Как провести серединный перпендикуляр в окружности

Окружность, описанная около треугольника.
Треугольник, вписанный в окружность. Теорема синусов
Как провести серединный перпендикуляр в окружностиСерединный перпендикуляр к отрезку
Как провести серединный перпендикуляр в окружностиОкружность описанная около треугольника
Как провести серединный перпендикуляр в окружностиСвойства описанной около треугольника окружности. Теорема синусов
Как провести серединный перпендикуляр в окружностиДоказательства теорем о свойствах описанной около треугольника окружности

Как провести серединный перпендикуляр в окружности

Содержание
  1. Серединный перпендикуляр к отрезку
  2. Окружность, описанная около треугольника
  3. Свойства описанной около треугольника окружности. Теорема синусов
  4. Доказательства теорем о свойствах описанной около треугольника окружности
  5. Как построить перпендикуляр в окружности
  6. Планиметрия (прямая и окружность)
  7. 1.1 Построить угол 60° с заданой стороной
  8. 1.2 Построить серединный перпендикуляр к отрезку
  9. 1.3 Середина отрезка
  10. 1.4 Окружность, вписанная в квадрат
  11. 1.6 Найти центр окружности
  12. 1.7 Квадрат, вписанный в окружность
  13. Задача Наполеона
  14. Одной линейкой
  15. Задача
  16. Подсказка 1
  17. Подсказка 2
  18. Подсказка 3
  19. Решение
  20. Послесловие
  21. Построение перпендикулярных прямых
  22. Планиметрия (прямая и окружность)
  23. 1.1 Построить угол 60° с заданой стороной
  24. 1.2 Построить серединный перпендикуляр к отрезку
  25. 1.3 Середина отрезка
  26. 1.4 Окружность, вписанная в квадрат
  27. 1.6 Найти центр окружности
  28. 1.7 Квадрат, вписанный в окружность
  29. Задача Наполеона
  30. 🎦 Видео

Видео:Серединный перпендикулярСкачать

Серединный перпендикуляр

Серединный перпендикуляр к отрезку

Определение 1 . Серединным перпендикуляром к отрезку называют, прямую, перпендикулярную к этому отрезку и проходящую через его середину (рис. 1).

Как провести серединный перпендикуляр в окружности

Теорема 1 . Каждая точка серединного перпендикуляра к отрезку находится на одном и том же расстоянии от концов этого отрезка.

Доказательство . Рассмотрим произвольную точку D , лежащую на серединном перпендикуляре к отрезку AB (рис.2), и докажем, что треугольники ADC и BDC равны.

Как провести серединный перпендикуляр в окружности

Действительно, эти треугольники являются прямоугольными треугольниками, у которых катеты AC и BC равны, а катет DC является общим. Из равенства треугольников ADC и BDC вытекает равенство отрезков AD и DB . Теорема 1 доказана.

Теорема 2 (Обратная к теореме 1) . Если точка находится на одном и том же расстоянии от концов отрезка, то она лежит на серединном перпендикуляре к этому отрезку.

Доказательство . Докажем теорему 2 методом «от противного». С этой целью предположим, что некоторая точка E находится на одном и том же расстоянии от концов отрезка, но не лежит на серединном перпендикуляре к этому отрезку. Приведём это предположение к противоречию. Рассмотрим сначала случай, когда точки E и A лежат по разные стороны от серединного перпендикуляра (рис.3). В этом случае отрезок EA пересекает серединный перпендикуляр в некоторой точке, которую мы обозначим буквой D .

Как провести серединный перпендикуляр в окружности

Докажем, что отрезок AE длиннее отрезка EB . Действительно,

Как провести серединный перпендикуляр в окружности

Как провести серединный перпендикуляр в окружности

Таким образом, в случае, когда точки E и A лежат по разные стороны от серединного перпендикуляра, мы получили противоречие.

Как провести серединный перпендикуляр в окружности

Теперь рассмотрим случай, когда точки E и A лежат по одну сторону от серединного перпендикуляра (рис.4). Докажем, что отрезок EB длиннее отрезка AE . Действительно,

Как провести серединный перпендикуляр в окружности

Как провести серединный перпендикуляр в окружности

Полученное противоречие и завершает доказательство теоремы 2

Видео:КАК ПРОВЕСТИ СЕРЕДИННЫЙ ПЕРПЕНДИКУЛЯР? #shorts #егэ #огэ #математика #профильныйегэ #перпендикулярСкачать

КАК ПРОВЕСТИ СЕРЕДИННЫЙ ПЕРПЕНДИКУЛЯР? #shorts #егэ #огэ #математика #профильныйегэ #перпендикуляр

Окружность, описанная около треугольника

Определение 2 . Окружностью, описанной около треугольника , называют окружность, проходящую через все три вершины треугольника (рис.5). В этом случае треугольник называют треугольником, вписанным в окружность, или вписанным треугольником .

Как провести серединный перпендикуляр в окружности

Видео:Серединный перпендикуляр. 7 класс геометрия. Центр описанной окружности треугольникаСкачать

Серединный перпендикуляр. 7 класс геометрия. Центр описанной окружности треугольника

Свойства описанной около треугольника окружности. Теорема синусов

Для любого треугольника справедливы равенства (теорема синусов):

Как провести серединный перпендикуляр в окружности,

где a , b , c – стороны треугольника, A , B , С – углы треугольника, R – радиус описанной окружности.

Для любого треугольника справедливо равенство:

где A , B , С – углы треугольника, S – площадь треугольника, R – радиус описанной окружности.

Для любого треугольника справедливо равенство:

Как провести серединный перпендикуляр в окружности

где a , b , c – стороны треугольника, S – площадь треугольника, R – радиус описанной окружности.

ФигураРисунокСвойство
Серединные перпендикуляры
к сторонам треугольника
Как провести серединный перпендикуляр в окружностиВсе серединные перпендикуляры, проведённые к сторонам произвольного треугольника, пересекаются в одной точке.
Посмотреть доказательство
Окружность, описанная около треугольникаКак провести серединный перпендикуляр в окружностиОколо любого треугольника можно описать окружность. Центром описанной около треугольника окружности является точка, в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника.
Посмотреть доказательство
Центр описанной около остроугольного треугольника окружностиЦентр описанной около остроугольного треугольника окружности лежит внутри треугольника.
Центр описанной около прямоугольного треугольника окружностиКак провести серединный перпендикуляр в окружностиЦентром описанной около прямоугольного треугольника окружности является середина гипотенузы.
Посмотреть доказательство
Центр описанной около тупоугольного треугольника окружностиКак провести серединный перпендикуляр в окружностиЦентр описанной около тупоугольного треугольника окружности лежит вне треугольника.
Теорема синусовКак провести серединный перпендикуляр в окружности
Площадь треугольникаКак провести серединный перпендикуляр в окружности
Радиус описанной окружностиКак провести серединный перпендикуляр в окружности
Серединные перпендикуляры к сторонам треугольника
Как провести серединный перпендикуляр в окружности

Все серединные перпендикуляры, проведённые к сторонам произвольного треугольника, пересекаются в одной точке.

Окружность, описанная около треугольникаКак провести серединный перпендикуляр в окружности

Около любого треугольника можно описать окружность. Центром описанной около треугольника окружности является точка, в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника.

Центр описанной около остроугольного треугольника окружностиКак провести серединный перпендикуляр в окружности

Центр описанной около остроугольного треугольника окружности лежит внутри треугольника.

Центр описанной около прямоугольного треугольника окружностиКак провести серединный перпендикуляр в окружности

Центром описанной около прямоугольного треугольника окружности является середина гипотенузы.

Центр описанной около тупоугольного треугольника окружностиКак провести серединный перпендикуляр в окружности

Центр описанной около тупоугольного треугольника окружности лежит вне треугольника.

Теорема синусовКак провести серединный перпендикуляр в окружности

Для любого треугольника справедливы равенства (теорема синусов):

Как провести серединный перпендикуляр в окружности,

где a , b , c – стороны треугольника, A , B , С – углы треугольника, R – радиус описанной окружности.

Площадь треугольникаКак провести серединный перпендикуляр в окружности

Для любого треугольника справедливо равенство:

где A , B , С – углы треугольника, S – площадь треугольника, R – радиус описанной окружности.

Радиус описанной окружностиКак провести серединный перпендикуляр в окружности

Для любого треугольника справедливо равенство:

Как провести серединный перпендикуляр в окружности

где a , b , c – стороны треугольника, S – площадь треугольника, R – радиус описанной окружности.

Видео:Геометрия 8 класс (Урок№30 - Свойство серединного перпендикуляра.)Скачать

Геометрия 8 класс (Урок№30 - Свойство серединного перпендикуляра.)

Доказательства теорем о свойствах описанной около треугольника окружности

Теорема 3 . Все серединные перпендикуляры, проведённые к сторонам произвольного треугольника, пересекаются в одной точке.

Доказательство . Рассмотрим два серединных перпендикуляра, проведённых к сторонам AC и AB треугольника ABC , и обозначим точку их пересечения буквой O (рис. 6).

Как провести серединный перпендикуляр в окружности

Поскольку точка O лежит на серединном перпендикуляре к отрезку AC , то в силу теоремы 1 справедливо равенство:

Поскольку точка O лежит на серединном перпендикуляре к отрезку AB , то в силу теоремы 1 справедливо равенство:

Следовательно, справедливо равенство:

откуда с помощью теоремы 2 заключаем, что точка O лежит на серединном перпендикуляре к отрезку BC. Таким образом, все три серединных перпендикуляра проходят через одну и ту же точку, что и требовалось доказать.

Следствие . Около любого треугольника можно описать окружность. Центром описанной около треугольника окружности является точка, в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника.

Доказательство . Рассмотрим точку O , в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника ABC (рис. 6).

При доказательстве теоремы 3 было получено равенство:

из которого вытекает, что окружность с центром в точке O и радиусами OA , OB , OC проходит через все три вершины треугольника ABC , что и требовалось доказать.

Теорема 4 (теорема синусов) . Для любого треугольника (рис. 7)

Как провести серединный перпендикуляр в окружности

Как провести серединный перпендикуляр в окружности.

Доказательство . Докажем сначала, что длина хорды окружности радиуса R хорды окружности радиуса R , на которую опирается вписанный угол величины φ , вычисляется по формуле:

l = 2Rsin φ .(1)

Рассмотрим сначала случай, когда одна из сторон вписанного угла является диаметром окружности (рис.8).

Как провести серединный перпендикуляр в окружности

Поскольку все вписанные углы, опирающиеся на одну и ту же дугу, равны, то для произвольного вписанного угла всегда найдется равный ему вписанный угол, у которого одна из сторон является диаметром окружности.

Формула (1) доказана.

Из формулы (1) для вписанного треугольника ABC получаем (рис.7):

Видео:Окружность вписанная в треугольник и описанная около треугольника.Скачать

Окружность вписанная в треугольник и описанная около треугольника.

Как построить перпендикуляр в окружности

Видео:Построить описанную окружность (Задача 1)Скачать

Построить описанную окружность (Задача 1)

Планиметрия (прямая и окружность)

Планиметрия изучется в начальном курсе геометрии и зачастую сводится к решению практических задач без изучения теоретической базы.
В данной статье приводятся альтернативные (подсказкам) решения задач из первого раздела (кроме 1.5) приложения Euclidea (геометрические построения с помощью циркуля и линейки).

Решения задач 1.1, 1.2 и 1.3 основаны на том, что с помощью циркуля и линейки можно построить равносторонний треугольник.

1.1 Построить угол 60° с заданой стороной

1.2 Построить серединный перпендикуляр к отрезку

На данной ограниченной прямой построить равносторонний треугольник

Как провести серединный перпендикуляр в окружности

1.3 Середина отрезка

всё, что можно построить с помощью циркуля и линейки, может быть построено с помощью одного циркуля.

Из точки В радиусом АВ описываем окружность.
По этой окружности откладываем от точки А расстояние АВ три раза: получаем точку С, очевидно, диаметрально противоположную А. Расстояние АС представляет собой двойное рассрастояние АВ. Проведя окружность из С радиусом ВС, мы можем таким же образом найти точку,
диаметрально противоположную В и, следовательно, удаленную от А на
тройное расстояние АВ, и т. д.

Как провести серединный перпендикуляр в окружности

любое построение, выполнимое на плоскости циркулем и линейкой, можно выполнить одной линейкой, если нарисована хотя бы одна окружность и отмечен её центр.

Как провести серединный перпендикуляр в окружности

Как провести серединный перпендикуляр в окружности

Проведем прямые PA и PB и отметим точки D и C их пересечения прямой b. Пусть О — точка пересечения прямых AC и BD. Тогда, согласно предыдущей лемме, прямая PO пересечёт отрезок AB в его середине M.

Решением задачи 1.3 по методу Штейнера-Понеселе будет:

Как провести серединный перпендикуляр в окружности

1.4 Окружность, вписанная в квадрат

Из точки A, лежащей вне данной полуокружности, опустить на её диаметр перпендикуляр, обходясь при этом без циркуля. Положение центра полуокружности не указано.

Как провести серединный перпендикуляр в окружности

Нам пригодится здесь то свойство треугольника, что все его высоты пересекаются в одной точке. Соединим A с B и C; получим точки D и E. Прямые BE и CD, очевидно, — высоты треугольника ABC. Третья высота — искомый перпендикуляр к BC — должна проходить через пересечение двух других, т.е. через точку M. Проведя по линейке прямую через точки A и M, мы выполним требованиек задачи, не прибегая к услугам циркуля.

Как провести серединный перпендикуляр в окружности

И опустив перпендикуляр из точки пересечения диагоналей квадрата на ребро, найдём середину ребра.
Это же построение можно использовать для решения задачи 2.9 Окружность, касающаяся прямой

1.6 Найти центр окружности

Плоский угол, опирающийся на диаметр окружности, — прямой.

Как провести серединный перпендикуляр в окружности

Как провести серединный перпендикуляр в окружности

Как провести серединный перпендикуляр в окружности

Как провести серединный перпендикуляр в окружности

Как провести серединный перпендикуляр в окружности

Определение: касательной к окружности называется прямая, имеющая с окружностью одну общую точку. Касательная к окружности перпендикулярна радиусу, проведённому в точку касания.

Рассмотрим задачу 2.8
2.8 Касательная к окружности в точке
Возвращаясь к предыдущей задаче, эту задачу можно решить построив угол, опирающийся на диаметр окружности по теореме Фалеса

Как провести серединный перпендикуляр в окружности

Как провести серединный перпендикуляр в окружности

Как провести серединный перпендикуляр в окружности

Как провести серединный перпендикуляр в окружности

Как провести серединный перпендикуляр в окружности

Далее, построив перпендикуляр к касательной, найдём диаметр окружности, и, разделив его пополам, найдём центр окружности.

Ещё об одном способе построения касательной к окружности можно узнать из лекции 1.5 курса «Геометрия и группы» А. Савватеева ссылка

1.7 Квадрат, вписанный в окружность

Задача Наполеона

Как провести серединный перпендикуляр в окружности

Решим задачу методом Мора-Маскерони.
Построим три окружности радиусом r и две окружности радиусом Как провести серединный перпендикуляр в окружности

Как провести серединный перпендикуляр в окружности

В приложении нет такой операции, как перенос раствора циркуля (равного MO), поэтому необходимо использовать дополнительные построения.
Для того, чтобы построить касательную к исходной окружности, параллельную МО, необходимо произвести построения, которые были приведены выше (построить три окружности радиусом r и две окружности радиусом Как провести серединный перпендикуляр в окружности), но вместо исходной окружности взять окружность, обозначенную на рисунке синим цветом
Как провести серединный перпендикуляр в окружности
Т.о. мы перенесли раствор циркуля (равный МО) в точку А.
Далее из точки А необходимо провести окружность c радиусом МО
Как провести серединный перпендикуляр в окружности

Видео:Построение середины отрезкаСкачать

Построение середины отрезка

Одной линейкой

Видео:Построение серединного перпендикуляра. Деление отрезка пополамСкачать

Построение серединного перпендикуляра. Деление отрезка пополам

Задача

Даны окружность с центром О и точка А вне окружности. а) Проведен диаметр окружности. Пользуясь только линейкой*, опустите перпендикуляр из точки А на этот диаметр. б) Через точку А проведена прямая, не имеющая общих точек с окружностью. Пользуясь только линейкой, опустите перпендикуляр из точки О на эту прямую.

*Примечание. Под «линейкой» в задачах на построение всегда подразумевается не измерительный инструмент, а геометрический — с его помощью можно только проводить прямые (через две имеющиеся точки), но не измерять расстояние между точками. Кроме того, геометрическая линейка считается односторонней — с ее помощью нельзя провести параллельную прямую, просто приложив одну сторону линейки к двум точкам и проведя линию вдоль другой стороны.

Видео:Урок 12. Серединный перпендикуляр к отрезку (7 класс)Скачать

Урок 12.  Серединный перпендикуляр к отрезку (7 класс)

Подсказка 1

Используйте концы диаметра, а не центр окружности.

Видео:Перпендикуляр к прямой через заданную точку.Скачать

Перпендикуляр к прямой через заданную точку.

Подсказка 2

Угол с вершиной на окружности, опирающийся на ее диаметр, — прямой. Зная это, вы можете построить две высоты в треугольнике, образованном концами диаметра и точкой А.

Видео:Построение перпендикуляраСкачать

Построение перпендикуляра

Подсказка 3

Попробуйте решить сначала более простой случай, чем заданный в пункте б), — когда данная прямая пересекает окружность.

Видео:Построить серединный перпендикуляр к отрезку.Скачать

Построить серединный перпендикуляр к отрезку.

Решение

а) Пусть ВС — данный диаметр (рис. 1). Для решения задачи просто вспомним первые две подсказки: если провести прямые и АC, а затем соединить точки их пересечения с окружностью с нужными вершинами треугольника ABC, то получатся две высоты этого треугольника. А так как высоты треугольника пересекаются в одной точке, то прямая CH будет третьей высотой, то есть искомым перпендикуляром из А к диаметру ВС.

Как провести серединный перпендикуляр в окружностиКак провести серединный перпендикуляр в окружности

б) Решение этого пункта, однако, даже в том случае, который дан в третьей подсказке, не кажется более простым: да, мы можем провести диаметры, соединить их концы и получить прямоугольник ABCD (рис. 2, на котором, для простоты, точка А отмечена на окружности), но как это приближает нас к построению перпендикуляра из центра окружности?

Как провести серединный перпендикуляр в окружности

А вот как: так как треугольник AOB равнобедренный, то перпендикуляр (высота) OK пройдет через середину K стороны AB. А значит, задача свелась к нахождению середины этой стороны. Как ни удивительно, но окружность больше нам совсем не нужна, да и точка D тоже, в общем, «лишняя». А вот отрезок CD — не лишний, но на нем нам потребуется не какая-то конкретная точка, а совершенно произвольная точка E! Если обозначить за L точку пересечения BE и AC (рис. 3), а затем продлить AE до пересечения с продолжением BC в точке M, то прямая LM — это решение всех наших забот и проблем!

Как провести серединный перпендикуляр в окружностиКак провести серединный перпендикуляр в окружности

Правда, очень похоже, что LM пересекает AB посередине? Это и правда так. Попробуйте доказать это. Мы же отложим доказательство до конца решения задачи.

Итак, мы научились находить середину отрезка AB, а значит, научились опускать перпендикуляр на AB из центра окружности. Но что делать с исходной задачей, в которой данная прямая не пересекает окружность, как на рис. 4?

Как провести серединный перпендикуляр в окружности

Постараемся свести задачу к уже решенной. Это можно сделать, например, так.

Сначала построим прямую, симметричную данной относительно центра окружности. Построение понятно из рис. 5, на котором данная прямая — горизонтальная под окружностью, а построенная симметричная ей — выделена красным (две синие точки могут быть взяты на окружности совершенно произвольно). Заодно проведем через центр О еще одну прямую, перпендикулярную к одной из сторон получившегося в окружности прямоугольника, чтобы получить на данной прямой два равных по длине отрезка.

Как провести серединный перпендикуляр в окружности

Имея две параллельные прямые, на одной из которых уже отмечены два конца и середина отрезка, возьмем произвольную точку T (например, на окружности) и построим такую точку S, что прямая TS будет параллельна имеющимся двум прямым. Это построение показано на рис. 6.

Как провести серединный перпендикуляр в окружности

Тем самым мы получили хорду окружности, параллельную данной прямой, то есть свели задачу к решенной ранее версии, ведь к такой хорде проводить перпендикуляр из центра окружности мы уже умеем.

Осталось привести доказательство факта, который мы использовали выше.

Четырехугольник ABCE на рис. 3 — трапеция, L — точка пересечения ее диагоналей, а M — точка пересечения продолжений ее боковых сторон. По известному свойству трапеции (его еще называют замечательным свойством трапеции; здесь можно посмотреть, как оно доказывается) прямая ML проходит через середины оснований трапеции.

Собственно, еще раз мы фактически опирались на эту же теорему уже в последней подзадаче, когда проводили третью параллельную прямую.

Видео:Построение окружности по трём точкам.Скачать

Построение окружности по трём точкам.

Послесловие

Теория геометрических построений одной линейкой, когда задана вспомогательная окружность с центром, разработана замечательным немецким геометром XIX века Якобом Штейнером (правильнее произносить его фамилию Steiner как «Штайнер», но в отечественной литературе уже давно закрепилось написание с двумя «е»). О его математических достижениях мы уже однажды рассказывали в задаче «Короче, Склифосовский». В книге «Геометрические построения, выполняемые с помощью прямой линии и неподвижного круга» Штейнер доказал теорему, согласно которой любое построение, которое может быть выполнено с помощью циркуля и линейки, может быть выполнено и без циркуля, если задана всего одна окружность и отмечен ее центр. Доказательство Штейнера сводится к демонстрации возможности осуществления базовых построений, обычно выполняемых с помощью циркуля, — в частности, к проведению параллельных и перпендикулярных прямых. Наша задача, как легко видеть, является частным случаем этой демонстрации.

Впрочем, к некоторым задачам Штейнер привел не единственный способ решения. Приведем второй способ и мы.

Возьмем на данной прямой две произвольные точки A и B (рис. 7). Сначала строим перпендикуляр из A на (синюю) прямую BO — это фактически решение нашей первой задачи, потому что эта прямая содержит диаметр окружности; все соответствующие построения на рис. 7 выполнены синим цветом. Затем строим перпендикуляр из B на (зеленую) прямую AO — это точно такое же решение точно такой же задачи, построения выполнены зеленым цветом. Тем самым мы получили две высоты треугольника AOB. Третья высота этого треугольника проходит через центр O и точку пересечения двух других высот. Она и является искомым перпендикуляром к прямой AB.

Как провести серединный перпендикуляр в окружности

Но и это еще не все. Несмотря на всю (относительную) простоту второго способа, он «избыточно длинный». Это означает, что существует другой способ построения, требующий меньшего числа операций (в задачах на построение каждая линия, проведенная циркулем или линейкой, считается как одна операция). Построения, требующие минимального среди известных количества операций, французский математик Эмиль Лемуан (Émile Lemoine, 1840–1912) назвал геометрографическими (см.: Geometrography).

Итак, вашему вниманию предлагается геометрографическое решение пункта б). Оно требует всего 10 шагов, при этом шесть первых — «естественные», а следующие три — «удивительные». Самый последний шаг, проведение перпендикуляра, пожалуй, тоже следует назвать естественным.

Мы хотим провести красный пунктирный перпендикуляр (рис. 8), для этого нам нужно отыскать на нем какую-нибудь точку, отличную от О. Поехали.

1) Пусть A — произвольная точка на прямой, а C — произвольная точка на окружности. Проводим прямую AC.

Как провести серединный перпендикуляр в окружности

2)–3) Проводим диаметр OC (вторично пересекающий окружность в точке D) и прямую AD. Отмечаем вторые точки пересечения прямых AC и AD с окружностью — B и E, соответственно.

Как провести серединный перпендикуляр в окружности

4)–6) Проводим BE, BD и CE. Прямые CD и BE пересеклись в точке H, а BD и CE — в точке G (рис. 9).

Кстати, а могло ли случиться так, что BE оказалось бы параллельно CD? Да, безусловно. В случае, когда диаметр CD перпендикулярен AO, то именно так и случается: BE и CD параллельны, а точки A, O и G лежат на одной прямой. Но возможность брать точку C произвольно предполагает наше умение выбрать ее так, чтобы CO и AO не были перпендикулярны!

И вот теперь обещанные удивительные шаги построения:

7) Проводим GH до пересечения с данной прямой в точке I.
8) Проводим CI до пересечения с окружностью в точке J.
9) Проводим BJ, которая пересекается с GH. где? Правильно, в красной точке, которая находится на вертикальном диаметре окружности (рис. 10).

Как провести серединный перпендикуляр в окружности

10) Проводим вертикальный диаметр.

Вместо шага 8 можно было бы провести прямую DI, а затем на шаге 9 соединить вторую точку ее пересечения с окружностью с точкой E. Результат был бы той же самой красной точкой. Правда, это удивительно? Причем, даже неясно, что удивляет сильнее — то, что красная точка оказывается одной и той же для двух способов построения, или то, что она лежит на искомом перпендикуляре. Впрочем, геометрия — это ведь не «искусство факта», а «искусство доказательства». Так что постарайтесь доказать это.

Мелкая придирка не по существу:
> правильнее произносить его фамилию Steiner как «Штайнер», но в
> отечественной литературе уже давно закрепилось написание с двумя «е»

— ничего подобного. Так принято передавать немецкое -ei- для всех персон примерно до середины XX века. Причины этого не вполне понятны: фонетический переход -ei- в [-ai-] произошел за много веков до появления этой традиции транскрипции на русский
(в отличие, например, от перехода -ille- из [iλ] в [ij]: Марсель, Гильом — который произошел лишь в XIX веке, когда русская транскрипция уже устоялась).

Но по какой бы причине русская транскрипция с немецкого ни оказалась отстающей от реальной фонетики на много веков, она именно такова. Передавать Штейнера и прочих немцев XIX века через -ай- было бы анахронизмом. Не говоря уже о том, что Штейнер, помимо немецкой, еще и распространенная в России и других странах идишская фамилия, а их принято передавать через -ей- и по сей день.

А по существу вопрос: теорема гласит, что «любое построение, которое может быть выполнено с помощью циркуля и линейки, может быть выполнено и без циркуля, если задана всего одна окружность и отмечен ее центр».

Что имеется в виду под «если задана всего одна окружность»? Имеется ли в виду, что в задаче дана только одна окружность, и задание центра позволяет построить линейкой все то, что можно построить циркулем? Или имеется в виду, что берем любую задачу (скажем, деление отрезка пополам), и достаточно где-нибудь в произвольном месте задать окружность и ее центр, чтобы задача деления отрезка пополам решалась одной линейкой?

Да, имеется в виду ровно это. На плоскости чертежа задана произвольная окружность и ее центр. Это позволяет выполнить одной линейкой всё, что можно сделать циркулем и линейкой.

А деление отрезка пополам и так решается одной линейкой (без вспомогательной окружности). Вот одним циркулем — не решается.

> А деление отрезка пополам и так решается одной линейкой (без вспомогательной окружности

Допускаю, хотя не знаю такого способа.

> Вот одним циркулем — не решается.

Этого не может быть. По теореме Мора-Маскерони.

Этого противоречит вашим словам, будто линейкой можно построить середину отрезка.

Вот смотрите: если мы можем одной линейкой построить касательную к окружности из точки A, значит, возьмем две такие касательные. Проведем хорду, опирающуюся на две точки касания.

По вашим словам (выше), одной линейкой можно найти середину отрезка, а значит, и этой хорды.

Из исходной точки A через середину хорды проведем прямую. Это будет (продолженный) диаметр окружности.

Возьмем произвольную точку B и повторим с ней и той же окружностью то же самое. Получим второй диаметр.

Два диаметра дают нам центр окружности.

Итого получается, что если, как вы утверждаете, одной линейкой можно построить и касательную из заданной точки к заданной окружности, и середину заданного отрезка, то одной линейкой можно построить и центр данной окружности. Однако хорошо известно (доказано, по-моему, тем же Штейнером через сечения наклонного конуса), что это невозможно. А если б было возможно, то рассказанная вами теорема Штейнера-Понселе не имела бы смысла: получается, любое построение циркулем и линейкой можно было бы совершить просто линейкой безо всяких дополнительных условий (или точнее, требовалось бы иметь где-то окружность не обязательно с отмеченным центром).

Касательную одной линейкой точно можно построить, и это ничему не противоречит.

Что касается утверждения о построении середины отрезка, я хотел сказать вот что: для этого не нужно иметь вспомогательную окружность, достаточно иметь вспомогательную параллельную прямую.

Да, это тоже исследовано Штейнером. Он рассмотрел списки задач, разрешимых линейкой при следующих дополнительных условиях
а) дана одна параллельная прямая или отрезок, разделенный в известном рациональном отношении
б) даны две пары параллельных прямых, или два отрезка, деленные в рац. отношениях, или одна пара параллельных и один такой отрезок
в) дан вспомогательный квадрат

Все эти условия позволяют решать линейкой какой-то класс задач на построение, причем а) Ответить

Тогда и задача немного другая, и решение другое. Фактически в вашей задаче требуется построить квадрат по заданным противоположным вершинам (B и C).

PS. Насчет касательных. Да, конечно, построение не очень короткое — в сумме явно больше 15 линий получится. Через точку пересечения высот — экономнее

Видео:75. Свойства серединного перпендикуляра к отрезкуСкачать

75. Свойства серединного перпендикуляра к отрезку

Построение перпендикулярных прямых

Примеры:

1. Даны прямая и точка на ней. Построить прямую проходящую через данную точку и перпендикулярную к данной прямой.

Дано: прямая m, MКак провести серединный перпендикуляр в окружностиm.

Построить: МPКак провести серединный перпендикуляр в окружностиm.

Решение:

Произвольно строим с помощью линейки прямую m и отмечаем на ней точку М.

Как провести серединный перпендикуляр в окружности

На лучах прямой m, исходящих из точки М, с помощью циркуля откладываем равные отрезки МА и МВ (МА = МВ). Для этого строим окружность с центром в точке М, при этом всю окружность строить не обязательно, достаточно сделать пометки по разные стороны от точки М (смотри выделенное красным).

Как провести серединный перпендикуляр в окружности

Затем строим две окружности с центрами в точках А и В радиуса АВ (полностью окружности строить необязательно, смотри выделенное фиолетовым и красным цветом).

Как провести серединный перпендикуляр в окружности

Данные окружности пересекаются в двух точках, обозначим их Р и Q. Проведем с помощью линейки через точку М и одну из точек Р или Q прямую, например, МР.

Как провести серединный перпендикуляр в окружности

Докажем, что прямая МР — искомая прямая, т.е. что МPКак провести серединный перпендикуляр в окружностиm.

Рассмотрим треугольник АРВ.

Как провести серединный перпендикуляр в окружности

АР = ВР, т.к. по построению это радиусы одинаковых окружностей, следовательно, Как провести серединный перпендикуляр в окружностиАРВ — равнобедренный. По построению МА = МВ, т.е. МР — медиана равнобедренного треугольника, тогда по свойству равнобедренного треугольника МР и высота, т.е. МPКак провести серединный перпендикуляр в окружностиm. Что и требовалось доказать.

2. Даны прямая и точка не лежащая на этой прямой. Построить прямую проходящую через данную точку и перпендикулярную к данной прямой.

Дано: прямая m, MКак провести серединный перпендикуляр в окружностиm.

Построить: МNКак провести серединный перпендикуляр в окружностиm.

Решение:

Произвольно строим с помощью линейки прямую m и отмечаем точку М, не лежащую на прямой m.

Как провести серединный перпендикуляр в окружности

Далее строим окружность с центром в данной точке М, пересекающую прямую m в двух точках, которые обозначим буквами А и В (всю окружность строить необязательно, смотри выделенное красным цветом).

Как провести серединный перпендикуляр в окружности

Затем построим две окружности с центрами в точках А и В, проходящие через точку М (полностью окружности строить необязательно, смотри выделенное синим и зеленым цветом). Эти окружности пересекутся в точке М и еще в одной точке, которую обозначим буквой N. Проведем прямую МN.

Как провести серединный перпендикуляр в окружности

Докажем что, прямая МN — искомая, т.е. МNКак провести серединный перпендикуляр в окружностиm.

Как провести серединный перпендикуляр в окружности

В Как провести серединный перпендикуляр в окружностиАМN и Как провести серединный перпендикуляр в окружностиВМN: АМ = АN = ВМ = ВN — радиусы, МN — общая, следовательно, Как провести серединный перпендикуляр в окружностиАМN =Как провести серединный перпендикуляр в окружностиВМN (по трем сторонам), значит, углы ВМС и АМС равны (С точка пересечения прямых m и МN). Отсюда следует, что отрезок МС — биссектриса равнобедренного треугольника АМВ (АМ = ВМ — радиусы) с основанием АВ, тогда по свойству равнобедренного треугольника АМ — высота, значит, МNКак провести серединный перпендикуляр в окружностиАВ, т.е. МNКак провести серединный перпендикуляр в окружностиm.

Поделись с друзьями в социальных сетях:

Видео:Геометрия. 8 класс. Урок 10 "Серединный перпендикуляр как ГМТ. Описанная окружность"Скачать

Геометрия. 8 класс.  Урок 10 "Серединный перпендикуляр как ГМТ. Описанная окружность"

Планиметрия (прямая и окружность)

Планиметрия изучется в начальном курсе геометрии и зачастую сводится к решению практических задач без изучения теоретической базы.
В данной статье приводятся альтернативные (подсказкам) решения задач из первого раздела (кроме 1.5) приложения Euclidea (геометрические построения с помощью циркуля и линейки).

Решения задач 1.1, 1.2 и 1.3 основаны на том, что с помощью циркуля и линейки можно построить равносторонний треугольник.

1.1 Построить угол 60° с заданой стороной

1.2 Построить серединный перпендикуляр к отрезку

На данной ограниченной прямой построить равносторонний треугольник

Как провести серединный перпендикуляр в окружности

1.3 Середина отрезка

всё, что можно построить с помощью циркуля и линейки, может быть построено с помощью одного циркуля.

Из точки В радиусом АВ описываем окружность.
По этой окружности откладываем от точки А расстояние АВ три раза: получаем точку С, очевидно, диаметрально противоположную А. Расстояние АС представляет собой двойное рассрастояние АВ. Проведя окружность из С радиусом ВС, мы можем таким же образом найти точку,
диаметрально противоположную В и, следовательно, удаленную от А на
тройное расстояние АВ, и т. д.

Как провести серединный перпендикуляр в окружности

любое построение, выполнимое на плоскости циркулем и линейкой, можно выполнить одной линейкой, если нарисована хотя бы одна окружность и отмечен её центр.

Как провести серединный перпендикуляр в окружности

Как провести серединный перпендикуляр в окружности

Проведем прямые PA и PB и отметим точки D и C их пересечения прямой b. Пусть О — точка пересечения прямых AC и BD. Тогда, согласно предыдущей лемме, прямая PO пересечёт отрезок AB в его середине M.

Решением задачи 1.3 по методу Штейнера-Понеселе будет:

Как провести серединный перпендикуляр в окружности

1.4 Окружность, вписанная в квадрат

Из точки A, лежащей вне данной полуокружности, опустить на её диаметр перпендикуляр, обходясь при этом без циркуля. Положение центра полуокружности не указано.

Как провести серединный перпендикуляр в окружности

Нам пригодится здесь то свойство треугольника, что все его высоты пересекаются в одной точке. Соединим A с B и C; получим точки D и E. Прямые BE и CD, очевидно, — высоты треугольника ABC. Третья высота — искомый перпендикуляр к BC — должна проходить через пересечение двух других, т.е. через точку M. Проведя по линейке прямую через точки A и M, мы выполним требованиек задачи, не прибегая к услугам циркуля.

Как провести серединный перпендикуляр в окружности

И опустив перпендикуляр из точки пересечения диагоналей квадрата на ребро, найдём середину ребра.
Это же построение можно использовать для решения задачи 2.9 Окружность, касающаяся прямой

1.6 Найти центр окружности

Плоский угол, опирающийся на диаметр окружности, — прямой.

Как провести серединный перпендикуляр в окружности

Как провести серединный перпендикуляр в окружности

Как провести серединный перпендикуляр в окружности

Как провести серединный перпендикуляр в окружности

Как провести серединный перпендикуляр в окружности

Определение: касательной к окружности называется прямая, имеющая с окружностью одну общую точку. Касательная к окружности перпендикулярна радиусу, проведённому в точку касания.

Рассмотрим задачу 2.8
2.8 Касательная к окружности в точке
Возвращаясь к предыдущей задаче, эту задачу можно решить построив угол, опирающийся на диаметр окружности по теореме Фалеса

Как провести серединный перпендикуляр в окружности

Как провести серединный перпендикуляр в окружности

Как провести серединный перпендикуляр в окружности

Как провести серединный перпендикуляр в окружности

Как провести серединный перпендикуляр в окружности

Далее, построив перпендикуляр к касательной, найдём диаметр окружности, и, разделив его пополам, найдём центр окружности.

Ещё об одном способе построения касательной к окружности можно узнать из лекции 1.5 курса «Геометрия и группы» А. Савватеева ссылка

1.7 Квадрат, вписанный в окружность

Задача Наполеона

Как провести серединный перпендикуляр в окружности

Решим задачу методом Мора-Маскерони.
Построим три окружности радиусом r и две окружности радиусом Как провести серединный перпендикуляр в окружности

Как провести серединный перпендикуляр в окружности

В приложении нет такой операции, как перенос раствора циркуля (равного MO), поэтому необходимо использовать дополнительные построения.
Для того, чтобы построить касательную к исходной окружности, параллельную МО, необходимо произвести построения, которые были приведены выше (построить три окружности радиусом r и две окружности радиусом Как провести серединный перпендикуляр в окружности), но вместо исходной окружности взять окружность, обозначенную на рисунке синим цветом
Как провести серединный перпендикуляр в окружности
Т.о. мы перенесли раствор циркуля (равный МО) в точку А.
Далее из точки А необходимо провести окружность c радиусом МО
Как провести серединный перпендикуляр в окружности

🎦 Видео

8 класс, 36 урок, Свойства серединного перпендикуляра к отрезкуСкачать

8 класс, 36 урок, Свойства серединного перпендикуляра к отрезку

Как построить серединный перпендикуляр отрезка без циркуля.Скачать

Как построить серединный перпендикуляр отрезка без циркуля.

Построение серединных перпендикуляров треугольника с помощью циркуляСкачать

Построение серединных перпендикуляров треугольника с помощью циркуля

Замечательные точки треугольника | Ботай со мной #030 | Борис Трушин ||Скачать

Замечательные точки треугольника | Ботай со мной #030 | Борис Трушин ||

Серединные перпендикуляры в треугольникеСкачать

Серединные перпендикуляры в треугольнике
Поделиться или сохранить к себе: