При пересечении двух параллельных прямых третьей прямой сумма односторонних углов

Планиметрия. Страница 2

При пересечении двух параллельных прямых третьей прямой сумма односторонних углов

  • Главная
  • Репетиторы
  • Учебные материалы
  • Контакты

При пересечении двух параллельных прямых третьей прямой сумма односторонних углов

Видео:Углы при пересечении двух прямых третьейСкачать

Углы при пересечении двух прямых  третьей

1.Параллельность прямых

Теорема: если две прямые параллельны третьей прямой, то они параллельны.

Доказательство. Пусть даны две прямые а и b. Допустим, что они не параллельны между собой. (Рис.1) Тогда они пересекаются в некоторой точке С. Следовательно, через точку С проходят две прямые, параллельные прямой с. А это невозможно согласно аксиоме: через точку, не лежащую на данной прямой, можно провести только одну прямую, параллельную данной. Следовательно, прямые а и b не пересекаются. Они параллельны.

При пересечении двух параллельных прямых третьей прямой сумма односторонних углов

Рис.1 Теорема. Параллельность прямых.

Видео:7 класс, 29 урок, Теоремы об углах, образованных двумя параллельными прямыми и секущейСкачать

7 класс, 29 урок, Теоремы об углах, образованных двумя параллельными прямыми и секущей

2.Признаки параллельности прямых

Теорема. Если внутренние накрест лежащие углы равны или сумма внутренних односторонних углов равна 180 градусов, то прямые параллельны.

Доказательство. Пусть даны две прямые a и b, которые образуют с секущей АВ внутренние накрест лежащие углы (Рис. 2 а). Допустим, что прямые a и b не параллельны. Тогда они пересекаются в одной точке С. Секущая АВ разбивает плоскость на две полуплоскости. И, следовательно, точка С лежит в одной из них и образует треугольник АВС. Сторона АС принадлежит прямой а. Сторона ВС принадлежит прямой b. (Рис. 2 б)

Отложим равный треугольник ABC1 в другой полуплоскости с вершиной С1 так, чтобы угол А треугольника АВС совпал с углом В треугольника АВС1. Так как по условию задачи сумма внутренних односторонних углов равна 180 градусов, то сторона АС1 ляжет на прямую а, ВС1 — на прямую b. Тогда точка С1 принадлежит двум прямым: а и b. Т.е. две точки С и С1 одновременно принадлежат двум прямым. А это невозможно. Следовательно прямые a и b не пересекаются, они параллельны.

8. Пример 1

Даны прямая а и точка С, не лежащая на этой прямой. Необходимо доказать, что через точку С можно провести прямую, параллельную прямой а. (Рис.8)

Доказательство:

Проведем прямую b, параллельную прямой а. Тогда, согласно аксиоме 9, (через точку, не лежащую на данной прямой, можно провести только одну прямую) проведем прямую с через точку С, параллельную прямой b.

Таким образом, получается, что прямая с параллельна прямой b, и прямая a также параллельна прямой b по построению. Следовательно, по теореме о двух прямых, параллельных третьей прямой, имеем, что две прямые a и c параллельны прямой b и, следовательно, они (прямые а и с) параллельны. Т.е. через точку С можно провести прямую, параллельную прямой а.

При пересечении двух параллельных прямых третьей прямой сумма односторонних углов

Рис.8 Задача. Даны прямая а и точка С .

Пример 2

Даны две параллельные прямые а и b, и секущая с. Докажите, что биссектрисы внутренних накрест лежащих углов, образованных этими прямыми, параллельны (Рис.9)

Доказательство:

Так как прямые а и b параллельны, то углы α и β, образованные этими параллельными прямыми и секущей с, равны как внутренние накрест лежащие, т.е. ∠α = ∠β. Согласно определению, биссектриса — это луч, исходящий из вершины угла между его сторонами, который делит этот угол пополам. Следовательно, биссектрисы d1 и d2 делят углы α и β пополам.

Таким образом, так как углы α и β равны, то и углы α/2 и β/2 также равны. А если углы α/2 и β/2 равны, то они являются внутренними накрест лежащими углами, между секущей с и прямыми, на которых лежат лучи d1 и d2, и согласно теореме: признак параллельности прямых, лучи d1 и d2 лежат на параллельных прямых.

При пересечении двух параллельных прямых третьей прямой сумма односторонних углов

Рис.9 Задача. Даны две параллельные прямые а и b и секущая с.

Пример 3

Один из углов равнобедренного треугольника АВС равен 100° (Рис.10). Найти остальные углы треугольника.

Решение:

Так как сумма углов треугольника составляет 180°, а два угла у равнобедренного треугольника равны, то они не могут равняться 100°. Следовательно, углы при вершинах А и С равны, а угол при вершине В = 100°.

Отсюда следует, что можно составить соотношение:

Ответ: углы равнобедренного треугольника составляют: 100°, 40°, 40°.

При пересечении двух параллельных прямых третьей прямой сумма односторонних углов

Рис.10 Задача. Найти углы треугольника.

Пример 4

Сумма внешних углов треугольника АВС при вершиах А и В равна 240° (Рис.11). Найдите угол С треугольника АВС.

Решение:

Так как сумма углов α + β + α1 + β1 = 360°, а

α1 + β1 = 240° по условию задачи, то

А так как сумма углов треугольника составляет 180°, то

α + β + γ = 180°, т.е.

И следовательно, γ = 60°

Ответ: угол при вершине С = 60°.

При пересечении двух параллельных прямых третьей прямой сумма односторонних углов

Рис.11 Задача. Найти угол треугольника.

Пример 5

В равнобедренном треугольнике АВС с основанием АС проведена биссектриса AD. Угол при вершине В составляет 36° (Рис.12). Докажите, что треугольники CDA и ADB равнобедренные.

Доказательство:

Так как по условию задачи треугольник АВС равнобедренный, то углы при вершинах А и С равны:

α = 72°, а так как AD биссектриса, то ∠BAD = ∠DAC, т.е.

Следовательно, треугольник ADB равнобедренный. Углы при вершинах А и В равны 36°.

Теперь рассмотрим треугольник ADC. Угол λ равен:

λ = 180° — (α / 2 + α)

Таким образом, треугольник ADC равнобедренный. Углы при вершинах С и D равны 72°.

При пересечении двух параллельных прямых третьей прямой сумма односторонних углов

Рис.12 Задача. В равнобедренном треугольнике АВС .

Видео:Углы, образованные при пересечении двух прямых секущейСкачать

Углы, образованные при пересечении двух прямых секущей

Признаки и свойства параллельных прямых

Видео:УГЛЫ: Односторонние, Накрест Лежащие, Внутренние, Внешние // Теорема об углах — Геометрия 7 классСкачать

УГЛЫ: Односторонние, Накрест Лежащие, Внутренние, Внешние // Теорема об углах — Геометрия 7 класс

Признаки параллельных прямых

1. Если две прямые параллельны третьей прямой, то они являются параллельными:

При пересечении двух параллельных прямых третьей прямой сумма односторонних углов

2. Если две прямые перпендикулярны третьей прямой, то они параллельны:

При пересечении двух параллельных прямых третьей прямой сумма односторонних углов

Остальные признаки параллельности прямых основаны на углах, образующихся при пересечении двух прямых третьей.

3. Если сумма внутренних односторонних углов равна 180°, то прямые параллельны:

При пересечении двух параллельных прямых третьей прямой сумма односторонних углов

Если ∠1 + ∠2 = 180°, то a || b.

4. Если соответственные углы равны, то прямые параллельны:

При пересечении двух параллельных прямых третьей прямой сумма односторонних углов

5. Если внутренние накрест лежащие углы равны, то прямые параллельны:

При пересечении двух параллельных прямых третьей прямой сумма односторонних углов

Видео:Геометрия 7 класс (Урок№19 - Признаки параллельности прямых.)Скачать

Геометрия 7 класс (Урок№19 - Признаки параллельности прямых.)

Свойства параллельных прямых

Утверждения, обратные признакам параллельности прямых, являются их свойствами. Они основаны на свойствах углов, образованных пересечением двух параллельных прямых третьей прямой.

1. При пересечении двух параллельных прямых третьей прямой, сумма образованных ими внутренних односторонних углов равна 180°:

При пересечении двух параллельных прямых третьей прямой сумма односторонних углов

Если a || b, то ∠1 + ∠2 = 180°.

2. При пересечении двух параллельных прямых третьей прямой, образованные ими соответственные углы равны:

При пересечении двух параллельных прямых третьей прямой сумма односторонних углов

3. При пересечении двух параллельных прямых третьей прямой, образованные ими накрест лежащие углы равны:

При пересечении двух параллельных прямых третьей прямой сумма односторонних углов

Следующее свойство является частным случаем для каждого предыдущего:

4. Если прямая на плоскости перпендикулярна одной из двух параллельных прямых, то она перпендикулярна и другой:

При пересечении двух параллельных прямых третьей прямой сумма односторонних углов

Пятое свойство — это аксиома параллельности прямых:

5. Через точку, не лежащую на данной прямой, можно провести только одну прямую, параллельную данной прямой:

Видео:Теорема 14.2 Если сумма односторонних углов равна 180 градусов, то прямые параллельны || Геометрия 7Скачать

Теорема 14.2 Если сумма односторонних углов равна 180 градусов, то прямые параллельны || Геометрия 7

При пересечении двух параллельных прямых третьей прямой сумма односторонних углов

1. Свойство углов, образованных при пересечении двух параллельных прямых третьей прямой (формулировки и примеры)

При пересечении двух прямых секущей, образуется 8 уг-
лов. На рисунке 8 обозначим их цифрами.

Углы 3 и 5, 4 и 6 — накрест лежащие;

Углы 4 и 5, 3 и 6 — односторонние;

Углы 1 и 5, 4 и 8, 2 и 6, 3 и 7 — соответственные.
Если прямые а и Ь на рис.8 параллельны, то эти углы
имеют специальные свойства:

Теорема: Если две параллельные прямые пересечены се-
кущей, то накрест лежащие углы равны.

Теорема: Если две параллельные прямые пересечены секущей, то соответственные углы равны.

Теорема: Если две параллельные прямые пересечены секущей, то сумма односторонних углов равна 180°

2. Решение треугольника по двум сторонам и углу между ними.

Решением треугольника называется нахождение всех его шести элементов (трех сторон и трех углов) по каким-нибудь трем заданным элементам, определяющим треугольник.

Решение треугольника по двум сторонам и углу между ними

То есть мы нашли три неизвестных элемента треугольника, а значит, решили треугольник.

3. Задача по теме »Средняя линия треугольника» (типа №46-48)

№46. В треугольнике ABC отмечены точки D и E, которые являются серединами сторон AB и BC соответственно Найдите периметр четырехугольника ADEC, если AB=24 см, BC=32 см и АС=44 см

DE — средняя линия треугольника ABC по определению. По свойству средней линии (средняя линия треугольника, соединяющая середины двух данных сторон, параллельна третьем стороне и равна ее половине)

Периметр четырехугольника ADEC равен

№ 47 . Диагональ квадрата равна 26 см. Найдите периметр

четырехугольника, вершинами которого являются середи-
ны сторон квадрата.

Периметр четырехугольника EFGH равен EF+FG+GH+HE=4EF=4*13=52 cм.

№ 48 . В равностороннем треугольнике QRP отмечены точки S, T и O, которые являются серединами сторон QR, RP и QP соответственно. Найдите периметр параллелограмма QSTO, если периметр треугольника SRT равен 27 см.

ST — средняя линия треугольника QRP, по свойству средней линии она параллельна QP и равна . Треугольники следовательно, т. SPT — равносторонний , и SR=RT=ST, его периметр равен SR+RT+ST= 27 см, откуда получаем, что 3SR=27 cм; SR=9см=RT=ST. QO= = ST=9 см; QS= =SR=9 см. В параллелограмме противоположные стороны равны, значит, SQ=TO. Следовательно, периметр параллелограмма QSTO равен ST+TO+OQ+QS=36см.

4. Задача по теме «Неравенство треугольника»
(типа № 44)

№ 44. Расстояние от точки А до точек В и С равны 3 см и
14 см соответственно, а расстояния от точки D до точек
В и С равны 5 см и б см соответственно. Докажите, что
точки А, В, С и D лежат на одной прямой.

AC=14, AB=3, CD=6, BD=5 (см)

Проведем отрезок AC. Проведем окружность с центром в точке A радиуса 3 см. Точка B лежит на этой окружности. При этом AM=3 cм. Проведем окружность с центром в точке С радиуса 6 см. Точка D лежит на этой окружности. При этом CN=6 см. Тогда MN=AC-AM-CN=5 см. Теперь видим, что BD=5см, тогда и только тогда, когда точки B и D лежат на отрезке AC. Что и требовалось доказать.

🔥 Видео

Углы при пересечении двух прямых секущей (третьей прямой). Виды углов урок 5. Геометрия 7 класс.Скачать

Углы при пересечении двух прямых секущей (третьей прямой). Виды углов урок 5. Геометрия 7 класс.

ОСНОВНЫЕ ПОНЯТИЯ ГЕОМЕТРИИ 4. Углы, образованные при пересечении двух параллельных прямых третьейСкачать

ОСНОВНЫЕ ПОНЯТИЯ ГЕОМЕТРИИ 4. Углы, образованные при пересечении двух параллельных прямых третьей

Углы, получаемые при сечении двух прямых третьей.Скачать

Углы, получаемые при сечении двух прямых третьей.

Если при пересечении двух прямых третьей прямой ... | ОГЭ 2017 | ЗАДАНИЕ 13 | ШКОЛА ПИФАГОРАСкачать

Если при пересечении двух прямых третьей прямой ... | ОГЭ 2017 | ЗАДАНИЕ 13 | ШКОЛА ПИФАГОРА

Пары углов в геометрииСкачать

Пары углов в геометрии

7 класс. Геометрия. Параллельность прямых. Признаки и свойства. Углы при пересечении прямых. Урок #7Скачать

7 класс. Геометрия. Параллельность прямых. Признаки и свойства. Углы при пересечении прямых. Урок #7

Теорема о пересечении двух параллельных прямых третьейСкачать

Теорема о пересечении двух параллельных прямых третьей

ГЕОМЕТРИЯ 7 класс. Признаки параллельности, накрест лежащие, соответственные и односторонние углыСкачать

ГЕОМЕТРИЯ 7 класс. Признаки параллельности, накрест лежащие, соответственные и односторонние углы

7 класс, 25 урок, Признаки параллельности двух прямыхСкачать

7 класс, 25 урок, Признаки параллельности двух прямых
Поделиться или сохранить к себе:
Главная > Учебные материалы > Математика: Планиметрия. Страница 2
При пересечении двух параллельных прямых третьей прямой сумма односторонних углов
При пересечении двух параллельных прямых третьей прямой сумма односторонних углов
1 2 3 4 5 6 7 8 9 10 11 12
При пересечении двух параллельных прямых третьей прямой сумма односторонних углов
При пересечении двух параллельных прямых третьей прямой сумма односторонних углов

Рис.2 Теорема. Признаки параллельности прямых.

Видео:Параллельные прямые | Математика | TutorOnlineСкачать

Параллельные прямые | Математика | TutorOnline

3.Свойство углов при пересечении параллельных прямых

Теорема. Если две параллельные прямые пересечены третьей прямой, то внутренние накрест лежащие углы равны и сумма внутренних односторонних углов равна 180 градусов.

Доказательство. Пусть a и b параллельные прямые. Прямая с пересекает их в точках А и В. (Рис. 3)

Проведем через точку А прямую а 1 так, чтобы внутренние накрест лежащие углы, образованные между прямыми а 1 и b и секущей с, были равны. Тогда по признаку параллельности прямых они параллельны. А так как согласно аксиоме о единственной параллельной прямой, проходящей через точку не лежащей на данной прямой, такая прямая может быть только одна, то прямые а и а 1 совпадают. А следовательно внутренние накрест лежащие углы, образованные между прямыми а,b и секущей с, равны.

При пересечении двух параллельных прямых третьей прямой сумма односторонних углов

Рис.3 Теорема. Свойство углов при пересечении параллельных прямых.

Видео:№201. Сумма накрест лежащих углов при пересечении двух параллельных прямых секущей равна 210Скачать

№201. Сумма накрест лежащих углов при пересечении двух параллельных прямых секущей равна 210

4.Сумма углов треугольника

Теорема. Сумма углов треугольника равна 180 градусов.

Доказательство. Пусть АВС данный треугольник. Проведем через вершину В прямую BD, параллельную стороне АС (Рис. 4).

Тогда углы α и α’, γ и γ’ равны как внутренние накрест лежащие. А так как прямая BD представляет собой развернутый угол с вершиной угла в точке В, который равен 180°, т.е. α’ + β + γ’ = 180°, то сумма углов треугольника равна также 180°. Таким образом, мы пришли к выводу, что сумма углов треугольника, т.е. α + β + γ = 180°.

При пересечении двух параллельных прямых третьей прямой сумма односторонних углов

Рис.4 Теорема. Сумма углов треугольника.

Видео:№203. Найдите все углы, образованные при пересечении двух параллельных прямых а и b секущей сСкачать

№203. Найдите все углы, образованные при пересечении двух параллельных прямых а и b секущей с

5.Единственность перпендикуляра к прямой

Теорема. Из любой точки, не лежащей на данной прямой, можно опустить только один перпендикуляр на данную прямую.

Доказательство. Пусть дана прямая а и не лежащая на ней точка А. Отметим на прямой а произвольную точку, например D. И проведем через нее перпендикуляр.(Рис. 5)

Теперь проведем через точку А прямую, параллельную нашей перпендикулярной прямой. Она также будет перпендикулярна прямой а. Так как прямая а, перпендикулярна одной из параллельных прямых, перпендикулярна и второй прямой. Отрезок АВ и есть перпендикуляр. Если допустить, что существует другой перпендикуляр, допустим в точке С. То в треугольнике АВС образуются два угла 90 градусов, а это невозможно. Следовательно отрезок АВ — это единственный перпендикуляр, проходящий через точку А.

При пересечении двух параллельных прямых третьей прямой сумма односторонних углов

Рис.5 Теорема. Единственность перпендикуляра к прямой.

Видео:Теорема о пересечении двух параллельных прямых третьейСкачать

Теорема о пересечении двух параллельных прямых третьей

6. Высота, биссектриса и медиана треугольника

Высотой треугольника, проведенной из данной вершины, называется перпендикуляр, опущенный из данной вершины на противолежащую сторону.

Биссектрисой треугольника, проведенной из данной вершины, называется отрезок, соединяющий эту вершину угла и противолежащую сторону, и делящий данный угол пополам.

Медианой треугольника, проведенной из данной вершины, называется отрезок, соединяющий эту вершину и противолежащую сторону, и делящий ее пополам. (Рис.6)

При пересечении двух параллельных прямых третьей прямой сумма односторонних углов

Рис.6 Высота, биссектриса и медиана треугольника.

Видео:№208. Разность двух односторонних углов при пересечении двух параллельных прямых секущей равна 50°Скачать

№208. Разность двух односторонних углов при пересечении двух параллельных прямых секущей равна 50°

7. Свойство медианы равнобедренного треугольника

Теорема. В равнобедренном треугольнике медиана, проведенная из вершины угла к основанию, является биссектрисой и высотой.

Доказательство:

Пусть АВС — данный равнобедренный треугольник с основанием АС. Боковые стороны АВ и ВС равны, ВD — медиана. Необходимо доказать, что BD является биссектрисой и высотой.

Рассмотрим треугольники ABD и BDC. Они равны по третьему признаку равенства треугольников. АВ = ВС по условию, AD = DC, так как BD медиана, а сторона BD у них общая. Следовательно, углы при вершине D равны, а так как они являются смежными, то ∠ADB = ∠CDB = 90°.

Из равенства треугольников ABD и BDC следует равенство углов при вершине В, т.е. ∠AВD = ∠CВD = α.

Отсюда можно сделать вывод, что медиана BD является биссектрисой и высотой.

При пересечении двух параллельных прямых третьей прямой сумма односторонних углов

Рис.7 Свойство медианы равнобедренного треугольника.

При пересечении двух параллельных прямых третьей прямой сумма односторонних углов