Как определить что точка лежит внутри окружности

Уравнение для тестирования, если точка находится внутри круга

Если у вас есть круг с центром (center_x, center_y) и радиусом radius , как вы можете проверить, находится ли данная точка с координатами (x, y) внутри круга?

Видео:Попадание точки в заданную область. Два сектора. Уроки программирования на С++.Скачать

Попадание точки в заданную область. Два сектора. Уроки программирования на С++.

ОТВЕТЫ

Ответ 1

В общем случае x и y должны удовлетворять (x — center_x)^2 + (y — center_y)^2 .

Обратите внимание, что точки, которые удовлетворяют приведенному выше уравнению с заменой на == , считаются точками на окружности, а точки, которые удовлетворяют уравнению с заменой на > , считаются внешними круг.

Ответ 2

Математически, Pythagoras, вероятно, простой метод, о котором многие уже упоминали.

Вычислительно, есть более быстрые пути. Определение:

Если точка с большей вероятностью окажется вне этого круга, тогда представьте квадрат, нарисованный вокруг него так, чтобы стороны были касательными к этому кругу:

Теперь представьте себе квадратный алмаз, нарисованный внутри этого круга таким образом, чтобы вершины касались этого круга:

Теперь мы покрыли большую часть нашего пространства, и только небольшая область этого круга остается между нашим квадратом и алмазом для тестирования. Здесь мы возвращаемся к Пифагору, как указано выше.

Если точка с большей вероятностью находится внутри этого круга, то обратный порядок первых трех шагов:

Альтернативные методы представляют собой квадрат внутри этого круга вместо алмаза, но для этого требуется немного больше тестов и вычислений без каких-либо вычислительных преимуществ (внутренний квадрат и алмазы имеют одинаковые области):

Для тех, кто заинтересован в производительности, я реализовал этот метод в c и скомпилирован с -O3.

Я получил время выполнения time ./a.out

Я реализовал этот метод, обычный метод и фиктивный метод для определения временных затрат времени.

Normal: 21.3s This: 19.1s Overhead: 16.5s

Итак, кажется, что этот метод более эффективен в этой реализации.

Ответ 3

Вы можете использовать Pythagoras для измерения расстояния между вашей точкой и центром и посмотреть, меньше ли это радиуса:

РЕДАКТИРОВАТЬ (подсказка для Пауля)

На практике квадратирование часто намного дешевле, чем использование квадратного корня, и поскольку нас интересует только упорядочение, мы можем, конечно, отказаться от квадратного корня:

Кроме того, Джейсон отметил, что следует заменить на , и в зависимости от использования это может иметь смысл , хотя я считаю, что это не верно в строгом математическом смысле . Я исправляюсь.

Ответ 4

Это более эффективный и читаемый. Это позволяет избежать дорогостоящей работы с квадратным корнем. Я также добавил проверку, чтобы определить, находится ли точка в пределах ограничивающего прямоугольника круга.

Проверка прямоугольника не нужна, за исключением множества точек или многих кругов. Если большинство точек находятся внутри кругов, проверка ограничивающего прямоугольника будет делать вещи медленнее!

Как всегда, обязательно рассмотрите свой вариант использования.

Ответ 5

что в С#. конвертировать для использования в python.

Ответ 6

Вы должны проверить, меньше ли расстояние от центра круга до точки, чем радиус, т.е.

Ответ 7

Как сказано выше — используйте евклидову дистанцию.

Ответ 8

Найдите расстояние между центром круга и указанными точками. Если расстояние между ними меньше радиуса, то точка находится внутри круга. если расстояние между ними равно радиусу круга, то точка находится на окружности круга. если расстояние больше радиуса, то точка находится вне круга.

Ответ 9

Это то же самое решение, что и упомянутое Джейсоном Пеньоном, но оно содержит пример псевдокода и некоторые подробности. Я видел его ответ, написав это, но я не хотел удалять мои.

Я думаю, что наиболее понятным способом является сначала рассчитать расстояние между центром окружности и точкой. Я бы использовал эту формулу:

Затем просто сравните результат этой формулы, расстояние ( d ), с radius . Если расстояние ( d ) меньше или равно радиусу ( r ), точка находится внутри круга (на краю круга, если d и r равны).

Вот пример псевдокода, который можно легко преобразовать в любой язык программирования:

Где circle_x и circle_y — центральные координаты круга, r — радиус круга, а x и y — координаты точки.

Ответ 10

Мой ответ на С# как полное решение для вырезания и вставки (не оптимизированное):

Ответ 11

Как указывалось ранее, чтобы показать, находится ли точка в круге, мы можем использовать следующие

Чтобы представить его графически, мы можем использовать:

Ответ 12

Уравнение ниже представляет собой выражение, которое проверяет, находится ли точка в данном круге, где xP & yP — координаты точки, xC & yC — координаты центра круга, а R — радиус этого заданного круга.

Как определить что точка лежит внутри окружности

Если приведенное выше выражение истинно, то точка находится внутри круга.

Ниже приведен пример реализации в С#:

Ответ 13

Я использовал код ниже для новичков вроде меня:).

public class incirkel <

Ответ 14

Перейдя в мир 3D, если вы хотите проверить, находится ли 3D-точка в единице измерения, вы делаете что-то подобное. Все, что необходимо для работы в 2D, — использовать двумерные векторные операции.

Ответ 15

Я знаю, что через несколько лет я получил ответ, получивший наибольшее количество голосов, но мне удалось сократить время расчета на 4.

Вам нужно только рассчитать пиксели от 1/4 круга, а затем умножить на 4.

Это решение, которое я достиг:

Ответ 16

Вот простой Java-код для решения этой проблемы:

Видео:Как искать точки на тригонометрической окружности.Скачать

Как искать точки на тригонометрической окружности.

Определение принадлежности точки кругу с центром в начале координат

Вводятся координаты (x;y) точки и радиус круга ( r ). Определить принадлежит ли данная точка кругу, если его центр находится в начале координат.

Будем считать, что точка принадлежит кругу, если находится внутри его или на его окружности.

Из любой точки координатной плоскости можно провести отрезок к началу координат. Если длина этого отрезка больше радиуса круга, то точка лежит за пределами круга и, следовательно, не принадлежит ему. Если же отрезок, соединяющий точку и начало координат, меньше радиуса круга с центром в начале координат или равен ему, то точка будет принадлежать кругу.

Отрезок между любой точкой и нулевой точкой (началом координат) является гипотенузой прямоугольного треугольника, катеты которого равны значениям x и y координаты данной точки.

Таким образом задача сводится по-сути к двум действия:

  1. Нахождение длины отрезка между точкой и началом координат по теореме Пифагора (квадрат длины гипотенузы равен сумме квадратов длин катетов).
  2. Сравнению полученного значения с радиусом круга.

Видео:33 Задача: Принадлежит ли точка кругу с центром в начале координат?Скачать

33 Задача: Принадлежит ли точка кругу с центром в начале координат?

Pascal

Определение принадлежности точки кругу с центром в начале координат паскаль

Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

Язык Си

Для gcc компилировать с ключом -lm.

Видео:53 Точка внутри окружностей одного радиуса (101)Скачать

53 Точка внутри окружностей одного радиуса (101)

Python

Определение принадлежности точки кругу с центром в начале координат Python

Видео:Определение принадлежности точки окружностиСкачать

Определение принадлежности точки окружности

Точка внутри и вне окружности

Этот видеоурок доступен по абонементу

У вас уже есть абонемент? Войти

Как определить что точка лежит внутри окружности

На этом занятии мы изучим тему «Точка внутри и вне окружности». На этом итоговом уроке мы повторим понятие окружности, вспомним ее основные свойства. Рассмотрим примеры расположения точки внутри и вне окружности. Вместе с преподавателем решим несколько задач на эту тему.

📹 Видео

Алгоритмы. Попадание точки в кругСкачать

Алгоритмы. Попадание точки в круг

Попадание точки в заданную область. Круг в круге. Уроки программирования на С++.Скачать

Попадание точки в заданную область. Круг в круге. Уроки программирования на С++.

Точка O – центр окружности, на которой лежат точки ... | ОГЭ 2017 | ЗАДАНИЕ 10 | ШКОЛА ПИФАГОРАСкачать

Точка O – центр окружности, на которой лежат точки ... | ОГЭ 2017 | ЗАДАНИЕ 10 | ШКОЛА ПИФАГОРА

10 класс, 11 урок, Числовая окружностьСкачать

10 класс, 11 урок, Числовая окружность

Точки на числовой окружностиСкачать

Точки на числовой окружности

Где находится точка в треугольнике заданном координатами вершин, внутри или вне треугольника.Скачать

Где находится точка в треугольнике заданном координатами вершин, внутри или вне треугольника.

Программирование на С++. Урок 10. Попадает ли точка в заштрихованную областьСкачать

Программирование на С++. Урок 10. Попадает ли точка в заштрихованную область

№17 Лемма о трезубце | Вписанная и вневписанная окружности | Это будет на ЕГЭ 2024 по математикеСкачать

№17 Лемма о трезубце | Вписанная и вневписанная окружности | Это будет на ЕГЭ 2024 по математике

Уравнение окружности (1)Скачать

Уравнение окружности (1)

В какой четверти находится точка единичной окружности, полученная при повороте Ро(1;0) на угол...Скачать

В какой четверти находится точка единичной окружности, полученная при повороте Ро(1;0) на угол...

4 С какой вероятностью центр окружности лежит внутри случайного вписанного треугольника?Скачать

4 С какой вероятностью центр окружности лежит внутри случайного вписанного треугольника?

Окружность. 7 класс.Скачать

Окружность. 7 класс.

Окружность, диаметр, хорда геометрия 7 классСкачать

Окружность, диаметр, хорда геометрия 7 класс

Длина окружности. Математика 6 класс.Скачать

Длина окружности. Математика 6 класс.
Поделиться или сохранить к себе: