — тупой. Значит, он равен .
. Боковые стороны равнобедренного треугольника равны , основание равно . Найдите радиус описанной окружности этого треугольника.
Углы треугольника не даны. Что ж, выразим его площадь двумя разными способами.
, где — высота треугольника. Ее найти несложно — ведь в равнобедренном треугольнике высота является также и медианой, то есть делит сторону пополам. По теореме Пифагора найдем . Тогда .
Задачи на вписанные и описанные треугольники особенно необходимы тем, кто нацелен на решения задания .
Видео:Строим вписанную в данный треугольник окружность (Задача 2).Скачать
Треугольники и окружность — задачи с примерами решения
Пример:
Длина катета ВС прямоугольного треугольника АСВ равна 15 см, а его катет АС является диаметром окружности, которая пересекает гипотенузу в точке F, CF =12 см. Вычислите радиус окружности.
Решение:
Из условия следует, что радиус R равен половине катета АС. Заметим, что
1) В треугольнике
2) Воспользовавшись равенством найдем
3) Теперь
4) Квадрат длины катета прямоугольного треугольника равен произведению длины гипотенузы и длины проекции этого катета на гипотенузу, следовательно,
Таким образом,
Пример:
Решение:
По теореме об угле между хордой и касательной Так как точки С и В диаметрально противоположные, то угол САВ опирается на диаметр, а следовательно, он прямой, т. е. треугольник САВ — прямоугольный (рис. 109, а, б). Расстояние от точки С до точки касания А равно длине катета СА треугольника САВ. Так как
Ответ
Пример:
Вычислите радиус окружности, вписанной в равнобедренный треугольник ABC, если длина его основания АС равна 24 см, а высота BD, проведенная к основанию, равна 9 см.
Решение:
Для вычисления радиуса г вписанной окружности воспользуемся формулой где S — площадь треугольника, р — его полупериметр. Отсюда получим
1) Площадь треугольника
2) В прямоугольном треугольнике ADB длина катета
3) Теперь полупериметр
4) Таким образом, найдем
Пример:
В равнобедренном треугольнике ABC с основанием АС на стороне ВС лежит точка D так, что В каком отношении точка О пересечения отрезка AD и высоты BE делит высоту BE, считая от вершины В?
Решение:
1) Так как (рис. 111, а, б). Проведем отрезок , параллельный отрезку AD.
2) Так как высота, проведенная к основанию равнобедренного треугольника, является медианой, то точка Е — середина стороны АС.
3) По признаку средней линии отрезок EF — средняя линия треугольника ADC, значит,
4) Так как
Ответ:
Пример:
Отрезки AF и СТ — высоты остроугольного треугольника ABC. Найдите радиус окружности, описанной около треугольника BTF, если A ABC = 60° и АС = b.
Решение:
Воспользуемся теоремой синусов и тем, что треугольник ABC подобен треугольнику BTF.
1) В треугольнике BTF по теореме синусов выполняется равенствоСледовательно, (рис. 112, a, 6).
2) Рассмотрим треугольники ABC и FTC. Эти треугольники подобны. Действительно,
Следовательно,т.е. треугольники подобны с коэффициентом подобия
3) Из подобия треугольников ABC и FTC следует, что Таким образом,
Ответ:
Пример:
Отрезок BD — биссектриса треугольника ABC. Известно, что Докажите, что (рис. 113, а).
Рассмотрим окружность, описанную около треугольника ABC. Пусть прямая BD пересекает окружность в точке F и DF = х (рис. 113, б).
1) По свойству отрезков пересекающихся хорд выполняется равенство
2) Треугольники ABD и FBC подобны, так как по условию и поскольку являются вписанными в окружность и опираются на одну и ту же дугу.
3) Из подобия треугольников ABD и FBC следует, что Отсюда
3) Таким образом,
Что и требовалось доказать.
Рекомендую подробно изучить предметы: |
|
Ещё лекции с примерами решения и объяснением: |
- Площадь треугольника
- Соотношения между сторонами и углами произвольного треугольника
- Окружность и круг
- Описанные и вписанные окружности
- Пространственные фигуры — виды, изображения, свойства
- Взаимное расположения прямых на плоскости
- Треугольник
- Решение треугольников
При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org
Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи
Сайт пишется, поддерживается и управляется коллективом преподавателей
Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.
Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.
🎦 Видео
Окружность вписанная в треугольник и описанная около треугольника.Скачать
Вписанные и описанные окружности. Вебинар | МатематикаСкачать
Вписанная и описанная окружности | Лайфхак для запоминанияСкачать
Вписанная и описанная окружность - от bezbotvyСкачать
Построить описанную окружность (Задача 1)Скачать
РЕШЕНИЕ ЗАДАЧИ ПО ТЕМЕ «ОКРУЖНОСТЬ, ВПИСАННАЯ В ТРЕУГОЛЬНИК». Задачи | ГЕОМЕТРИЯ 7 классСкачать
Правильные многоугольники. Геометрия 9 класс | Математика | TutorOnlineСкачать
Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачиСкачать
Радиус описанной окружностиСкачать
Задача 6 №27910 ЕГЭ по математике. Урок 130Скачать
Вписанные и описанные четырехугольники. Практическая часть. 9 класс.Скачать
Описанная и вписанная окружности треугольника - 7 класс геометрияСкачать
Задание 16 ОГЭ по математике. Окружность вписана в равносторонний треугольник.Скачать
Вписанная и описанная окружности. ЗадачиСкачать
Геометрия 8 класс : Решение задач. Вписанная окружностьСкачать
16 задача ОГЭ: четырёхугольник, вписанный в окружность; подобные треугольникиСкачать
Треугольник и окружность #shortsСкачать
Геометрия 9 класс. Вписанные и описанные окружности. Ключевая задача № 4.Скачать