Поворот окружности по часовой стрелке

Угол поворота, угол произвольной величины

Среди множества терминов тригонометрии важным является понятие угла поворота. В данной статье рассмотрим поворот и все соответствующие ему определения; дадим представление о полном обороте; изучим угол поворота и его характеристики, а также поворот фигуры вокруг точки. Для лучшего понимания теория будет снабжена иллюстрациями и практическими примерами.

Видео:Алгебра 10 класс Поворот точки вокруг начала координат ЛекцияСкачать

Алгебра 10 класс Поворот точки вокруг начала координат Лекция

Поворот точки вокруг точки

Центр поворота – точка, относительно которой осуществлен поворот.

Рассмотрим, что происходит в результате поворота точки. Пусть некоторая точка А поворачивается относительно центра поворота О , в результате чего получается точка А 1 (при совершении некоторого количества полных оборотов она может совпасть с точкой А ). При этом точка А 1 лежит на окружности с центром в точке О радиуса О А . Другими словами, когда точка А осуществляет поворот относительно точки О , она переходит в точку А 1 , лежащую на окружности с центром О радиуса О А .

Считается, что в данном случае точка О при осуществлении поворота вокруг самой себя переходит в саму себя. Или: когда точка О осуществляет поворот вокруг центра поворота О , она переходит в саму себя.

Отметим также, что поворот точки А относительно центра О нужно рассматривать, в том числе, как перемещение в результате движения точки А по окружности с центром в точке О радиуса О А .

Изобразим графически поворот точки А относительно точки О , перемещение точки А в точку А 1 отметим стрелкой:

Поворот окружности по часовой стрелке

Видео:Геометрия 9 класс (Урок№30 - Поворот.)Скачать

Геометрия 9 класс (Урок№30 - Поворот.)

Полный оборот

Возможно осуществить поворот точки А относительно центра поворота О таким образом, что точка А , пройдя все точки окружности, вернется на прежнее свое место. Тогда говорим, что точка совершила полный оборот вокруг точки О .

Поворот окружности по часовой стрелке

Если движение точки А по окружности продолжится, то будет выполнено два, три и так далее полных оборотов. На иллюстрации ниже справа отображено два полных оборота, а слева – три:

Поворот окружности по часовой стрелке

В рамках всего вышесказанного можно также говорить о частях полного оборота. Например, о половине оборота или трети, или четверти и так далее.

Видео:Поворот фигуры. Построить поворот фигур вокруг точки на угол по часовой или против часовой стрелкиСкачать

Поворот фигуры. Построить поворот фигур вокруг точки на угол по часовой или против часовой стрелки

Угол поворота

Из указанного выше понятия поворота точки очевидно, что возможно бесконечное множество вариаций поворота точки А относительно центра О . Любую точку окружности с центром О можно рассматривать как точку А 1 , полученную в результате поворота точки А . Поэтому для определения отличия одного поворота от другого вводится понятие угла поворота.

Угол поворота имеет свои характеристики, одна из которых – направление поворота. По нему определяют, как перемещалась точка – по часовой стрелке или против.

Еще одной характеристикой угла поворота служит его величина. Углы поворота имеют ту же единицу измерения, что и углы в геометрии: наиболее распространены градусы и радианы. Отметим, что угол поворота может выражаться в градусах любым действительным числом в промежутке от — ∞ до + ∞ , что отличает его от угла в геометрии, который выражается только положительным числом, не превосходящим 180 ° .

Чтобы обозначить углы поворота, стандартно используют буквы греческого алфавита: α , β , γ и так далее. Чтобы обозначить большое количество углов поворота, применяют одну и ту же букву с различными нижними индексами: α 1 , α 2 , α 3 … . . α n .

Разберем характеристики угла поворота подробнее.

Видео:10 класс, 11 урок, Числовая окружностьСкачать

10 класс, 11 урок, Числовая окружность

Направление поворота

Отметим на окружности с центром О точки А и А 1 . В точку А 1 возможно попасть, совершив точкой А поворот относительно центра О либо по часовой стрелке, либо – против. Очевидно определять эти повороты, как различные.

Принято считать, что поворот по часовой стрелке – поворот в отрицательном направлении направлении, а поворот против часовой стрелки – поворот в положительном направлении.

Приведем графическую иллюстрацию различных поворотов: слева на чертеже – поворот в положительном направлении; справа – в отрицательном.

Поворот окружности по часовой стрелке

Видео:Вращение против часовой стрелки.Скачать

Вращение  против  часовой стрелки.

Величина угла поворота, угол произвольной величины

Угол поворота точки, не являющейся центром поворота, в полной мере определяется указанием его величины. С другой стороны, по величине угла поворота можно определить, каким образом поворот был осуществлен.

Как было сказано выше, величина угла поворота варьируется в пределах от — ∞ до + ∞ ;

Знак плюс определяет поворот против часовой стрелки, а минус – по часовой стрелке.

Необходимо установить соответствие между самой величиной угла поворота и тем, какому повороту она соответствует.

Пусть угол поворота равен 0 ° . Такому углу поворота соответствует перемещение точки в саму себя. Иначе говоря, при повороте вокруг точки О на 0 ° точка A остается на месте.

Теперь предположим, что поворот точки А происходит в пределах половины оборота: пусть точка А переходит в точку А 1 . В таком случае абсолютная величина угла А О А 1 , выраженная в градусах, не превосходит 180 . Если поворот имел положительное направление, то величина угла поворота считается равной величине угла А О А 1 ; если отрицательное – величина угла поворота равна величине угла А О А 1 со знаком минус. Для иллюстрации этих утверждений отобразим на чертеже углы поворота в 30 ° , 180 ° и — 150 ° :

Поворот окружности по часовой стрелке

Углы поворота, превышающие 180 или меньшие – 180 определяются, исходя из очевидного свойства последовательных поворотов:

Несколько последовательных поворотов точки А относительно центра О равносильны одному повороту, величина которого равна сумме величин этих поворотов.

Рассмотрим пример, который даст нам возможность графически проиллюстрировать описанное свойство. Пусть точка А выполняет поворот относительно центра О на 45 ° , затем еще на 60 ° и еще раз — на — 35 ° . Обозначим промежуточные точки поворотов А 1 , А 2 и А 3 . В конечную точку А 3 возможно было попасть, совершив один поворот на угол поворота, величина которого равна: 45 ° + 60 ° + ( — 35 ° ) = 70 ° . Проиллюстрируем:

Поворот окружности по часовой стрелке

Таким, образом, углы, превышающие 180 ° , будем представлять, как несколько последовательных поворотов на углы, сумма величин которых определяет величину исходного угла поворота. Например, угол поворота 298 ° соответствует последовательным поворотам на 180 ° и 118 ° , или 90 ° , 90 ° , 90 ° и 28 ° , или 180 ° , 180 ° и — 62 ° , или 298 последовательных поворотов на 1 ° .

По такому же принципу определяются углы меньше — 180 ° . Например, угол поворота — 515 ° можно определить, как последовательные повороты на — 180 ° , — 180 ° и — 155 ° .

Нами был определен угол поворота, и его величина выражается в градусах некоторым действительным числом в пределах от — ∞ до + ∞ . Тригонометрия работает именно с углами поворота, хотя для удобства слово «поворот» опускают и говорят «угол». Т.е. будем рассматривать углы произвольной величины, понимая под ними углы поворота.

В заключение также отметим, что полный оборот в положительном направлении соответствует углу поворота в 360 ° или 2 π радиан. Соответственно при отрицательном направлении полный оборот будет соответствовать углу в — 360 ° или — 2 π радиан.

При этом удобно большие углы поворота представлять, как некоторое количество полных оборотов и еще один на величину в пределах от — 180 ° до 180 ° . К примеру, поворот осуществляется на 1478 ° . Представим эту величину как: 360 · 4 + 38 , т.е. заданному углу поворота соответствуют 4 полных оборота и еще один поворот – на 38 ° . Или еще один пример: угол поворота в — 815 ° можно представить, как ( — 360 ) · 2 + ( — 95 ) , т.е. заданному углу поворота соответствуют 2 полных оборота в отрицательном направлении (против часовой стрелки) и еще один поворот того же направления на — 95 ° .

Видео:Шарик равномерно движется по окружности по часовой стрелке на горизонтальной поверхности - №27354Скачать

Шарик равномерно движется по окружности по часовой стрелке на горизонтальной поверхности - №27354

Поворот фигуры вокруг точки на угол

Понятие поворота точки легко распространить на поворот любой фигуры вокруг точки на угол (такой поворот, при котором и точка, относительно которой осуществляется поворот, и сама поворачиваемая фигура лежат в одной плоскости).

Поворот фигуры – это поворот всех ее точек вокруг заданной точки на заданный угол.

Как пример, иллюстрируем следующее действие: поворот отрезка А В на угол α относительно точки О – при повороте заданный отрезок перейдет в отрезок А 1 В 1 .

Видео:Пошаговая схема поворота на 150° против часовой стрелки.Скачать

Пошаговая схема поворота на 150° против часовой стрелки.

Поворот. Задачи

Этот видеоурок доступен по абонементу

У вас уже есть абонемент? Войти

Поворот окружности по часовой стрелке

Это занятие будет посвящено теме «Поворот». Мы решим несколько задач на упомянутую тему, но для начала повторим понятие движения. После чего рассмотрим один из видов движения – поворот, перечислим его свойства и особенности. Решим вместе с преподавателем задачи на эту тему.

Если у вас возникнет сложность в понимании тему, рекомендуем посмотреть урок «Связь числа и геометрии. Часть 1. Измерения в геометрии. Свойства фигур»

Видео:Решение задач по теме "Поворот точки вокруг начала координат"Скачать

Решение задач по теме "Поворот точки вокруг начала координат"

§ 2. Параллельный перенос и поворот

Параллельный перенос

Пусть Поворот окружности по часовой стрелке— данный вектор. Параллельным переносом на вектор Поворот окружности по часовой стрелкеназывается отображение плоскости на себя, при котором каждая точка М отображается в такую точку М1, что вектор Поворот окружности по часовой стрелкеравен вектору Поворот окружности по часовой стрелке(рис. 329).

Поворот окружности по часовой стрелке

Параллельный перенос является движением, т. е. отображением плоскости на себя, сохраняющим расстояния. Докажем это. Пусть при параллельном переносе на вектор Поворот окружности по часовой стрелкеточки М и N отображаются в точки М1 и N1 (см. рис. 329). Так как Поворот окружности по часовой стрелке, то Поворот окружности по часовой стрелке. Отсюда следует, что ММ1 || NN1 и MM1 = NN1, поэтому четырёхугольник MM1N1N — параллелограмм. Следовательно, MN = M1N1, т. е. расстояние между точками М и N равно расстоянию между точками М1 и N1 (случаи, когда точки М и N расположены на прямой, параллельной вектору Поворот окружности по часовой стрелке, рассмотрите самостоятельно). Таким образом, параллельный перенос сохраняет расстояния между точками и поэтому представляет собой движение. Наглядно это движение можно представить себе как сдвиг всей плоскости в направлении данного вектора Поворот окружности по часовой стрелкена его длину.

Поворот

Отметим на плоскости точку О (центр поворота) и зададим угол а (угол поворота). Поворотом плоскости вокруг точки О на угол α называется отображение плоскости на себя, при котором каждая точка М отображается в такую точку М1, что ОМ = ОМ1 и угол МОМ1 равен α (рис. 330). При этом точка О остаётся на месте, т. е. отображается сама в себя, а все остальные точки поворачиваются вокруг точки О в одном и том же направлении — по часовой стрелке или против часовой стрелки. На рисунке 330 изображён поворот против часовой стрелки.

Поворот окружности по часовой стрелке

Поворот является движением, т. е. отображением плоскости на себя, сохраняющим расстояния.

Докажем это. Пусть О — центр поворота, α — угол поворота против часовой стрелки (случай поворота по часовой стрелке рассматривается аналогично). Допустим, что при этом повороте точки М и N отображаются в точки М1 и N1 (рис. 331). Треугольники OMN и ОМ1N1 равны по двум сторонам и углу между ними: ОМ = ОМ1, ON = ON1 и ∠MON = ∠M1ON1 (для случая, изображённого на рисунке 331, каждый из этих углов равен сумме угла α и угла M1ON). Из равенства этих треугольников следует, что MN = M1N1, т. е. расстояние между точками М и N равно расстоянию между точками М, и N, (случай, когда точки О, М и N расположены на одной прямой, рассмотрите самостоятельно). Итак, поворот сохраняет расстояния между точками и поэтому представляет собой движение. Это движение можно представить себе как поворот всей плоскости вокруг данной точки О на данный угол α.

Поворот окружности по часовой стрелке

Задачи

1162. Начертите отрезок АВ и вектор Поворот окружности по часовой стрелке. Постройте отрезок А1В1, который получается из отрезка АВ параллельным переносом на вектор Поворот окружности по часовой стрелке.

1163. Начертите треугольник АВС, вектор Поворот окружности по часовой стрелке, который не параллелен ни одной из сторон треугольника, и вектор Поворот окружности по часовой стрелке, паралдельный стороне АС. Постройте треугольник А1В1С1, который получается из треугольника АВС параллельным переносом: а) на вектор Поворот окружности по часовой стрелке; б) на вектор Поворот окружности по часовой стрелке.

1164. Даны равнобедренный треугольник АВС с основанием АС и такая точка D на прямой АС, что точка С лежит на отрезке AD. а) Постройте отрезок BlD, который получается из отрезка ВС параллельным переносом на вектор Поворот окружности по часовой стрелке. б) Докажите, что четырёхугольник ABB1D — равнобедренная трапеция.

1165. Даны треугольник, трапеция и окружность. Постройте фигуры, которые получаются из этих фигур параллельным переносом на данный вектор Поворот окружности по часовой стрелке.

1166. Постройте отрезок А1В1, который получается из данного отрезка АВ поворотом вокруг данного центра О: а) на 120° по часовой стрелке; б) на 75° против часовой стрелки; в) на 180°.

1167. Постройте треугольник, который получается из данного треугольника АВС поворотом вокруг точки А на угол 150° против часовой стрелки.

1168. Точка D является точкой пересечения биссектрис равностороннего треугольника АВС. Докажите, что при повороте вокруг точки D на угол 120° треугольник АВС отображается на себя.

1169. Докажите, что при повороте квадрата вокруг точки пересечения его диагоналей на угол 90° квадрат отображается на себя.

1170. Постройте окружность, которая получается из данной окружности с центром С поворотом вокруг точки О на угол 60° против часовой стрелки, если: а) точки О и С не совпадают; б) точки О и С совпадают.

1171. Постройте прямую а1, которая получается из данной прямой а поворотом вокруг точки О на угол 60° по часовой стрелке, если прямая а: а) не проходит через точку О; б) проходит через точку О.

а) Построим окружность с центром О, которая касается прямой а (объясните, как это сделать). Пусть М — точка касания. При повороте вокруг точки О эта окружность отображается на себя, а касательная а отображается на некоторую касательную а1 (объясните почему). Для построения прямой ах построим сначала точку М1, в которую отображается точка М при повороте вокруг точки О на угол 60° по часовой стрелке, а затем проведём касательную а1 к окружности в точке М1.

🔍 Видео

Параллельный перенос. Симметрия. Поворот | МатематикаСкачать

Параллельный перенос. Симметрия. Поворот | Математика

Секрет "Суфийского кружения.". Почему дервиши вращаются против часовой стрелки?Скачать

Секрет "Суфийского кружения.".  Почему дервиши вращаются против часовой стрелки?

9 класс, 33 урок, ПоворотСкачать

9 класс, 33 урок, Поворот

ПоворотСкачать

Поворот

ПоворотСкачать

Поворот

Как набирать энергию: по часовой или против?Скачать

Как набирать энергию: по часовой или против?

1989-0617 По часово́й стре́лке и про́тив часово́й стре́лки. Отрывок из лекции, русские субтитры.Скачать

1989-0617 По часово́й стре́лке и про́тив часово́й стре́лки. Отрывок из лекции, русские субтитры.

Наибольший угол разворота стоп (правая нога по часовой стрелке, левая - против часовой стрелки)Скачать

Наибольший угол разворота стоп (правая нога по часовой стрелке, левая - против часовой стрелки)

Поворот и параллельный перенос координатных осей. ЭллипсСкачать

Поворот и параллельный перенос координатных осей.  Эллипс

Практика вращения убирает болезни, стресс, страх, негатив из тела...🙏🙏🙏Скачать

Практика вращения убирает болезни, стресс, страх, негатив из тела...🙏🙏🙏

Тема: Движения. Урок: ПоворотСкачать

Тема: Движения. Урок: Поворот

Вращение Земли вокруг СолнцаСкачать

Вращение Земли вокруг Солнца
Поделиться или сохранить к себе: