Как определить параллельные прямые в кубе

10 класс. Геометрия. Параллельные прямые в пространстве.
Содержание
  1. 10 класс. Геометрия. Параллельные прямые в пространстве.
  2. Вопросы
  3. Поделись с друзьями
  4. Комментарии преподавателя
  5. 1. Тема и цели урока
  6. 2. Определение параллельных прямых в пространстве
  7. 3. Теорема 1 и ее доказательство
  8. 4. Лемма (о двух параллельных прямых, пересекающих плоскость) и ее доказательство
  9. 5. Теорема 2 и ее доказательство
  10. 6. Итоги урока
  11. Куб — свойства, виды и формулы
  12. Элементы куба
  13. Грань
  14. Ребро
  15. Вершина
  16. Центр грани
  17. Центр куба
  18. Ось куба
  19. Диагональ куба
  20. Диагональ грани куба
  21. Объем куба
  22. Периметр куба
  23. Площадь поверхности
  24. Сфера, вписанная в куб
  25. Сфера, описанная вокруг куба
  26. Координаты вершин куба
  27. Свойства куба
  28. Параллельность в пространстве с примерами решения
  29. Параллельность в пространстве
  30. Основные понятия стереометрии. Аксиомы стереометрии
  31. Пространственные фигуры
  32. Взаимное расположение двух прямых в пространстве
  33. Параллельность прямой и плоскости
  34. Параллельность плоскостей
  35. Параллельное проектирование
  36. 🔍 Видео

10 класс. Геометрия. Параллельные прямые в пространстве.

  • Оглавление
  • Занятия
  • Обсуждение
  • О курсе

Вопросы

Задай свой вопрос по этому материалу!

Поделись с друзьями

Комментарии преподавателя

Видео:Параллельные прямые | Математика | TutorOnlineСкачать

Параллельные прямые | Математика | TutorOnline

1. Тема и цели урока

Мы уже изучали параллельные прямые в планиметрии. Теперь нужно дать определение параллельных прямых в пространстве и доказать соответствующие теоремы.

Видео:Геометрия 10 класс (Урок№4 - Параллельность прямых, прямой и плоскости.)Скачать

Геометрия 10 класс (Урок№4 - Параллельность прямых, прямой и плоскости.)

2. Определение параллельных прямых в пространстве

Определение: Две прямые в пространстве называются параллельными, если они лежат в одной плоскости и не пересекаются (Рис. 1.).

Обозначение параллельных прямых: a || b.

Как определить параллельные прямые в кубе

Как определить параллельные прямые в кубе

Видео:10 класс, 4 урок, Параллельные прямые в пространствеСкачать

10 класс, 4 урок, Параллельные прямые в пространстве

3. Теорема 1 и ее доказательство

Через любую точку пространства, не лежащую на данной прямой, проходит прямая, параллельная данной, и притом только одна.

Дано: прямая а, Как определить параллельные прямые в кубе(Рис. 2.)

Доказать: существует единственная прямая b || a, Как определить параллельные прямые в кубе

Как определить параллельные прямые в кубе

Через прямую а и точку Как определить параллельные прямые в кубе, не лежащую на ней, можно провести единственную плоскость α (Рис. 3.). В плоскости α можно провести единственную прямую b, параллельную а, проходящую через точку M (из аксиомы планиметрии о параллельных прямых). Существование такой прямой доказано.

Как определить параллельные прямые в кубе

Докажем единственность такой прямой. Предположим, что существует другая прямая с, проходящая через точку M и параллельная прямой а. Пусть параллельные прямые а и с лежат в плоскости β. Тогда плоскость β проходит через точку M и прямую а. Но через точку M и прямую а проходит единственная плоскость (в силу теоремы 2). Значит, плоскости β и α совпадают. Из аксиомы параллельных прямых, следует, что прямые b и с совпадают, так как в плоскости существует единственная прямая, проходящая через данную точку и параллельная заданной прямой. Единственность доказана.

Видео:Параллельность прямых. Практическая часть. 10 класс.Скачать

Параллельность прямых. Практическая часть.  10 класс.

4. Лемма (о двух параллельных прямых, пересекающих плоскость) и ее доказательство

Если одна из двух параллельных прямых пересекает данную плоскость, то и другая прямая пересекает эту плоскость.

Дано: а || b, Как определить параллельные прямые в кубе

Доказать: Как определить параллельные прямые в кубе

Как определить параллельные прямые в кубе

Доказательство: (Рис. 4.)

Существует некоторая плоскость β, в которой лежат параллельные прямые а и b. Точка М принадлежит и плоскости α, и прямой а, которая лежит в плоскости β. Значит, М – общая точка плоскостей α и β. А по третьей аксиоме, существует прямая MN, по которой пересекаются эти две плоскости.

Прямая MN пересекается с прямой b.(так как в противном случае, получается, что прямые MN и b параллельные, то есть a = MN, что невозможно, так как прямая а пересекается с плоскостью α в точке М по условию). То есть точка N это точка пересечения прямой b и плоскости α.Как определить параллельные прямые в кубе.

Докажем, что N — это единственная общая точка прямой b и плоскости α. Допустим, что есть другая точка, но тогда прямая bпринадлежит плоскости α (по второй аксиоме). То есть MN = b, что невозможно, так как прямые а и bпараллельны, а прямая а должна пересекаться с прямой MN. Лемма доказана.

Видео:Геометрия 7 класс (Урок№18 - Параллельные прямые.)Скачать

Геометрия 7 класс (Урок№18 - Параллельные прямые.)

5. Теорема 2 и ее доказательство

Если две прямые параллельны третьей, то они параллельны.

Дано: Как определить параллельные прямые в кубе

Доказать: Как определить параллельные прямые в кубе.

Как определить параллельные прямые в кубе

Доказательство: (Рис. 5.)

Выберем произвольную точку К на прямой b. Тогда существует единственная плоскость α, проходящая черезточку К и прямую а. Докажем, что прямая bлежит в плоскости α.

Предположим противное. Пусть прямая bне лежит в плоскости α. Тогда прямая bпересекает плоскость α в точке К. Так как прямые bи с параллельны, то, согласно лемме, прямая с также пересекает плоскость α. Прямые а и с также параллельны, значит, по лемме, прямая а также пересекает плоскость α, но это невозможно, так как прямая а лежит в плоскости α. Получили противоречие. То есть, предположение было неверным, а значит, прямая bлежит в плоскости α.

Докажем, что прямые а и b не пересекаются. Предположим противное. Пусть прямые а и bпересекаются в некоторой точке М. Но тогда получается, что через точку М проходят две прямые а и b, параллельные прямой с, что невозможно в силу теоремы 1. Получили противоречие. Значит, прямые а и b не пересекаются.

Мы доказали, что прямые а и b не пересекаются и что существует плоскость α, в которой лежат прямые а и b. Значит, прямые а и bпараллельны (по определению), что и требовалось доказать.

Видео:Взаимное расположение прямых в пространстве. 10 класс.Скачать

Взаимное расположение прямых в пространстве. 10 класс.

6. Итоги урока

Итак, мы дали определение параллельных прямых и доказали теорему о параллельных прямых в пространстве. Также мы доказали важную лемму о пересечении параллельными прямыми плоскости и с помощью этой леммы доказали теорему: если две прямые параллельны третьей, то они параллельны. Эта теория будет использоваться дальше и для доказательства других теорем, и для решения задач.

Видео:Параллельность прямых и плоскостей в пространстве. Практическая часть - решение задачи. 10 класс.Скачать

Параллельность прямых и плоскостей в пространстве. Практическая часть - решение задачи. 10 класс.

Куб — свойства, виды и формулы

Среди многогранников куб – это один из наиболее известных объектов, знакомых с далёкого детства. Более подробно эта тема изучается на уроках геометрии в старших классах, когда от фигур на плоскости переходят к телам в пространстве.

Кубу можно дать определение различными способами, каждый из которых только подчеркнёт тот или иной класс тел в пространстве, выделит основные признаки и особенности:

многогранник, у которого все рёбра равны, а грани попарно перпендикулярны;

прямая призма, все грани которой есть квадраты;

прямоугольный параллелепипед, все рёбра которого равны.

Всеми этими и многими другими подобными формулировками геометрия позволяет описывать одну и ту же фигуру в пространстве.

Видео:7 класс, 24 урок, Определение параллельных прямыхСкачать

7 класс, 24 урок, Определение параллельных прямых

Элементы куба

Основными элементами многогранника считаются грани, рёбра, вершины.

Грань

Плоскости, образующие поверхность куба, называются гранями. Другое название – стороны.

Как определить параллельные прямые в кубе

Интересно, сколько граней у куба и каковы их особенности. Всего граней шесть. Две из них, параллельные друг другу, считаются основаниями, остальные – боковыми.

Грани куба попарно перпендикулярны, являются квадратами, равны между собой.

Ребро

Линии пересечения сторон называются рёбрами.

Как определить параллельные прямые в кубе

Не каждый школьник может ответить, сколько рёбер у куба. Их двенадцать. Они имеют одинаковые длины. Те из них, что обладают общим концом, расположены под прямым углом по отношению к любому из двух остальных.

Рёбра могут пересекаться в вершине, быть параллельными. Не лежащие в одной грани ребра, являются скрещивающимися.

Вершина

Точки пересечения рёбер называются вершинами. Их число равно восьми.

Центр грани

Отрезок, соединяющий две вершины, не являющийся ребром, называется диагональю.

Как определить параллельные прямые в кубе

Пересечение диагоналей грани считается центром грани – точкой, равноудалённой от всех вершин и сторон квадрата. Это есть центр симметрии грани.

Центр куба

Пересечение диагоналей куба является его центром – точкой, равноудалённой от всех вершин, рёбер и сторон многогранника.

Как определить параллельные прямые в кубе

Это есть центр симметрии куба.

Ось куба

Рассматриваемый многогранник имеет несколько осей ортогональной (под прямым углом) симметрии. К ним относятся: диагонали куба и прямые, проходящие через его центр параллельно рёбрам.

Диагональ куба

Отрезок, соединяющий две вершины, не принадлежащие одной стороне, называется диагональю рассматриваемого многогранника.

Как определить параллельные прямые в кубе

Учитывая, что ребра куба имеют равные измерения a, можно найти длину диагонали:

Как определить параллельные прямые в кубе

Формула доказывается с помощью дважды применённой теоремы Пифагора.

Диагональ куба — одна из осей симметрии.

Все диагонали куба равны между собой и точкой пересечения делятся пополам.

Диагональ грани куба

Длина диагонали грани в √2 раз больше ребра, то есть:

Как определить параллельные прямые в кубе

Эта формула доказывается также с помощью теоремы Пифагора.

Видео:Стереометрия 10 класс. Часть 1 | МатематикаСкачать

Стереометрия 10 класс. Часть 1 | Математика

Объем куба

Как для любого параллелепипеда, объём куба равен произведению всех трёх измерений, которые в данном случае равны:

Как определить параллельные прямые в кубе

Видео:Как строить сечение куба? Стереометрия. 10-11 класс | Математика | TutorOnlineСкачать

Как строить сечение куба? Стереометрия. 10-11 класс | Математика | TutorOnline

Периметр куба

Сумма длин всех рёбер равна:

Как определить параллельные прямые в кубе

Видео:Параллельные прямые (задачи).Скачать

Параллельные прямые (задачи).

Площадь поверхности

Сумма площадей всех граней называется площадью поверхности куба. Она равна:

Как определить параллельные прямые в кубе

Видео:10 класс, 7 урок, Скрещивающиеся прямыеСкачать

10 класс, 7 урок, Скрещивающиеся прямые

Сфера, вписанная в куб

Такая сфера имеет центр, совпадающий с центром куба.

Как определить параллельные прямые в кубе

Радиус равен половине ребра:

Как определить параллельные прямые в кубе

Видео:24. Определение параллельных прямыхСкачать

24. Определение параллельных прямых

Сфера, описанная вокруг куба

Как для вписанной сферы, центр совпадает с точкой пересечения диагоналей, радиус равен половине диагонали:

Как определить параллельные прямые в кубе

Как определить параллельные прямые в кубе

Видео:Найти в кубе угол между двумя прямымиСкачать

Найти в кубе угол между двумя прямыми

Координаты вершин куба

В зависимости от расположения фигуры в системе координат, можно по-разному рассчитывать координаты вершин.

Как определить параллельные прямые в кубе

Наиболее часто используют следующий способ. Одна из вершин совпадает с началом координат, рёбра параллельны осям координат или совпадают с ними, координаты единичного куба в этом случае будут равны:

Как определить параллельные прямые в кубе

Такое расположение удобно для введения четырёхмерного пространства (вершины задаются всеми возможными бинарными наборами длины 4).

Видео:Параллельные прямые. 6 класс.Скачать

Параллельные прямые. 6 класс.

Свойства куба

Плоскость, рассекающая куб на две части, есть сечение. Его форма выглядит как выпуклый многоугольник.

Как определить параллельные прямые в кубе

Построение сечений необходимо для решения многих задач. Как правило, используется метод следов или условие параллельности прямых и плоскостей.

у куба все грани равны, являются квадратами;

у куба все рёбра равны;

один центр и несколько осей симметрии.

Видео:Угол между прямыми в пространстве. 10 класс.Скачать

Угол между прямыми в пространстве. 10 класс.

Параллельность в пространстве с примерами решения

Содержание:

Видео:10 класс, 6 урок, Параллельность прямой и плоскостиСкачать

10 класс, 6 урок, Параллельность прямой и плоскости

Параллельность в пространстве

В этом параграфе вы ознакомитесь с основными понятиями стереометрии, аксиомами стереометрии и следствиями из них. Расширите свои представления о многогранниках. Вы узнаете о взаимном расположении двух прямых, прямой и плоскости, двух плоскостей в пространстве. Ознакомитесь с правилами, по которым изображают пространственные фигуры на плоскости.

Основные понятия стереометрии. Аксиомы стереометрии

Изучая математику, вы со многими понятиями ознакомились с помощью определений. Так, из курса планиметрии вам хорошо знакомы определения четырехугольника, трапеции, окружности и др.

Определение любого понятия основано на других понятиях, содержание которых вам уже известно. Например, рассмотрим определение трапеции: «Трапецией называют четырехугольник, у которого две стороны параллельны, а две другие не параллельны». Видим, что определение трапеции основано на таких уже введенных понятиях, как четырехугольник, сторона четырехугольника, параллельные и непараллельные стороны и др. Итак, определения вводятся по принципу «новое основано на старом». Тогда ясно, что должны существовать первоначальные понятия, которым определений не дают. Их называют основными понятиями (рис. 27.1).

Как определить параллельные прямые в кубе

В изученном вами курсе планиметрии определения не давали таким фигурам, как точка и прямая. В стереометрии, кроме них, к основным понятиям отнесем еще одну фигуру — плоскость.

Наглядное представление о плоскости дают поверхность водоема в безветренную погоду, поверхность зеркала, поверхность полированного стола, мысленно продолженные во всех направлениях.

Используя понятие плоскости, можно считать, что в планиметрии мы рассматривали только одну плоскость, и все изучаемые фигуры принадлежали этой плоскости. В стереометрии же рассматривают бесконечно много плоскостей, расположенных в пространстве.

Как правило, плоскости обозначают строчными греческими буквами Как определить параллельные прямые в кубе

Как определить параллельные прямые в кубеКак определить параллельные прямые в кубе

Плоскость, так же как и прямая, состоит из точек, то есть плоскость — это множество точек.

Существует несколько случаев взаимного расположения точек, прямых и плоскостей в пространстве. Приведем примеры.

На рисунке 27.4 изображена точка А, принадлежащая плоскости Как определить параллельные прямые в кубе. Также говорят, что точка А лежит в плоскости Как определить параллельные прямые в кубеили плоскость Как определить параллельные прямые в кубепроходит через точку А. Кратко это можно записать так: Как определить параллельные прямые в кубе.

На рисунке 27.5 изображена точка В, не принадлежащая плоскости Как определить параллельные прямые в кубе. Кратко это можно записать так: Как определить параллельные прямые в кубе.

На рисунке 27.6 изображена прямая Как определить параллельные прямые в кубе, принадлежащая плоско­сти Как определить параллельные прямые в кубе. Также говорят, что прямая Как определить параллельные прямые в кубележит в плоскости Как определить параллельные прямые в кубеили плоскость Как определить параллельные прямые в кубепроходит через прямую Как определить параллельные прямые в кубе. Кратко это можно записать так: Как определить параллельные прямые в кубе

Как определить параллельные прямые в кубе Как определить параллельные прямые в кубеКак определить параллельные прямые в кубе

Если прямая и плоскость имеют только одну общую точку, то говорят, что прямая пересекает плоскость. На рисунке 27.7 изображена прямая Как определить параллельные прямые в кубе, пересекающая плоскость Как определить параллельные прямые в кубев точке А. Записывают: Как определить параллельные прямые в кубе

Как определить параллельные прямые в кубеКак определить параллельные прямые в кубе

В дальнейшем, говоря «две точки», «три точки», «две плоскости» и т.п., будем иметь в виду, что это разные точки, разные прямые и разные плоскости. Если две плоскости имеют общую точку, то говорят, что эти плоскости пересекаются.

На рисунке 27.8 изображены плоскости Как определить параллельные прямые в кубе, пересекающиеся по прямой Как определить параллельные прямые в кубе. Записывают: Как определить параллельные прямые в кубе

На начальном этапе изучения стереометрии невозможно доказывать теоремы, опираясь на другие утверждения, поскольку этих утверждений еще нет. Поэтому первые свойства, касающиеся точек, прямых и плоскостей в пространстве, принимают без доказательства и называют аксиомами. Отметим, что ряд аксиом стереометрии по формулировкам до­словно совпадают со знакомыми вам аксиомами планиметрии.

  • какова бы ни была прямая, существуют точки, принадлежащие этой прямой, и точки, не принадлежащие ей;
  • через любые две точки можно провести прямую, и притом только одну.

Мы не будем знакомиться со строгим аксиоматическим построением стереометрии. Рассмотрим лишь некоторые утверждения, выражающие основные свойства плоскостей пространства, основываясь на которых обычно строят курс стереометрии в школе.

Аксиома А1. В любой плоскости пространства выполняются все аксиомы планиметрии.

Если в любой плоскости пространства выполняются аксиомы планиметрии, то выполняются и следствия из этих аксиом, то есть теоремы планиметрии. Следовательно, в стереометрии можно поль­зоваться всеми известными нам свойствами плоских фигур.

Аксиома А2. Через любые три точки пространства, не лежащие на одной прямой, проходит плоскость, и притом только одна.

Рисунки 27.9-27.11 иллюстрируют эту аксиому.

Как определить параллельные прямые в кубе Как определить параллельные прямые в кубеКак определить параллельные прямые в кубе

Из этой аксиомы следует, что три точки пространства, не лежащие на одной прямой, определяют единственную плоскость, про­ ходящую через эти точки. Поэтому для обозначения плоскости можно указать любые три ее точки, не лежащие на одной прямой.

Например, на рисунке 27.12 изображена плоскость АВС. Запись Как определить параллельные прямые в кубеозначает, что точка М принадлежит плоскости АВС. Запись Как определить параллельные прямые в кубеозначает, что прямая MN принадлежит плоскости АВС (рис. 27.12).

Как определить параллельные прямые в кубеКак определить параллельные прямые в кубе

Аксиома АЗ. Если две точки прямой принадлежат плоскости, то и вся прямая принадлежит этой плоскости.

Например, на рисунке 27.13 точки А, В и С принадлежат плоскости АВС. Тогда можно записать: Как определить параллельные прямые в кубеИз этой аксиомы следует, что если прямая не принадлежит плоскости, то она имеет с данной плоскостью не более одной общей точки.

Утверждение, сформулированное в аксиоме АЗ, часто используют на практике, когда хотят проверить, является ли данная поверхность ровной (плоской). Для этого к поверхности в разных местах прикладывают ровную рейку и проверяют, есть ли зазор между рейкой и поверхностью (рис. 27.14).

Аксиома А4. Если две плоскости имеют общую точку, то они пересекаются по прямой.

Эту аксиому можно проиллюстрировать с помощью согнутого листа бумаги или с помощью вашего учебника (рис. 27.15).

Как определить параллельные прямые в кубеКак определить параллельные прямые в кубе

Пример:

Докажите, что если две плоскости имеют общую точку, то они пересекаются по прямой, проходящей через эту точку.

Решение:

Пусть точка А является общей для двух плоскостей Как определить параллельные прямые в кубе, то есть Как определить параллельные прямые в кубе(рис. 27.16). По аксиоме А4 плоскости Как определить параллельные прямые в кубепересекаются по прямой. Пусть Как определить параллельные прямые в кубеТогда все общие точки плоскостей Как определить параллельные прямые в кубепринадлежат прямой Как определить параллельные прямые в кубе. Точка А является общей для плоскостей Как определить параллельные прямые в кубе. Следовательно, Как определить параллельные прямые в кубеКроме аксиом, есть и другие свойства, описывающие взаимное расположение точек, прямых и плоскостей в пространстве. Опираясь на аксиомы, можно доказать, например, следующие утверждения (следствия из аксиом стереометрии).

Как определить параллельные прямые в кубе

Теорема 27.1. Через прямую и не принадлежащую ей точку проходит плоскость, и притом только одна (рис. 27.17).

Теорема 27.2. Через две пересекающиеся прямые проходит плоскость, и притом только одна (рис. 27.18).

Как определить параллельные прямые в кубеКак определить параллельные прямые в кубе

Из аксиомы А2 и теорем 27.1 и 27.2 следует, что плоскость однозначно определяется:

  1. тремя точками, не лежащими на одной прямой;
  2. прямой и точкой, не принадлежащей этой прямой;
  3. двумя пересекающимися прямыми.

Таким образом, мы указали три способа задания плоскости.

Пространственные фигуры

Начальные сведения о многогранниках. В стереометрии, кроме точек, прямых и плоскостей, рассматривают пространственные фигуры, то есть фигуры, не все точки ко­торых лежат в одной плоскости. Некоторые из пространственных фигур вам уже знакомы. Так, на рисунке 28.1 изображены цилиндр, конус и шар. Подробно эти фигуры вы будете изучать в 11 классе.

Как определить параллельные прямые в кубеКак определить параллельные прямые в кубе

На рисунке 28.2 изображена еще одна знакомая вам пространственная фигура — пирамида. Эта фигура является частным видом многогранника. Примеры многогранников показаны на рисунке 28.3.

Как определить параллельные прямые в кубе

Поверхность многогранника состоит из многоугольников. Их называют гранями многогранника. Стороны многоугольников называют ребрами многогранника, а вершины — вершинами много­гранника (рис. 28.4).

Как определить параллельные прямые в кубе Как определить параллельные прямые в кубеКак определить параллельные прямые в кубе

На рисунке 28.5 изображена пятиугольная пирамида FABCDE.

Поверхность этого многогранника состоит из пяти треугольников, которые называют боковыми гранями пирамиды, и одного пятиугольника, который называют основанием пирамиды. Вершину F, общую для всех боковых граней, называют вершиной пирамиды.

Ребра FA, FB, FC, FD и FE называют боковыми ребрами пирамиды, а ребра А В, ВС, CD, DE и ЕАребрами основания пирамиды.

На рисунке 28.6 изображена треугольная пирамида DABC. Треугольную пирамиду называют также тетраэдром.

Еще одним частным видом многогранника является призма. На рисунке 28.7 изображена треугольная призма Как определить параллельные прямые в кубе. Этот многогранник имеет пять граней, две из которых — равные треугольники АВС и Как определить параллельные прямые в кубеИх называют основаниями призмы.

Остальные грани призмы — параллелограммы. Их называют боковыми гранями призмы. Ребра Как определить параллельные прямые в кубеназывают боковыми ребрами призмы.

Как определить параллельные прямые в кубеКак определить параллельные прямые в кубе

На рисунке 28.8 изображена четырехугольная призма Как определить параллельные прямые в кубе. Ее поверхность состоит из двух равных четырехугольников ABCD и Как определить параллельные прямые в кубе(основания призмы) и четырех параллелограммов (боковые грани призмы).

Вы знакомы также с частным видом четырехугольной призмы — прямоугольным параллелепипедом. На рисунке 28.9 изображен прямоугольный параллелепипед Как определить параллельные прямые в кубе. Все грани прямоугольного параллелепипеда являются прямоугольниками.

Как определить параллельные прямые в кубеКак определить параллельные прямые в кубе

В свою очередь, частным видом прямоугольного параллелепипеда является куб. Все грани куба — равные квадраты (рис. 28.10).

Четырехугольную призму, основанием которой является параллелограмм, называют параллелепипедом.

В курсе геометрии 11 класса вы более подробно ознакомитесь с многогранниками и их частными видами.

Пример:

На ребрах Как определить параллельные прямые в кубеи Как определить параллельные прямые в кубекуба Как определить параллельные прямые в кубеотметили соответственно точки М и N так, что Как определить параллельные прямые в кубе(рис. 28.11). Постройте точку пересечения прямой MN с плоскостью АВС.

Как определить параллельные прямые в кубеКак определить параллельные прямые в кубе

Решение:

Точки М и N принадлежат плоскости Как определить параллельные прямые в кубе. Тогда по аксиоме АЗ прямая MN принадлежит этой плоскости. Аналогично прямая AD также принадлежит плоскости Как определить параллельные прямые в кубе. Из планиметрии известно, что прямые, лежащие в одной плоскости, или параллельны, или пересекаются. Поскольку Как определить параллельные прямые в кубе, то прямые AD и MN пересекаются. Пусть X — точка их пересечения (рис. 28.12). Точки А и D принадлежат плоскости АВС. Тогда по аксиоме АЗ прямая AD принадлежит этой же плоскости. Точка X принадлежит прямой AD. Следовательно, точка X принадлежит плоскости АВС. Поскольку точка X также принадлежит прямой MN, то прямая MN пересекает плоскость АВС в точке X.

Взаимное расположение двух прямых в пространстве

Из курса планиметрии вы знаете, что две прямые называют пересекающимися, если они имеют только одну общую точку. Такое же определение пересекающихся прямых дают и в стереометрии. Вам также известно, что две прямые называют параллельными, если они не пересекаются. Можно ли это определение перенести в стереометрию?

Как определить параллельные прямые в кубе

Обратимся к рисунку 29.1, на котором изображен куб Как определить параллельные прямые в кубе. Каждая из прямых АВ и Как определить параллельные прямые в кубене имеет с прямой DC общих точек. При этом прямые АВ и DC лежат в одной плоскости — в плоскости АВС, а прямые Как определить параллельные прямые в кубеи DC не лежат в одной плоскости, то есть не существует плоскости, которая проходила бы через эти прямые. Этот пример показывает, что в стереометрии для двух прямых, не имеющих общих точек, возможны два случая взаимного расположения: прямые лежат в одной плоскости и прямые не лежат в одной плоскости. Для каждого из этих случаев дадим соответствующее определение.

Определение. Две прямые в пространстве называют параллельным и, если они лежат в одной плоскости и не пересека­ются. Если прямые Как определить параллельные прямые в кубепараллельны, то записывают: Как определить параллельные прямые в кубе

Определение. Две прямые в пространстве называют скрещивающимися, если они не лежат в одной плоскости. Например, на рисунке 29.1 прямые АВ и DC — параллельные, а прямые Как определить параллельные прямые в кубеи DC — скрещивающиеся.

Как определить параллельные прямые в кубе

Наглядное представление о параллельных прямых дают колонны здания, корабельный лес, бревна сруба (рис. 29.2).

Как определить параллельные прямые в кубе

Наглядное представление о скрещивающихся прямых дают провода линий электропередачи, различные элементы строительных конструкций (рис. 29.3). Итак, существуют три возможных случая взаимного расположения двух прямых в пространстве (рис. 29.4):

  1. прямые пересекаются;
  2. прямые параллельны;
  3. прямые скрещиваются.

Как определить параллельные прямые в кубе

Два отрезка называют параллельными (скрещивающимися), если они лежат на параллельных (скрещивающихся) прямых. Например, ребра Как определить параллельные прямые в кубеи Как определить параллельные прямые в кубетреугольной призмы Как определить параллельные прямые в кубе(рис. 29.5) являются параллельными, а ребра АС и Как определить параллельные прямые в кубе— скрещивающимися.

Как определить параллельные прямые в кубе

Теорема 29.1. Через две параллельные прямые проходит плоскость, и притом только одна.

Доказательство. Пусть даны параллельные прямые Как определить параллельные прямые в кубеДокажем, что существует единственная плоскость Как определить параллельные прямые в кубетакая, что Как определить параллельные прямые в кубе

Существование плоскости Как определить параллельные прямые в кубе, проходящей через прямые Как определить параллельные прямые в кубе, следует из определения параллельных прямых.

Если предположить, что существует еще одна плоскость, проходящая через прямые Как определить параллельные прямые в кубе, то через прямую а и некоторую точку прямой Как определить параллельные прямые в кубебудут проходить две различные плоскости, что проти­воречит теореме 27.1.

Существует три способа задания плоскости. Теорему 29.1 можно рассматривать как еще один способ задания пло­скости — с помощью двух параллельных прямых.

Установить параллельность двух прямых, лежащих в одной плоскости, можно с помощью известных вам из курса планиметрии признаков параллельности двух прямых. А как установить, являются ли две прямые скрещивающимися? Ответить на этот вопрос позволяет следующая теорема.

Теорема 29.2 (признак скрещивающихся прямых). Если одна из двух прямых лежит в плоскости, а другая пересекает эту плоскость в точке, не принадлежащей первой прямой, то данные прямые — скрещивающиеся (рис. 29.6).

Как определить параллельные прямые в кубеКак определить параллельные прямые в кубе

На рисунке 29.7 ребра АВ и DC тетраэдра DABC являются скрещивающимися. Действительно, прямая DC пересекает плоскость АВС в точке С, не принадлежащей прямой АВ. Следовательно, по признаку скрещивающихся прямых прямые АВ и DC являются скрещивающимися.

Параллельность прямой и плоскости

Вам уже известны два возможных случая взаимного расположения прямой и плоскости:

  1. прямая принадлежит плоскости, то есть все точки прямой принадлежат плоскости;
  2. прямая пересекает плоскость, то есть прямая имеет с плоскостью только одну об­щую точку.

Понятно, что возможен и третий случай, когда прямая и плоскость не имеют общих точек. Например, прямая, содержащая ребро Как определить параллельные прямые в кубекуба Как определить параллельные прямые в кубе, не имеет общих точек с плоскостью АВС (рис. 30.1).

Как определить параллельные прямые в кубе

Определение. Прямую и плоскость называют параллель­ными, если они не имеют общих точек.

Если прямая Как определить параллельные прямые в кубеи плоскость Как определить параллельные прямые в кубепараллельны, то записывают: Как определить параллельные прямые в кубеТакже принято говорить, что прямая Как определить параллельные прямые в кубепараллельна плоскости Как определить параллельные прямые в кубе, а плоскость Как определить параллельные прямые в кубепараллельна прямой Как определить параллельные прямые в кубе.

Наглядное представление о прямой, параллельной плоскости, дают некоторые спортивные снаряды. Например, брусья параллельны плоскости пола (рис. 30.2). Другой пример — водосточная труба: она параллельна плоскости стены (рис. 30.3).

Как определить параллельные прямые в кубеКак определить параллельные прямые в кубе

Выяснять, параллельны ли данные прямая и плоскость, с помощью определения затруднительно. Гораздо эффективнее пользоваться следующей теоремой.

Теорема 30.1 (признак параллельности прямой и плоскости). Если прямая, не принадлежащая данной плоскости, параллельна какой-либо прямой, лежащей в этой плоскости, то данная прямая параллельна самой плоскости.

Например, на рисунке 30.1 прямые Как определить параллельные прямые в кубеи Как определить параллельные прямые в кубесодержат противолежащие стороны квадрата Как определить параллельные прямые в кубе. Эти прямые параллельны.

Поскольку Как определить параллельные прямые в кубе, то по признаку параллельности прямой и плоскости Как определить параллельные прямые в кубе

Отрезок называют параллельным плоскости, если он принадлежит прямой, параллельной этой плоскости. Например, ребро АВ куба параллельно плоскости Как определить параллельные прямые в кубе(рис. 30.1).

Вы умеете устанавливать параллельность двух прямых с помощью теорем-признаков, известных из планиметрии. Рассмотрим теоремы, описывающие достаточные условия параллельности двух прямых в пространстве.

Теорема 30.2. Если плоскость проходит через данную прямую, параллельную другой плоскости, и пересекает эту плоскость, то прямая пересечения плоскостей параллельна данной прямой.

На рисунке 30.4 прямая Как определить параллельные прямые в кубепараллельна плоскости Как определить параллельные прямые в кубе. Плоскость Как определить параллельные прямые в кубепроходит через прямую Как определить параллельные прямые в кубеи пересекает плоскость Как определить параллельные прямые в кубепо прямой Как определить параллельные прямые в кубе. Тогда Как определить параллельные прямые в кубе

Как определить параллельные прямые в кубеКак определить параллельные прямые в кубе

Теорема 30.3. Если через каждую из двух параллельных прямых проведена плоскость, причем эти плоскости пересекаются по прямой, отличной от двух данных, то эта прямая параллельна каждой из двух данных прямых.

На рисунке 30.5 прямые Как определить параллельные прямые в кубепараллельны, плоскость Как определить параллельные прямые в кубепроходит через прямую Как определить параллельные прямые в кубе, а плоскость Как определить параллельные прямые в кубе— через прямую Как определить параллельные прямые в кубеТогда Как определить параллельные прямые в кубе

Теорема 30.4. Две прямые, параллельные третьей прямой, параллельны между собой.

Пример:

Докажите, что если прямая параллельна каждой из двух пересекающихся плоскостей, то она параллельна прямой их пересечения.

Решение:

Пусть даны прямая Как определить параллельные прямые в кубеи плоскости Как определить параллельные прямые в кубетакие, что Как определить параллельные прямые в кубе(рис. 30.6). Докажем, что Как определить параллельные прямые в кубеВ плоскостях Как определить параллельные прямые в кубенайдутся соответственно такие прямые Как определить параллельные прямые в кубе, что Как определить параллельные прямые в кубеЕсли хотя бы одна из прямых Как определить параллельные прямые в кубесовпадает с пря­мой Как определить параллельные прямые в кубе, то утверждение задачи доказано. Если же каждая из прямых Как определить параллельные прямые в кубеотлична от прямой Как определить параллельные прямые в кубе, то по теореме 30.4 Как определить параллельные прямые в кубеВоспользовавшись теоремой 30.3, приходим к выводу, что Как определить параллельные прямые в кубе. Но Как определить параллельные прямые в кубе, следовательно, Как определить параллельные прямые в кубе

Как определить параллельные прямые в кубе

Параллельность плоскостей

Рассмотрим варианты возможного взаимного расположения двух плоскостей. Вы знаете, что две плоскости могут иметь общие точки, то есть пересекаться. Понятно, что две плоскости могут и не иметь общих точек. Например, плоскости АВС и Как определить параллельные прямые в кубе, содержащие основания призмы, не имеют общих точек (рис. 31.1).

Как определить параллельные прямые в кубе

Определение. Две плоскости называют параллельны ми, если они не имеют общих точек.

Если плоскости Как определить параллельные прямые в кубепараллельны, то записывают: Как определить параллельные прямые в кубеТакже принято говорить, что плоскость Как определить параллельные прямые в кубепараллельна плоскости Как определить параллельные прямые в кубеили плоскость Как определить параллельные прямые в кубепараллельна плоскости Как определить параллельные прямые в кубе

Наглядное представление о параллельных плоскостях дают потолок и пол комнаты; поверхность воды, налитой в аквариум, и его дно (рис. 31.2).

Как определить параллельные прямые в кубе

Из определения параллельных плоскостей следует, что любая прямая, лежащая в одной из двух параллельных плоскостей, параллельна другой плоскости.

В тех случаях, когда надо выяснить, являются ли две плоскости параллельными, удобно пользоваться следующей теоремой.

Теорема 31.1 (признак параллельности двух плоско­стей). Если две пересекающиеся прямые одной плоскости параллельны соответственно двум прямым другой плоскости, то эти плоскости параллельны.

Как определить параллельные прямые в кубеКак определить параллельные прямые в кубе

Например, на рисунке 31.3 изображен прямоугольный параллелепипед Как определить параллельные прямые в кубе. Имеем: Как определить параллельные прямые в кубеи Как определить параллельные прямые в кубе. Тогда по признаку параллельности двух плоскостей Как определить параллельные прямые в кубе.

Будем говорить, что два многоугольника параллельны, если они лежат в параллельных плоскостях. Например, грани Как определить параллельные прямые в кубеи Как определить параллельные прямые в кубепрямоугольного параллелепипеда Как определить параллельные прямые в кубепараллельны (рис. 31.3). Рассмотрим некоторые свойства параллельных плоскостей.

Теорема 31.2. Через точку в пространстве, не принадлежа­щую данной плоскости, проходит плоскость, параллельная данной плоскости, и притом только одна (рис. 31.4).

Теорема 31.3. Прямые пересечения двух параллельных плоскостей третьей плоскостью параллельны (рис. 31.5).

Пример:

Докажите, что отрезки параллельных прямых, заключенные между параллельными плоскостями, равны.

Решение:

Пусть даны параллельные плоскости Как определить параллельные прямые в кубеи параллельные прямые АВ и Как определить параллельные прямые в кубетакие, что Как определить параллельные прямые в кубе(рис. 31.6). Докажем, что Как определить параллельные прямые в кубе. Параллельные прямые АВ и Как определить параллельные прямые в кубезадают некоторую плоскость Как определить параллельные прямые в кубепричем Как определить параллельные прямые в кубе

По теореме 31.3 получаем: Как определить параллельные прямые в кубе. Следовательно, четырехугольник Как определить параллельные прямые в кубе— параллелограмм. Отсюда Как определить параллельные прямые в кубе.

Как определить параллельные прямые в кубеКак определить параллельные прямые в кубе

Параллельное проектирование

Многие явления и процессы, наблюдаемые нами в повседневной жизни, служат примерами преобразований, при которых образом пространственной фигуры является плоская фигура. Увидеть одно из таких явлений можно в солнечную погоду, когда предмет отбрасывает тень на плоскую поверхность (рис. 32.1). Этот пример иллюстрирует преобразование фигуры, которое называют параллельным проектированием. С помощью этого преобразования на плоскости создают изображения пространственных фигур.

Как определить параллельные прямые в кубеКак определить параллельные прямые в кубе

Многие рисунки настоящего учебника, на которых изображены пространственные фигуры, можно рассматривать как тени, отбрасываемые на плоскость страницы предметами, освещенными па­раллельными лучами. Ознакомимся подробнее с параллельным проектированием.

Пусть даны плоскость Как определить параллельные прямые в кубепрямая Как определить параллельные прямые в кубепересекающая эту плоскость, и фигура F (рис. 32.2). Через каждую точку фигуры F проведем прямую, параллельную прямой Как определить параллельные прямые в кубе(если точка фигуры F принадлежит прямой Как определить параллельные прямые в кубето будем рассматривать саму прямую Как определить параллельные прямые в кубе). Точки пересечения всех проведенных прямых с плоскостью Как определить параллельные прямые в кубеобразуют некоторую фигуру Как определить параллельные прямые в кубе. Описанное преобразование фигуры F называют параллельным проектированием. Фигуру Как определить параллельные прямые в кубеназывают параллельной проекцией фигуры F на плоскость Как определить параллельные прямые в кубев направлении прямой Как определить параллельные прямые в кубе Также фигуру Как определить параллельные прямые в кубеназывают изображением фигуры Как определить параллельные прямые в кубена плоскости Как определить параллельные прямые в кубев направлении прямой Как определить параллельные прямые в кубе

Выбирая выгодные положения плоскости Как определить параллельные прямые в кубеи прямой Как определить параллельные прямые в кубеможно получить наглядное изображение данной фигуры F. Это связано с тем, что параллельное проектирование обладает рядом замечательных свойств (см. теоремы 32.1-32.3). Благодаря этим свойствам изображение фигуры похоже на саму фигуру.

Как определить параллельные прямые в кубе

Пусть даны плоскость Как определить параллельные прямые в кубеи прямая Как определить параллельные прямые в кубепересекающая эту плоскость. Если прямая параллельна прямой Как определить параллельные прямые в кубето ее проекцией на плоскость Как определить параллельные прямые в кубеявляется точ­ка (рис. 32.3). Проекцией прямой Как определить параллельные прямые в кубетакже является точка. Если отрезок параллелен прямой Как определить параллельные прямые в кубеили лежит на прямой Как определить параллельные прямые в кубе, то его проекцией на плоскость Как определить параллельные прямые в кубеявляется точка (рис. 32.3).

В следующих теоремах будем рассматривать прямые и отрезки, не параллельные прямой Как определить параллельные прямые в кубеи не лежащие на ней.

Теорема 32.1. Параллельной проекцией прямой является прямая; параллельной проекцией отрезка является отрезок (рис. 32.4).

Как определить параллельные прямые в кубе Как определить параллельные прямые в кубеКак определить параллельные прямые в кубе

Теорема 32.2. Параллельной проекцией двух параллельных прямых являются или прямая (рис. 32.5), или две параллельные прямые (рис. 32.6). Параллельные проекции двух параллельных отрезков лежат на одной прямой или на параллельных прямых (рис. 32.6).

Теорема 32.3. Отношение параллельных проекций отрезков, лежащих на одной прямой или на параллельных прямых, равно отношению самих отрезков (рис. 32.7).

Как определить параллельные прямые в кубе

Рассмотрим изображения некоторых многоугольников на плоскости Как определить параллельные прямые в кубев на­правлении прямой Как определить параллельные прямые в кубе

Если прямая Как определить параллельные прямые в кубепараллельна плоскости многоугольника или принадлежит этой плоскости, то изображением многоугольника является отрезок. Теперь рассмотрим случай, когда прямая Как определить параллельные прямые в кубепересекает плоскость много­угольника.

Из свойств параллельного проектирования следует, что параллельной проекцией треугольника является треугольник (рис. 32.8).

Как определить параллельные прямые в кубе Как определить параллельные прямые в кубеКак определить параллельные прямые в кубе

Поскольку при параллельном проектировании сохраняется параллельность отрезков, то изображением параллелограмма (в частности, прямоугольника, ромба, квадрата) является параллелограмм (рис. 32.9).

Также из свойств параллельного проектирования следует, что изображением трапеции является трапеция.

Параллельной проекцией окружности является фигура, которую называют эллипсом (рис. 32.10).

Изображения объектов с помощью параллельного проектирования широко используют в самых разных областях промышленности, например в автомобилестроении (рис. 32.11).

Как определить параллельные прямые в кубе

Как определить параллельные прямые в кубеГЛАВНОЕ В ПАРАГРАФЕ 4

Основные аксиомы стереометрии

  • А1. В любой плоскости пространства выполняются все аксиомы планиметрии.
  • А2. Через любые три точки пространства, не лежащие на одной прямой, проходит плоскость, и притом только одна.
  • АЗ. Если две точки прямой принадлежат плоскости, то и вся прямая принадлежит этой плоскости.
  • А4. Если две плоскости имеют общую точку, то они пересекаются по прямой.

Плоскость однозначно определяется:

  1. тремя точками, не лежащими на одной прямой;
  2. прямой и точкой, не принадлежащей этой прямой;
  3. двумя пересекающимися прямыми;
  4. двумя параллельными прямыми.

Взаимное расположение двух прямых в пространстве

  • Две прямые называют пересекающимися, если они имеют только одну общую точку.
  • Две прямые в пространстве называют параллельными, если они лежат в одной плоскости и не пересекаются.
  • Две прямые в пространстве называют скрещивающимися, если они не лежат в одной плоскости.

Свойство параллельных прямых

Через две параллельные прямые проходит плоскость, и притом только одна.

Признак скрещивающихся прямых

Если одна из двух прямых лежит в плоскости, а другая пересекает эту плоскость в точке, не принадлежащей первой прямой, то данные прямые — скрещивающиеся.

Параллельность в пространстве

Прямую и плоскость называют параллельными, если они не имеют общих точек. Две плоскости называют параллельными, если они не имеют общих точек.

Признак параллельности прямой и плоскости

Если прямая, не принадлежащая данной плоскости, параллельна какой-либо прямой, лежащей в этой плоскости, то данная прямая параллельна самой плоскости.

Условия параллельности двух прямых в пространстве

  • Если плоскость проходит через данную прямую, параллельную другой плоскости, и пересекает эту плоскость, то прямая пересечения плоскостей параллельна данной прямой.
  • Если через каждую из двух параллельных прямых проведена плоскость, причем эти плоскости пересекаются по прямой, от­ личной от двух данных, то эта прямая параллельна каждой из двух данных прямых.
  • Две прямые, параллельные третьей прямой, параллельны между собой.

Признак параллельности двух плоскостей

Если две пересекающиеся прямые одной плоскости параллельны соответственно двум прямым другой плоскости, то эти плоскости параллельны.

Свойства параллельных плоскостей

Через точку в пространстве, не принадлежащую данной плоско­сти, проходит плоскость, параллельная данной плоскости, и притом только одна.

Прямые пересечения двух параллельных плоскостей третьей плоскостью параллельны.

Отрезки параллельных прямых, заключенные между параллельными плоскостями, равны.

Рекомендую подробно изучить предметы:
  1. Математика
  2. Алгебра
  3. Линейная алгебра
  4. Векторная алгебра
  5. Высшая математика
  6. Дискретная математика
  7. Математический анализ
  8. Математическая логика
Ещё лекции с примерами решения и объяснением:
  • Перпендикулярность в пространстве
  • Векторы и координаты в пространстве
  • Множества
  • Рациональные уравнения
  • Числовые последовательности
  • Предел числовой последовательности
  • Предел и непрерывность числовой функции одной переменной
  • Функции, их свойства и графики

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

🔍 Видео

Геометрия 7 класс (Урок№19 - Признаки параллельности прямых.)Скачать

Геометрия 7 класс (Урок№19 - Признаки параллельности прямых.)

Готовимся к ЕГЭ. Стереометрия. Базовые задачи. Угол между прямыми. КубСкачать

Готовимся к ЕГЭ. Стереометрия. Базовые задачи. Угол между прямыми. Куб

10 класс, 5 урок, Параллельность трех прямыхСкачать

10 класс, 5 урок, Параллельность трех прямых
Поделиться или сохранить к себе: