Объём параллелепипеда равен смешанному произведению векторов на которых он построен:
Поскольку смешанное произведение векторов, может быть отрицательным числом, а объём геометрического тела — всегда число положительное, то при вычислении объёма параллелепипеда, построенного на векторах, результат смешанного произведения берется по модулю:
Таким образом, для того, чтобы вычислить объём параллелепипеда, построенного на векторах, нужно найти смешанное произведение данных векторов, и полученный результат взять по модулю.
Наш онлайн калькулятор, найдет площадь параллелепипеда с описанием подробного хода решения на русском языке.
Видео:Правило параллелепипеда для векторовСкачать

Вектор. Смешанное произведение векторов.
Также его называют тройным скалярным произведением векторов, скорее всего это связано с тем,
что результат — это скаляр (точнее — псевдоскаляр).
Смешанное произведение векторов — скалярное произведение вектора 


Или другими словами:
Смешанным произведением векторов 




векторов записывается следующим образом:
Геометрический смысл смешанного произведения векторов.
Геометрический смысл смешанного произведения векторов: если три вектора 
смешанное произведение равно объему параллелепипеда построенного на них:

В случае левой тройки 
параллелепипеда со знаком “–“:

Если 


Вывод: объем параллелепипеда, построенного на векторах 


произведения этих векторов:
Объем пирамиды, построенной на этой тройке этих векторов, находим по формуле:
Геометрические свойства смешанного произведения векторов.
1. Модуль смешанного произведения некомпланарных векторов 
параллелепипеда, построенного на этих векторах. Произведение 
тройка векторов 

2. Смешанное произведение 


Алгебраические свойства смешанного произведения векторов.
1. При перемене мест двух множителей смешанное произведение меняет знак на противоположный:
При циклической (круговой) перестановке множителей смешанное произведение остается без изменений:
2. Смешанное произведение линейно по любому множителю.
Первое свойство следует из первого геометрического свойства и свойств ориентации троек векторов, так
как от перестановки двух множителей местами, модуль смешанного произведения остается прежним, а
изменяется только ориентация тройки. При циклической перестановке векторов ориентация тройки
остается без изменений.
Второе свойство следует из линейности скалярного произведения и первого свойства.
Формула вычисления смешанного произведения векторов.
Теорема (формула вычисления смешанного произведения векторов):
Если у векторов 




Из определения следует:
что и требовалось доказать.
Еще некоторые свойства смешанного произведения векторов.
1.
2.
3 .Три вектора компланарны в том случае, если
4. Тройка векторов будет правой только если 



создают левую тройку векторов.
5.
6.
7.
8.
9.
10. Тождество Якоби:
Если векторы 


смешанное произведение можно найти по формуле, приведенной ниже:
Видео:Как строить сечения параллелепипедаСкачать

Правило параллелепипеда. Разложение вектора
Вы будете перенаправлены на Автор24
Видео:10 класс, 44 урок, Правило параллелепипедаСкачать

Правило параллелепипеда
Для правила сложения трех векторов рассмотрим следующую задачу.
Дан прямоугольный параллелепипед $ABCDA_1B_1C_1D_1$. Доказать, что $overrightarrow+overrightarrow+overrightarrow=overrightarrow$
Доказательство.
Воспользуемся свойством правила треугольника сложения двух векторов $overrightarrow+overrightarrow=overrightarrow$, получим:
Так как $overrightarrow=overrightarrow, overrightarrow=overrightarrow$
Из этой задачи получаем следующее правило для нахождения сложения трех векторов. Чтобы найти сумму трех векторов $overrightarrow,overrightarrow и overrightarrow$ нужно от произвольной точки $O$ отложить векторы $overrightarrow=overrightarrow$, $overrightarrow=overrightarrow$ и $overrightarrow=overrightarrow$ и построим параллелепипед на этих векторах. Тогда вектор диагонали $overrightarrow$ и будет суммой этих трех векторов. Это правило называется правилом параллелепипеда для сложения трех векторов.
Видео:№358. Дан параллелепипед ABCDA1B1C1D1. Назовите вектор, начало и конец которого являются вершинамиСкачать

Разложение вектора по двум неколлинеарным векторам
Вспомним сначала, какие векторы называются компланарными.
Два вектора, которые параллельны одной плоскости называются компланарными.
Произвольный вектор $overrightarrow
$ можно разложить по трем некомпланарным векторам $overrightarrow, overrightarrow$ и $overrightarrow$ с единственными коэффициентами разложения.
Математически это можно записать следующим образом
Доказательство.
Существование: Пусть нам даны три некомпланарных вектора $overrightarrow, overrightarrow$ и $overrightarrow$. Выберем произвольную точку $O$ и построим следующие векторы:
[overrightarrow=overrightarrow, overrightarrow=overrightarrow, overrightarrow=overrightarrow и overrightarrow
=overrightarrow]
Рассмотрим следующий рисунок:
Произведем следующие дополнительные построения. Проведем через точку $P$ прямую, которая будет параллельна вектору $overrightarrow$. Пусть эта прямая пересекает плоскость $OAB$ в точке $P_1$. Далее, проведем через точку $P_1$ прямую, которая будет параллельна вектору $overrightarrow$. Пусть эта прямая пересекает прямую $OA$ в точке $P_2$ (смотри рисунок выше).
Воспользуемся свойством правила треугольника сложения двух векторов $overrightarrow+overrightarrow=overrightarrow$, получим:
Так как векторы $overrightarrow$ и $overrightarrow$ коллинеарны, то
Так как векторы $overrightarrow
$ и $overrightarrow$ коллинеарны, то
Так как векторы $overrightarrow
$ и $overrightarrow$ коллинеарны, то
Тогда, получаем, что
Существование разложения доказано.
Единственность: Предположим противное. Пусть существует еще одно разложение вектора $overrightarrow
$ по векторам $overrightarrow, overrightarrow$ и $overrightarrow$:
Вычтем эти разложения друг из друга
Из этого получаем
Теорема доказана.
💥 Видео
44. Правило параллелепипедаСкачать

Вектор. Сложение и вычитание. 9 класс | МатематикаСкачать

Математика без Ху!ни. Смешанное произведение векторовСкачать

§20 Нахождение объёма параллелипипедаСкачать

Сложение векторов. Правило параллелограмма. 9 класс.Скачать

№359. Дан параллелепипед ABCDA1B1C1D1. а) Разложите вектор BD1 по векторам ВА, ВС и ВВ1.Скачать

Координаты вектора в пространстве. 11 класс.Скачать

№330. Нарисуйте параллелепипед ABCDA1B1C1D1 и обозначьте векторы C1D1, BA1Скачать

СЕЧЕНИЯ. СТРАШНЫЙ УРОК | Математика | TutorOnlineСкачать

Как построить точки в системе координат OXYZСкачать

№361. Диагонали параллелепипеда ABCDA1B1C1D1 пересекаются в точке О. Разложите векторыСкачать

Урок №6 Решение прямого параллелепипеда с помощью векторовСкачать

Площадь параллелограмма, построенного на данных векторахСкачать

10 класс, 40 урок, Сложение и вычитание векторовСкачать

10 класс, 43 урок, Компланарные векторыСкачать

ВЫЧИТАНИЕ ВЕКТОРОВ ЧАСТЬ I #егэ #огэ #математика #геометрия #профильныйегэСкачать




















