Боковая сторона равнобедренного треугольника равна 4. Угол при вершине, противолежащий основанию, равен 120°. Найдите диаметр окружности, описанной около этого треугольника.
Воспользуемся теоремой косинусов:
(здесь a и b — боковые стороны равнобедренного треугольника, c — основание.
Диаметр описанной окружности найдем по обобщенной теореме синусов:
Вместо того, чтобы искать основание треугольника, можно было найти угол при основании. Действительно, сумма углов при основании данного равнобедренного треугольника равна 60°. Эти углы равны, поэтому каждый из них равен 30°. Применяя обобщенную теорему синусов для боковой стороны и противолежащего ей угла, получаем:
Приведем решение Андрея Ларионова.
Угол при основании равен
Следовательно, дуга описанной окружности, на которую он опирается, равна 2 · 30° = 60°. Эту дугу стягивает боковая сторона треугольника.
Хорда, стягивающая дугу в 60°, равна радиусу окружности, поэтому радиус описанной окружности равен боковой стороне треугольника, тогда D = 2 · 4 = 8.
- Геометрия. Урок 5. Окружность
- Определение окружности
- Отрезки в окружности
- Дуга в окружности
- Углы в окружности
- Длина окружности, длина дуги
- Площадь круга и его частей
- Теорема синусов
- Примеры решений заданий из ОГЭ
- Подбор задач по математике на тему»Окружность .Подготовка к ОГЭ»(9 класс)
- Коммуникативный педагогический тренинг: способы взаимодействия с разными категориями учащихся
- 📽️ Видео
Видео:Все типы 15 задания ОГЭ 2022 математика | Геометрия на ОГЭСкачать
Геометрия. Урок 5. Окружность
Смотрите бесплатные видео-уроки на канале Ёжику Понятно.
Видео-уроки на канале Ёжику Понятно. Подпишись!
Содержание страницы:
- Определение окружности
- Отрезки в окружности
Видео:Как решать задания на окружность ОГЭ 2021? / Разбор всех видов окружностей на ОГЭ по математикеСкачать
Определение окружности
Окружность – геометрическое место точек, равноудаленных от данной точки.
Эта точка называется центром окружности .
Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать
Отрезки в окружности
Радиус окружности R – отрезок, соединяющий центр окружности с точкой на окружности.
Хорда a – отрезок, соединяющий две точки на окружности.
Диаметр d – хорда, проходящая через центр окружности, он равен двум радиусам окружности ( d = 2 R ).
O A – радиус, D E – хорда, B C – диаметр.
Теорема 1:
Радиус, перпендикулярный хорде, делит пополам эту хорду и дугу, которую она стягивает.
Касательная к окружности – прямая, имеющая с окружностью одну общую точку.
Из одной точки, лежащей вне окружности, можно провести две касательные к данной окружности.
Теорема 2:
Отрезки касательных, проведенных из одной точки, равны ( A C = B C ).
Теорема 3:
Касательная перпендикулярна радиусу, проведенному к точке касания.
Видео:Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачиСкачать
Дуга в окружности
Часть окружности, заключенная между двумя точками, называется дугой окружности .
Например, хорда A B стягивает две дуги: ∪ A M B и ∪ A L B .
Теорема 4:
Равные хорды стягивают равные дуги.
Если A B = C D , то ∪ A B = ∪ C D
Видео:ВСЯ ГЕОМЕТРИЯ ИЗ ОГЭ ПО МАТЕМАТИКЕ 2023 ЗА 40 МИНУТСкачать
Углы в окружности
В окружности существует два типа углов: центральные и вписанные.
Центральный угол – угол, вершина которого лежит в центре окружности.
∠ A O B – центральный.
Центральный угол равен градусной мере дуги, на которую он опирается . ∪ A B = ∠ A O B = α
Если провести диаметр, то он разобьёт окружность на две полуокружности. Градусная мера каждой полуокружности будет равна градусной мере развернутого угла, который на неё опирается.
Градусная мара всей окружности равна 360 ° .
Вписанный угол – угол, вершина которого лежит на окружности, а стороны пересекают окружность.
∠ A C B – вписанный.
Вписанный угол равен половине градусной меры дуги, на которую он опирается . ∠ A C B = ∪ A B 2 = α 2 ∪ A B = 2 ⋅ ∠ A C B = α
Теорема 5:
Вписанные углы, опирающиеся на одну и ту же дугу, равны .
∠ M A N = ∠ M B N = ∠ M C N = ∪ M N 2 = α 2
Теорема 6:
Вписанный угол, опирающийся на полуокружность (на диаметр), равен 90 ° .
∠ M A N = ∠ M B N = ∪ M N 2 = 180 ° 2 = 90 °
Видео:Урок 7. Окружность, круг и их элементы. ОГЭ. Вебинар |МатематикаСкачать
Длина окружности, длина дуги
Мы узнали, как измеряется градусная мера дуги окружности (она равна градусной мере центрального угла, который на нее опирается) и всей окружности целиком (градусная мера окружности равна 360 ° ). Теперь поговорим о том, что же такое длина дуги в окружности. Длина дуги – это значение, которое мы бы получили, если бы мерили дугу швейным сантиметром. Рассмотрим две окружности с разными радиусами, в каждой из которых построен центральный угол равный α .
Градусная мера дуги ∪ A B равна градусной мере дуги ∪ C D и равна α .
Но невооуруженным глазом видно, что длины дуг разные. Если градусная мера дуги окружности зависит только от величины центрального угла, который на неё опирается, то длина дуги окружности зависит ещё и от радиуса самой окружноси.
Длина окружности находится по формуле:
Длина дуги окружности , на которую опирается центральный угол α равна:
l α = π R 180 ∘ ⋅ α
Видео:Углы в окружности. 16 задание ОГЭ математика 2023 | Молодой РепетиторСкачать
Площадь круга и его частей
Теперь поговорим про площадь круга, площадь сектора и площадь сегмента.
Круг – часть пространства, которая находится внутри окружности.
Иными словами, окружность – это граница, а круг – это то, что внутри.
Примеры окружности в реальной жизни: велосипедное колесо, обруч, кольцо.
Примеры круга в реальной жизни: пицца, крышка от канализационного люка, плоская тарелка.
Площадь круга находится по формуле: S = π R 2
Сектор – это часть круга, ограниченная дугой и двумя радиусами, соединяющими концы дуги с центром круга.
Примеры сектора в реальной жизни: кусок пиццы, веер.
Площадь кругового сектора, ограниченного центральным углом α находится по формуле: S α = π R 2 360 ° ⋅ α
Сегмент – это часть круга, ограниченная дугой и хордой, стягивающей эту дугу.
Примеры сегмента в реальной жизни: мармелад “лимонная долька”, лук для стрельбы.
Чтобы найти площадь сегмента, нужно сперва вычислить площадь кругового сектора, который данный сегмент содержит, а потом вычесть площадь треугольника, который образован центральным углом и хордой.
S = π R 2 360 ° ⋅ α − 1 2 R 2 sin α
Видео:ОГЭ. ПРО ЗОНТИКСкачать
Теорема синусов
Если вокруг произвольного треугольника описана окружность, то её радиус можно найти при помощи теоремы синусов:
a sin ∠ A = b sin ∠ B = c sin ∠ C = 2 R Достаточно знать одну из сторон треугольника и синус угла, который напротив неё лежит. Из этих данных можно найти радиус описанной окружности.
Видео:Хитрости в решении геометрических задач в ОГЭ по математике | Математика TutorOnlineСкачать
Примеры решений заданий из ОГЭ
Модуль геометрия: задания, связанные с окружностями.
Видео:Решаем геометрию 1 и 2 части | Математика ОГЭ 2023 | УмскулСкачать
Подбор задач по математике на тему»Окружность .Подготовка к ОГЭ»(9 класс)
Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.
Видео:Разбор 31 варианта ОГЭ по математике 2024 / ПДФ решение + формулы / МатТаймСкачать
Коммуникативный педагогический тренинг: способы взаимодействия с разными категориями учащихся
Сертификат и скидка на обучение каждому участнику
На окружности с центром О отмечены точки А и В так ,что ∟АОВ =80 0 .Длина меньшей дуги АВ равна 58.Найти длину большей дуги АВ
На окружности отмечены точки А и В так ,что меньшая дуга АВ равна 152 0 .Прямая ВС касается окружности в точке В так, что угол АВС острый. Найдите угол АВС. Ответ дайте в градусах.
Точка О- центр окружности ,на которой лежат точки А,В и С. Известно, что ∟АВС=103 0 и ∟ОАВ=24 0 .Найдите угол ВСО. Ответ дайте в градусах.
В угол С величиной 107 0 вписана окружность, которая касается сторон угла в точках А и В ,точка О- центр окружности .Найдите угол АОВ .Ответ дайте в градусах.
Центр окружности, описанной около треугольника АВС, лежит на стороне АВ. Радиус окружности равен 14,5.Найдите АС, если ВС=21
В треугольнике АВС известно, что АС=7,ВС=24,угол С равен 90 0 .Найдите радиус описанной около этого треугольника окружности
Точка О- центр окружности ,на которой лежат точки А,В и С. Известно, что ∟АВС=50 0 и ∟ОАВ=35 0 .Найдите угол ВСО. Ответ дайте в градусах.
Найдите площадь квадрата, описанного около окружности радиуса 7
Треугольник АВС вписан в окружность с центром в точке О.Найдите угол АСВ, если угол АОВ равен 73 0
Центр окружности, описанной около треугольника АВС, лежит на стороне АВ. Радиус окружности равен 17.Найдите АС, если ВС=30.
Центр окружности описанной около треугольника АВС, лежит на стороне АВ. Радиус окружности равен 20.Найдите ВС, если АС=32.
Сторона равностороннего треугольника 14
.Найдите радиус окружности, описанной около этого треугольника.
Периметр треугольника равен 56,а радиус вписанной окружности равен 4.Найдите площадь этого треугольника
Площадь треугольника равна 205,а его периметр 82.Найдите радиус вписанной окружности
Найдите площадь кольца, ограниченного концентрическими окружностями, радиусы которых равны и
Площадь сектора круга радиуса 22 равна 165.Найдите длину его дуги
Около окружности, радиус которой равен 2,описан многоугольник, площадь которого равна 29.Найдите его периметр
1.Окружность пересекает стороны угла величиной 33 0 с вершиной С в точках А,Е, D и В .Найдите угол ADB ,если угол ЕА D равен 22 0 .Ответ дайте в градусах.
2.Точки А,В,С и D ,последовательно расположенные на окружности в указанном порядке,делят её на четыре дуги,градусные меры которых относятся как 1:2:7:8 (дуга АВ наименьшая)Найдите градусную меру дуги BD ,содержащей точку С
3.Длина окружности равна 6 .Найдите площадь круга, ограниченного этой окружностью
4.Расстояние от центра окружности до хорды длиной 30 равно 8.Найдите радиус окружности
5.Центральный угол на 43 0 больше острого вписанного угла, опирающегося на ту же дугу окружности
6.Окружность с центром О 1 и радиусом проходит через центр О 2 второй окружности и пересекает эту окружность в точках А и В.Найдите радиус второй окружности, если известно, что точка О 1 лежит на отрезке АВ
7.Найдите радиус окружности,вписанной в равносторонний треугольник,одна из медиан которого равна 15
8.Расстояние от вершины А равнобедренного треугольника АВС до центра О вписанной в него окружности равно 29,а длина основания АС треугольника равна 42.Найдите радиус вписанной окружности треугольника
9.Найдите угол при вершине В равнобедренного треугольника АВС с основанием АС, если сторона АВ треугольника стягивает дугу описанной около него окружности, равную 130 0
10 Найдите радиус окружности, описанной около прямоугольного треугольника с катетами 9 и 40
11.Медиана ВМ треугольника АВС является диаметром окружности,пересекающей сторону ВС в её середине.Длина стороны АС равна 7.Найдите радиус описанной окружности треугольника АВС
12.Найдите периметр трапеции,в которую вписана окружность,если средняя линия трапеции равна 33
13.Два угла вписанного в окружность четырёхугольника равны 67 0 и 89 0 .Найдите меньший из оставшихся углов. Ответ дайте в градусах.
14.Центр окружности, описанной около треугольника АВС, лежит на стороне АВ. Радиус окружности равен 13.Найдите АС, если ВС=24
15.На окружности по разные стороны от диаметра АВ взяты точки M и N .Известно, что ∟ NBA =36 0 . Найдите угол NMB .Ответ дайте в градусах.
16 Отрезки АС и BD –диаметры окружности с центром в точке О.Угол АСВ равен 79 0 .Найдите угол АО D . Ответ дайте в градусах.
17. В угол С величиной 83 0 вписана окружность ,которая касается сторон угла в точках А и В ,точка О- центр окружности. Найдите угол АОВ. Ответ дайте в градусах.
18 Касательные в точках А и В к окружности с центром в точке О пересекаются под углом 72 0 .Найдите угол АВО. Ответ дайте в градусах.
19.Окружность с центром в точке О описана около равнобедренного треугольника АВС, в котором АВ=ВС и АВС=125 0 .Найдите угол ВОС. Ответ дайте в градусах.
20. В треугольник АВС известно, что АС=20,ВС=21,угол С равен 90 0 .Найдите радиус описанной около этого треугольника окружности.
21.Четырёхугольник ABCD вписан в окружность. Угол АВС равен 70 0 ,угол CAD равен 49 0 .Найдите угол ABD . Ответ дайте в градусах
22 Сторона правильного треугольника равна 36 .Найдите радиус окружности ,описанной около этого треугольника.
23 Высота правильного треугольника равна 123.Найдите радиус окружности, описанной около этого треугольника
24.Радиус окружности, описанной около правильного треугольника, равен 18.Найдите высоту этого треугольника
25 В треугольнике АВС ВС= ,угол С равен 90 0 .Радиус окружности,описанной около этого треугольника,равен 8,5.Найдите АС
26 Найдите радиус окружности,вписанной в правильный треугольник,высота которого равна 132.
27 Радиус окружности, вписанной в правильный треугольника, равен 29..Найдите высоту этого треугольника
28 Сторона правильного треугольника равна 4 .Найдите радиус окружности ,вписанной в этот треугольник
29. Радиус окружности, вписанной в правильный треугольник, равен .Найдите сторону этого треугольника
30Боковые стороны равнобедренного треугольника равны 5,основание равно 6.Найдите радиус окружности, описанной около этого треугольника.
31 В треугольнике АВС АС=12,ВС=3,5 ,угол С равен 90 0 .Найдите радиус вписанной окружности .
32. Боковые стороны равнобедренного треугольника равны 569,основание равно462 .Найдите радиус вписанной окружности
33.Окружность,вписанная в равнобедренный треугольник ,делит в точке касания одну из боковых сторон на два отрезка, длины которых равны 25 и 3,считая от вершины, противолежащей основанию. Найдите периметр треугольника.
34.Найдите радиус окружности ,описанной около прямоугольника, две стороны которого равны 15 и 5
35.Найдите диагональ прямоугольника, вписанного в окружность, радиус которой равен 5.
36. Найдите радиус окружности,описанной около квадрата со стороной ,равной 27
37.Найдите сторону квадрата,вписанного в окружность радиуса 18
38.Сторона ромба равна 34 ,острый угол равен 60 0 .Найдите радиус вписанной в этот ромб окружности.
39.Острый угол ромба равен 60 0 .Радиус вписанной в этот ромб окружности равен 23.Найдите сторону ромба.
40.Найдите высоту трапеции,в которую вписана окружность радиуса 28
41.Около трапеции описана окружность.Периметр трапеции равен 96,средняя линия равна 16.Найдите боковую сторону трапеции.
42. Радиус окружности, описанной около правильного треугольника, равен 39.Найдите сторону этого треугольника
43.Боковые стороны трапеции, описанной около окружности, равны 7 и 4.Найдите среднюю линию трапеции
44.Около окружности описана трапеция, периметр которой равен 120.Найдите её среднюю линию.
45.Периметр прямоугольной трапеции, описанной около окружности, равен 100,её большая боковая сторона равно 35.Найдите радиус окружности.
46.В четырёхугольник ABCD вписана окружность ,АВ=17, CD =22.Найдите периметр четырёхугольника
47.Основания равнобедренной трапеции равны 48 и 20.Радиус описанной окружности равен 26.Найдите высоту трапеции, если известно, что центр описанной окружности лежит внутри трапеции.
48 В четырёхугольник ABCD вписана окружность ,АВ=7,В C =12 и С D =9.Найдите четвертую сторону четырёхугольника
49.Три стороны описанного около окружности четырёхугольника относятся (в последовательном порядке) как 1:5:9.Найдите большую сторону этого четырёхугольника, если известно, что его периметр равен 20.
50.Около окружности, радиус которой равен 16 ,описан квадрат. Найдите радиус окружности, описанной около этого квадрата.
51.Сторона АВ треугольника АВС равна 3.Противолежащей ей угол С равен 30 0 .Найдите радиус окружности, описанной около этого треугольника.
52.Угол С треугольника АВС ,вписанного в окружность радиуса 10,равен 30 0 .Найдите сторону АВ этого треугольника
53.Угол А четырёхугольника ABCD ,вписанного в окружность, равен 46 0 .Найдите угол С этого четырёхугольника. Ответ дайте в градусах.
54.Стороны четырёхугольника ABCD AB , BC , CD , и AD стягивают дуги описанной окружности, градусные величины которых равны соответственно 63 0 ,62 0 ,90 0 ,145 0 .Найдите угол В этого четырёхугольника. Ответ дайте в градусах.
55.Точки A , B ,С, D ,расположенные на окружности, делят эту окружность на четыре дуги AB , BC ,С D и AD ,градусные величины которых относятся соответственно как 1:4:12:19.Найдите угол А четырёхугольника ABCD . Ответ дайте в градусах.
56.Четырёхугольник ABCD вписан в окружность. Угол ABC равен 58 0 ,угол CAD равен 43 0 .Найдите угол ABD . Ответ дайте в градусах.
57.Периметр четырёхугольника ,описанного около окружности, равен 26,две его стороны равны 5 и 9.Найдите большую из оставшихся сторон.
58.Углы A , B и С четырёхугольника ABCD относятся как 7:7:11.Найдите угол D ,если около данного четырёхугольника можно описать окружность. . Ответ дайте в градусах.
59.Центральный угол на 45 0 больше острого вписанного угла, опирающегося на ту же дугу окружности. Найдите вписанный угол. Ответ дайте в градусах.
60.Найдите вписанный угол, опирающийся на дугу, которая составляет окружности. Ответ дайте в градусах.
61.Два угла вписанного в окружность четырёхугольника равны 25 0 и 51 0 .Найдите больший из оставшихся углов. Ответ дайте в градусах.
62.Дуга окружности АС ,не содержащая точки В ,составляет 180 0 .А дуга окружности ВС ,не содержащая точки А, составляет 45 0 .Найдите вписанный угол АСВ. Ответ дайте в градусах.
63. Точки A , B ,С ,расположенные на окружности, делят эту окружность на три дуги ,градусные величины которых относятся как 1:2:15.Найдите больший угол треугольника ABC . Ответ дайте в градусах.
64.АС и BD -диаметры окружности с центром О.Угол АСВ равен 69 0 .Найдите угол АО D . Ответ дайте в градусах.
65.Хорда АВ стягивает дугу окружности в 6 0 .Найдите острый угол АВС между этой хордой и касательной к окружности ,проведённой через точку В. Ответ дайте в градусах.
66.В угол С величиной 79 0 вписана окружность, которая касается сторон угла в точках А и В .Найдите угол АОВ. Ответ дайте в градусах.
67. Касательные в точках А и В к окружности с центром О пересекаются под углом 2 0 .Найдите угол А BO . Ответ дайте в градусах.
68.Найдите угол CDB ,если вписанные углы ADB и ADC опираются на дуги окружности,градусные величины которых равны соответственно 67 0 и 25 0 . Ответ дайте в градусах.
69.Угол между стороной правильного n -угольника,вписанного в окружность ,и радиусом этой окружности,проведённым в одну из вершин стороны ,равен 75 0 .Найдите n .
70.Площадь круга равна .Найдите длину его окружности.
71.Найдите площадь сектора круга радиуса ,центральный угол которого равен 90 0
72.Найдите площадь сектора круга радиуса 24,длина дуги которогоравна 3.
73.Периметр треугольника равен 8,а радиус вписанной окружности равен 2.Найдите площадь этого треугольника.
74.Площадь треугольника равна 205,а его периметр 82.Найдите радиус вписанной окружности.
75.Около окружности,радиус которой равен 2,описан многоугольник,площадь которого равна 29.Найдите его периметр.
76.Найдите вписанный угол,опирающийся на дугу,которая составляет 20% окружности. Ответ дайте в градусах.
📽️ Видео
ОГЭ 2023. РАЗБОР ЗАДАНИЯ №16 "Окружность"Скачать
Урок 5. Неравенства и системы неравенств. Алгебра ОГЭ. Вебинар | МатематикаСкачать
ОГЭ 2023 математика 16 задание окружность квадрат площадьСкачать
ОГЭ за одну минуту | ОГЭ, математика, задание 16 (окружность и касательная)Скачать
КАК РЕШАТЬ ЗАДАЧИ ПО ГЕОМЕТРИИ? | МатематикаСкачать
Задание 16 ОГЭ математика 2024Скачать
Разбор ОГЭ №14. Задачи на прогрессию | Математика | TutorOnlineСкачать
15 задание ОГЭ по математикеСкачать
Как НЕ сдать ОГЭ #огэ #математика #shortsСкачать