Для обозначения геометрических фигур и их проекций, для отображения отношения между геометрическими фигурами, а также для краткости записей геометрических предложений, алгоритмов решения задач и доказательства теорем используются символьные обозначения.
Символьные обозначения, все их многообразие, может быть подразделено на две группы: — Первая группа — обозначения геометрических фигур и отношения между ними; — Вторая группа — обозначения логических операций, составляющая синтаксическую основу геометрического языка.
Символьные обозначения — Первая группа
Символы, обозначающие геометрические фигуры и отношения между ними
Обозначения геометрических фигур: Φ — геометрическая фигура; A, B, C, D, . L, M, N, . — точки расположенные в пространстве; 1, 2, 3, 4, . 12, 13, 14, . — точки расположенные в пространстве; a, b, c, d, . l, m, n, . — линии, произвольно расположенные по отношению к плоскостям проекций; h, υ(f), ω — линии уровня (горизонталь, фронталь, профильная прямая соответственно); (AB) — прямая проходящая через точки A и B; [AB) — луч с началом в точке A; [AB] — отрезок прямой, ограниченный точками A и B; α, β, γ, δ, . ζ, η, θ — поверхность; ∠ABC — угол с вершиной в точке B; ∠α, ∠β, ∠γ — угол α, угол β, угол γ соответственно; |AB| — расстояние от точки A до точки B (длина отрезка AB); |Aa| — расстояние от точки A до линии a; |Aα| — расстояние от точки A до поверхности α; |ab| — расстояние между прямыми a и b; |αβ| — расстояние между поверхностями α и β; H, V, W — координатные плоскости проекций (именуемые как горизонтальная, фронтальная, профильная соответственно); П1, П2, П3 — координатные плоскости проекций (именуемые как горизонтальная, фронтальная, профильная соответственно); x, y, z — координатные оси проекций (ось абсцисс, ось ординат, ось аппликат); ko — постоянная прямая эпюра Монжа; O — точка пересечения осей проекций; `, «, `» — верхние индексы для проекций точек, прямых, углов, фигур, поверхностей на плоскости проекций (именуемые как горизонтальную, фронтальную, профильную соответственно); 1, 2, 3 — верхние индексы для проекций точек, прямых, углов, фигур, поверхностей на плоскости проекций (именуемые как горизонтальную, фронтальную, профильную соответственно); αH, αV, αW — след поверхности оставляемый на горизонтальной, на фронтальной, на профильной плоскости проекций соответственно; αH, αV, αW — след поверхности α оставляемый на горизонтальной, на фронтальной, на профильной плоскости проекций соответственно; aH, aV, aW — след прямой a оставляемый на горизонтальной, на фронтальной, на профильной плоскости проекций соответственно;
Проекции точек, линий, поверхностей любой геометрической фигуры обозначаются теми же буквами (или цифрами), что и оригинал, с добавлением верхнего индекса A`, A», A`» или 1`, 1″, 1`», соответствующего плоскости проекции, на которой они получены: A`, B`, C`, D`, . L`, M`, N`, . — горизонтальные проекции точек; A», B», C», D», . L», M», N», . — фронтальные проекции точек; A`», B`», C`», D`», . L`», M`», N`», . — профильные проекции точек; a`, b`, c`, d`, . l`, m`, n`, . — горизонтальные проекции линий; a», b», c», d», . l», m», n», . — фронтальные проекции линий; a`», b`», c`», d`», . l`», m`», n`», . — профильные проекции линий; α`, β`, γ`, δ`, . ζ`, η`, θ`, . — горизонтальные проекции поверхностей; α», β», γ», δ», . ζ», η», θ», . — фронтальные проекции поверхностей; α`», β`», γ`», δ`», . ζ`», η`», θ`», . — профильные проекции поверхностей;
Символы взаиморасположения геометрических объектов
Обозначение | Смысловое значение | Пример символической записи |
(. ) | способ задания геометрического объекта в пространстве и на комплексном чертеже | А(А`, А») – точка А задана на комплексном чертеже горизонтальной и фронтальной проекциями; α(А, b) – плоскость α задана прямой b и точкой А. |
∈ ⊂ , ⊃ | принадлежность | А∈l – точка А принадлежит прямой l; l⊂α – прямая l лежит в плоскости α |
≡ | совпадение | А`≡ В` – горизонтальные проекции точек А и В совпадают. |
‖ , // | параллельность | a // b – прямые a и b параллельны. |
⊥ | перпендикулярность | c⊥d – прямые c и d перпендикулярны. |
∸ | скрещивание | m ∸ n – прямые m и n скрещивающиеся. |
∩ | пересечение | k ∩ l – прямые k и l пересекаются. |
∾ | подобие | ΔАВС ΔDEF – треугольники ABC и DEF подобны. |
≅ | конгруэнтность | ΔАВС ≅ /АВ/ = /CD/ – отрезки АВ и CD равны. |
= | равенство, результат действия | /АВ/ = /CD/ – длины отрезков AB и CD равны; k ∩ l = M — прямые k и l пересекаются в точке M. |
/ | отрицание | А ∉ l – точка А не принадлежит прямой l. |
→ ← | отображение, преобразование | V/H → V1/H– система ортогональных плоскостей V/H преобразуется в систему плоскостей V1/H |
Символьные обозначения — Вторая группа
- Окружность и круг — определение и вычисление с примерами решения
- Определение окружности и круга
- Определение окружности и ее элементов
- Что такое окружность и круг
- Пример №3
- Окружность и треугольник
- Описанная окружность
- Вписанная окружность
- Пример №4
- Пример №5
- Геометрические построения
- Пример №6
- Пример №7
- Пример №8
- Пример №9
- Пример №10
- Пример №11
- Пример №12
- Пример №13
- Задачи на построение
- Пример №14
- Пример №15
- Пример №16
- Пример №17
- Свойство диаметра, перпендикулярного хорде
- Касательная к окружности
- Признак касательной
- Свойство отрезков касательных
- Касание двух окружностей
- Задачи на построение
- Основные задачи на построение
- Решение задач на построение
- Пример №18
- Геометрическое место точек
- Основные теоремы о ГМТ
- Метод геометрических мест
- Пример №19
- Описанная и вписанная окружности треугольника
- Окружность, вписанная в треугольник
- Пример №20
- Задачи, которые невозможно решить с помощью циркуля и линейки
- Циркуль или линейка
- Об аксиомах геометрии
- Метод вспомогательного треугольника
- Пример №21
- Пример №22
- Пример №23
- Реальная геометрия
- Справочный материал по окружности и кругу
- Что называют окружностью
- Окружность, вписанная в треугольник
- Окружность, описанная около треугольника
- Геометрическое место точек в окружности и круге
- Некоторые свойства окружности. Касательная к окружности
- Когда точка лежит над окружностью
- Касательная к окружности
- Касательная к окружности, секущая и хорда — в чем разница
- Свойства касательной к окружности
- Задача
- Задача 1
- Задача 2
- Задача 1
- Задача 2
- Задача 1
- Задача 2
- Точка внутри и вне окружности
- Вычислительная геометрия, или как я стал заниматься олимпиадным программированием. Часть 2
- Вступление
- 📸 Видео
Видео:Как искать точки на тригонометрической окружности.Скачать
Окружность и круг — определение и вычисление с примерами решения
Содержание:
Пусть в природе не существовало бы ни одного круга или треугольника, и все-таки истины, доказанные Евклидом, навсегда сохранили бы свою достоверность и очевидность.
Раньше вы знакомились с основными геометрическими фигурами, устанавливали особенности этих фигур и их взаимное расположение. Но на практике довольно часто приходится решать «обратную» задачу — по определенным особенностям находить фигуру, имеющую их. Именно таково содержание задач на построение, которые будут рассматриваться в этом разделе.
Еще в работах древнегреческих математиков описаны задачи на построение и методы их решения.
Многие из этих задач составляют классику евклидовой геометрии. Кроме практической ценности, такие задачи представляют значительный исследовательский интерес, поскольку в ходе их решения определяются новые особенности построенных фигур.
Окружность и круг:
Определение. Окружностью называется геометрическая фигура, состоящая из всех точек плоскости, равноудаленных от данной точки, которая называется центром окружности.
Радиусом окружности называется отрезок, соединяющий центр окружности с любой точкой на окружности (или длина этого отрезка).
Хордой окружности называется отрезок, соединяющий две точки окружности.
Диаметром окружности называется хорда, проходящая через центр окружности.
Дугой окружности называется часть окружности, ограниченная двумя точками.
На рисунке 48 точка О — центр, отрезок ОС — радиус окружности. Радиус обозначают буквой R (или
На рисунке 49 изображены: хорда ЕН, дуга КМ (обозначается: ), диаметр АВ. Диаметр состоит из двух радиусов. Поэтому диаметры окружности равны между собой. Диаметр АВ состоит из радиусов OA и ОВ, откуда Диаметр обозначают буквой D (или d). Тогда
Любые две точки окружности разбивают ее на две дуги, которые дополняют друг друга до окружности. Эти дуги так и называются — дополнительными. Чтобы различать такие дуги, их иногда обозначают тремя буквами. На рисунке 49 дуги АКМ и АНМ — дополнительные.
Определение. Кругом называется часть плоскости, ограниченная окружностью.
Точки окружности также принадлежат кругу (рис. 50). Поэтому центр, радиус, хорда и диаметр у круга те же, что и у его окружности.
Часть круга, заключенная между двумя радиусами, называется сектором. Часть круга, заключенная между дугой окружности и хордой, соединяющей концы дуги, называется сегментом (рис. 51). Два радиуса разбивают круг на два сектора, хорда разбивает круг на два сегмента.
Полуокружностью называется дуга окружности, концы которой являются концами диаметра. Полукругом называется часть круга, ограниченная полуокружностью и диаметром, соединяющим концы полуокружности. На рисунке 49 дуга АКВ — полуокружность, сегмент АКВ — полукруг.
Угол, вершина которого находится в центре окружности, называется центральным углом. На рисунке 51 — центральный угол.
Окружности (круги) равны, если равны их радиусы.
Две окружности могут не иметь общих точек, могут пересекаться в двух точках или касаться друг друга в одной точке. Окружности разного радиуса с общим центром называются концентрическими. Часть плоскости между двумя концентрическими окружностями называется кольцом (рис. 52).
Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать
Определение окружности и круга
Окружность — это замкнутая линия на плоскости, все точки которой находятся на одинаковом расстоянии от одной точки — центра окружности.
Круг — это внутренняя часть плоскости, ограниченная окружностью.
Размеры окружности и круга определяются их радиусом — отрезком, который соединяет центр с точкой на окружности (рис. 3).
В математике «окружность» и «круг» — два различных, хотя и связанных между собой, понятия. Окружность, например, является моделью обруча, а круг — моделью крышки люка.
Определение окружности и ее элементов
Пусть на плоскости отмечена точка О. Очевидно, что от точки О можно отложить бесконечное множество отрезков длиной R (рис. 162). Концы всех таких отрезков на плоскости образуют окружность — фигуру, уже известную из курса математики. Определение Окружностью называется геометрическая фигура, состоящая из всех точек плоскости, удаленных от данной точки (центра окружности) на одинаковое расстояние. Иначе говорят, что все точки окружности равноудалены от ее центра. Определение Кругом называется часть плоскости, ограниченная окружностью и содержащая ее центр. Иначе говоря, круг состоит из всех точек плоскости, удаленных от данной точки (центра круга) на расстояние, не превышающее заданного. На рисунке 163 заштрихованная часть плоскости — круг, ограниченный окружностью с тем же центром. Центр окружности и круга является точкой круга, но не является точкой окружности.
Определение Радиусом окружности (круга) называется расстояние от центра окружности до любой ее точки. Радиусом также называется любой отрезок, соединяющий точку окружности с ее центром. На рисунке 162 — радиусы окружности с центром О. Как правило, радиус обозначается буквой R (или r ).
Радиус — от латинского «радиус» — луч, спица
Хорда — от греческого «хорда» — струна, тетива
Диаметр — от греческого «диа» — насквозь и «метрео» — измеряющий насквозь; другое значение этого слова — поперечник
Радиусом также называется любой отрезок, соединяющий точку окружности с ее центром. На рисунке 162 — радиусы окружности с центром О. Как правило, радиус обозначается буквой R (или r ).
Определение:
Хордой называется отрезок, соединяющий две точки окружности.
Диаметром называется хорда, проходящая через центр окружности.
На рисунке 164 изображены две хорды окружности, одна из которых является ее диаметром. Обычно диаметр обозначают буквой d. Очевидно, что диаметр вдвое больше радиуса, то есть d = 2R.
Построение окружности выполняют с помощью циркуля.
Видео:10 класс, 11 урок, Числовая окружностьСкачать
Что такое окружность и круг
Окружность — это фигура, состоящая из всех точек плоскости, равноудален ных от данной точки. Эту точку называют центром окружности.
Отрезок, соединяющий любую точку окружности с ее центром, называют ради усом. Отрезок, соединяющий две против вольные точки окружности, — хорда окружности. Хорда, проходящая через центр окружности, — диаметр (рис. 200). Каждый диаметр окружности состоит’ из двух радиусов, поэтому его длина вдвое больше длины радиуса. Длина хорды, не проходящей через центр окружности, меньше длины диаметра, (Почему?)
Окружность на бумаге описывают МА и MB — перпендикуляры на ОА и ОВ (см. рис. 216), то (по гипотенузе и острому углу). Поэтом МА = MB, следовательно, точка М равноудалена от сторон данного угла.
Геометрическим местом точек угла, равноудаленных от его сторон, является биссектриса этого угла.
Здесь имеются в виду углы меньше развернутого.
Верно ли, что геометрическим местом точек, равноудален-ных от сторон угла, является биссектриса этого угла? Нет. Когда в планиметрии говорят о геометрическом месте точек, не уточняя, о каких именно точках идет речь, то имеют в виду точки плоскости, которой принадлежит данная фигура. При таком условии геометрическим местом точек, равноудаленных от ф сторон угла, является объединение биссектрисы I данного угле g и всех точек некоего другого угла, показанного на рисунке 217,
Ведь каждая точка угла КОР также равноудалена от сторон донного угла АО В (речь идет об углах меньше развернутого).
Когда мы говорим, что геометрическим местом точек, равноудаленных от концов отрезка, является серединный перпендикуляр этого отрезка, то мы имеем в виду, что речь идет о геометрическом месте точек плоскости, на которой лежит отрезок.
А геометрическим местом точек пространства, равноудаленных от концов отрезка, является некая плоскость (мал. 218).
Подумайте, как расположена эта плоскость относительно денного отрезка.
Геометрические места точек пространства изучают в старших классах.
Пример №3
Докажите, что серединные перпендикуляры двух сторон треугольника пересекаются.
Решение:
Пусть n и m— серединные перпендикуляры сторон ВС и АВ треугольника (рис. 219). Докажем, что они не могут быть параллельны. Доказывать будем от противного. Допустим, что n || m. Тогда прямая, перпендикулярная к п, должна быть перпендикулярной и к m, то есть . Но по условию А две прямые, перпендикулярные к третьей прямой, параллельны. Таким образом, из допущения, что п || т, следует параллельность сторон АВ и ВС треугольника. А этого не может быть. Поэтому прямые ли т не могут быть параллельными. Они пересекаются.
Окружность и треугольник
Окружность и треугольник могут не иметь общих точек или иметь 1, 2, 3, 4, 5, 6 общих точек (соответствующие рисунки выполните самостоятельно). Заслуживаем внимания случаи, когда окружность проходит через все три вершины треугольника или когда она касается всех и сторон треугольника. Рассмотрим такие случаи подробнее.
Описанная окружность
Окружность называется описанной около треугольника, если она проходит через все вершины треугольника (рис. 223).
Теорема: Около каждого треугольника можно описать только одну окружность. Ее центром является точка пересечения серединных перпендикуляров двух сторон треугольника.
Пусть ABC — произвольный треугольник (рис. 224). Найдем точку, равноудаленную от вершин А, В и С.’ Метрическое место точек, равноудаленных от А и В, — серединный перпендикуляр m отрезка АВ; геометрическое место точек, равноудаленна от В и С, — серединный перпендикуляр n отрезка ВС. Эти два серединных перпендикуляра не могут быть параллельными, они пересекаются в точке О. А она равноудалена от Н и С. Следовательно, ОА = ОВ = ОС, поэтому О — центр окружности, описанной около ABC.
Для каждого отрезка АВ существует серединный перпендикуляр, и только один, а для ВС — серединный перпендикуляр и только один. И точка их пересечения существует всегда, только одна. Таким образом, около каждого треугольника можно описать одну окружность, и только одну.
- Серединные перпендикуляры всех трех сторон произвольного треугольника проходят через одну и ту же точку.
- Через любые три точки, не лежащие на одной прямой, можно провести окружность, и только одну.
Из доказанной теоремы следует cnocof построения окружности, описанной около треугольника. Чтобы описать около треугольника ABC окружность, достаточно:
- построить серединные перпендикуляры двух сторон данного треугольника;
- определить точку О, в которой эти серединные перпендикуляры пересекаются;
- ) из центра О провести окружность радиуса ОА.
Центр окружности, описанной около треугольника, может лежать во внутренней или внешней области данного треугольника либо на его сторон (рис. 225).
Вписанная окружность
Окружность называется вписанной в треугольник если она касается всех сторон треугольника (рис. 226). Центр окружности, вписанной в треугольник, лежим’ и внутренней области этого треугольник.
Теорема: В каждый треугольник можно вписан только одну окружность. Ее центром является точка пересечения двух биссектрис треугольника.
Доказательство:
Пусть ABC — произвольный треугольник. Определим точи О, равноудаленную от всех его сторон (рис. 227). Геометрическое место точек, лежащих внутри угла А и равноудаленных второй АВ и АС, — биссектриса l угла А. Гtjметрическое место точек, равноудаленных от сторон АВ и ВС и лежащих внутри угла В, — биссектриса t угла B. Эти две биссектрисы обязательно Пересекаются (докажите это!). Точка U, в которой пересекаются биссектрисы l и t, равноудалена от всех трех сторон данного треугольника. Следовательно, точка О — центр окружности, Вписанной в треугольник АВС.
В каждом треугольнике все три биссектрисы пересекаются в одной точке.
Из доказанной теоремы следует способ построения окружности, вписанной в треугольник. Чтобы вписать в данный треугольник окружность, достаточно:
- провести две его биссектрисы;
- из точки их пересечения О опустить перпендикуляр OL на произвольную сторону треугольника;
- из центра О радиуса OL описать окружность. Она касается каждой стороны треугольника, следовательно, является вписанной в данный треугольник.
Теорема: Центром окружности, описанной около прямоугольного треугольника, является середина его гипотенузы.
Пусть ABC — произвольный треугольник с прямым углом С, t— серединный перпендикуляр катета АС, пересекающий гипотенузу АВ в точке О (рис. 228).
Поскольку точка О лежит на серединном перпендикуляре отрезка АС, то .
точка О—середина гипотенузы АВ, равноудаленная от всех вершин треугольника. Таким образом, окружность с центром О и радиусом ОА проходит через все вершины данного треугольника.
Диаметр окружности, описанной около прямоугольного треугольника, равен его гипотенузе.
Теорема: Из любой точки окружности ее Диаметр, не выходящий из этой точки, виден под прямым углом.
Доказательство:
Пусть АВ — произвольный диаметр окружности с центром О, а С— произвольная точка окружности, отличная от А и В (рис. 229). Покажем, чтоПоскольку
Геометрическим местом точек плоскости, из которых отрезок АВ виден под прямым углом, является окружность диаметра АВ. На самом деле этому ГМТ точки А и В не принадлежат. Подробнее об этом вы узнаете в старших классах.
Пример №4
Найдите радиус окружности, описанной около прямоугольного треугольника с гипотенузой 6 см.
Решение:
Диаметр окружности, описанной около прямоугольного треугольника, является его гипотенузой. Радиус вдвое меньше: 3 см.
Пример №5
Докажите, что диаметр окружности, вписанной в прямоугольный треугольник с катетами а и Ь и гипотенузой с, равен a + b — c.
Решение:
Пусть в угол С прямой, а К, Р, Т — точки касания вписанной в треугольник окружности (рис. 230). Поскольку АР =АТ и ВК = ВТ, то АС + ВС — АВ = PC + СК = 2r, или 2r = a + b- с.
Геометрические построения
Пользуясь линейкой’ и циркулем, моле но выполнить много геометрических построений, то есть начертить геометрические фигуры. Рассмотрим сначала, как выполняются самые простые геометрические построения.
Пример №6
Постройте треугольник по данным сторонам.
Решение:
Пусть даны три отрезки а, b и с (рис. 232). Нужно построить, треугольник, стороны которого были бы равны этим отрезкам. С помощью линейки проводим произвольную прямую, обозначаем на ней произвольную точку В и циркулем откладываем на этой прямой отрезок ВС = а. Раствором циркуля, равным с описываем дугу окружности с центром В. С той же стороны от прямой СВ описываем дугу окружности радиуса b с центром С. Точку пересечения А этих дуг соединяем отрезками с С и В. Треугольник ABC — именно тот, который требовалось построить, так как его стороны ВС, АС и АВ равны данным отрезкам.
Если построенные дуги не пересекаются, требуемый треугольник построить невозможно. Это бывшие в том случае, когда один из данных отрезков больше суммы двух других или равен их сумме.
Пример №7
Постройте угол, равный данному углу.
Решение:
Пусть дан угол АОВ и требуется построить угол КРТ, равный (рис. 233). Проводим луч РТ и дуг* равных радиусов с центрами О и Р. Пусть одна из этих д пересекает стороны угла АОВ в точках А и В, а другая луч РТ в точке Т. Дальше раствором циркуля, равным А/ описываем третью дугу с центром Т. Если она пересекает другую дугу в точке К, проводим луч РК. Угол КРТ — то 1 Будем считать, что линейка без делений.
который требовалось построить. Ведь треугольники КРТ и АОВ равны (по трем сторонам), поэтому
Пример №8
Постройте биссектрису данного угла.
Решение:
Пусть АОВ — данный угол (рис. 234). Произвольным раствором циркуля опишем дугу с центром О. Пусть А и В — точки пересечения этой дуги с лучами О А и ОВ. Из центров А и В опишем дуги такими же радиусами. Если D — точка пересечения этих дуг, то луч OD — биссектриса угла АОВ.
Действительно, (по трем сторонам). Поэтому
Пример №9
Разделите данный отрезок пополам.
Решение:
Пусть АВ — данный отрезок (рис. 235). Из точек А и В радиусом АВ описываем дуги. Они пересекутся в неких точках С и D.
Прямая CD точкой М разделит данный отрезок пополам.
Действительно, по трем сторонам , поэтому По первому признаку равенства треугольников . Итак, AM = ВМ.
Пример №10
Через данную точку Р проведите прямую, перпендикулярную и данной прямой а.
Решение:
В зависимости от того, лежит или не лежит точка Р на прямой а, задачу можно решить, как показа но на рисунках 236 и 237. Опишите и аргументируйте эти построения самостоятельно.
Пример №11
Через точку Р, не лежащую на прямой АВ, проведите прямую, параллельную прямой АВ.
Решение:
Через точку Р и про из вольную точку А прямой АВ проводим прямую АТ (рис. 238). Строим угол ТРМ, равный углу РАВ, так, что бы эти углы стали соответственны ми при прямых РК, АВ и секущей АР. Построенная таким образом пря мая РК удовлетворяет задачу: она проходит через данную точку Р и параллельна прямой АВ, поскольку
Геометрическими построениями часто приходилось заниматься многим людям. Еще в доисторические времена мастера, изготавливающие колеса к колесницам, умели делить окружность на несколько равных частей. В наше время выполнять такие построения приходится специалистам, проектирующим или изготавливающим шестеренки, дисковые пилы (рис. 239), турбины и различные роторные механизмы. Как бы вы разделили окружность, например, на 5, 6 или 7 равных частей?
Основные чертежные инструменты — линейка и циркуль — были известны еще несколько тысячелетий назад.
Слово линейка происходит от слова линия, которое на латинском языке сначала означало «льняная нитка», «черта, проведенная ниткой, бечевкой» (производное от лат. Плит — лен). Слово циркуль тоже латинского происхождения, первоначально слово циркулюс означало «окружность, круг», а потом стало означать инструмент, с помощью которого проводят окружности.
В Древней Греции линейку и циркуль признавали единственными приборами геометрических построений. Задачу на построение считали решенной, если все построения в ней выполнялись только с помощью линейки и циркуля. Сейчас специалисты при выполнении построений пользуются угольником, транспортиром, рейсмусом, рейсшиной и другими чертежными приспособлениями.
Пример №12
Разделите данную дугу окружности на две равные части.
Решение:
Пусть дана дуга АВ окружности с центром О (рис. 240). Представим угол АОВ и проведем его биссектрису ОК. Треугольники АОК и КОВ равны, поэтому и дуги АК и КВ равны.
Пример №13
Постройте угол вдвое больше данною.
Решение:
Пусть АОВ — данный угол (рис. 241) Опишем дугу окружности с центром О Если она пересечет стороны данного угла в точках А и В, из В как из центра сделаем засечку ВС = ВА и проведем луч ОС. Угол АОС вдвое больше
Задачи на построение
С геометрическими построениями имеют дело различные специалисты. Геометрические построении выполняют чертежники, архитекторы, конструкторы, топографы, геодезисты, штурманы. Разные геометрические фигуры строят также: слесарь — на жести, столяр — на доске, портной— на ткани, садовник — на земле.
В задаче на построение требуется построить геометрическую фигуру, которая должна удовлетворять определенные условия. В геометрии построения выполняют чаще всего с помощь к линейки и циркуля. Условимся: если в задаче не сказано, какими инструментами следует выполнить построение, то имеются в виду только линейка (без делений) и циркуль.
Более сложные задачи на построение часто решают методом геометрических мест. Пусть, например, в задаче требуете!’ найти точку X, удовлетворяющую два условия. Если первое условие удовлетворяют точки фигуры К, а второе — точки фигуры Р, то X должна принадлежать каждой из этих фигур. Тс есть X — точка пересечения фигур К и Р.
Пример №14
Постройте прямоугольный треугольник по да» ному катету а и гипотенузе с (рис. 243).
Решение:
Строим прямой угол АСВ, на его стороне откладываем отрезок СВ = а. Точки С и В — две вершины треугольника, который требуется построить. Третья верши» должна лежать, во-первых, на луче СА, во-вторых, на pfti стоянии с от В, то есть на окружности радиуса с с центр В. Если эту окружность пересекает луч СА в точке А, 1 треугольник ABC — именно тот, который требовалось не строить. Ведь его угол С прямой, ВС = а, ВА = с.
Второй способ (рис. 244). Откладываем отрезок АВ = с и проводим окружность диаметра АВ — ГМТ, из которых АВ виден под прямым углом. Дальше строим полуокружность радиуса а с центром В — ГМТ, удаленных от В на расстояние а и лежащих по одну сторону от прямой АВ. Если два ГМТ пересекаются в точке С, то треугольник ABC — именно тот, который требовалось построить.
Составные части решения задачи на построение — анализ, построение, доказательство и исследование. В анализе ищут способ решения задачи, в построении выполняется само построение, в доказательстве обосновывается правильность выполненного построения, в исследовании выясняется, сколько решений имеет задача.
Пример №15
Постройте треугольник по данной стороне, прилежащему к ней углу и сумме двух других сторон (рис. 245).
Решение:
Анализ. Допустим, что требуемый треугольник ABC построен. Его сторона с и угол А = а — даны. Дан также отрезок, равный сумме сторон а и b. По данным отрезкам с и а + b и углу А между ними можно построить A ABD. Вершиной С искомого треугольника будет такая точка отрезка AD, для которой CD = СВ. Следовательно, точка С должна лежать и на серединном перпендикуляре отрезка BD.
Построение. По двум данным отрезкам и углу между ними строим , после чего проводим серединный перпендикуляр I отрезка BD. Пусть прямая I пересекает отрезок АВ в точке С. Проводим отрезок СВ. Треугольник ABC — такой, который требовалось построить.
Доказательство:
В треугольнике по построению. АС + СВ — АС + CD — а + b. Следовательно, удовлетворяет все условия задачи.
Исследование. Задача имеет решение только при условии, что а + b > с.
Если задача несложная и способ ее решения известен, анализ можно не описывать. А в решении не обязательно выделять анализ, построение, доказательство и исследование.
В математике чаще всего имеют дело с задачами: на вычисление, на доказательство, на построение, на преобразование и на исследование. Геометрическими задачами на построение активно интересовались античные геометры. Допуская лишь классические построения (выполняемые только линейкой и циркулем), они исследовали, какие из построений можно вы-полнить, а какие невозможно. В частности, выясняли:
- можно ли любой угол разделить на три равные части;
- можно ли построить квадрат, площадь которого была бы равна площади данного круга;
- можно ли построить ребро такого куба, объем которого был бы в 2 раза больше объема данного куба.
Много столетий выдающиеся геометры пытались решить эти задачи и не смогли. Эти три классические задачи древности получили специальные названия:
- трисекция угла,
- 2квадратура круга,
- удвоение куба.
Последнюю задачу называют еще делосской задачей, связывая ее с древнегреческой легендой. согласно которой оракул бога Аполлона согласился спасти жителей острова Делос от чумы, если кубический жертовник в делосском храме заменят на жертовник такой же формы, но вдвое большего объема. Только почти через 2000 лет ученые убедились, что ни одну из этих трех задач с помощью лишь линейки и циркуля решить невозможно.
В настоящее время специалисты, которым приходится выполнять геометрические построения, пользуются не только линейкой и циркулем. С точки зрения классических методов такие построения приближенные. Но для практических нужд точности, которую обеспечивают приближенные методы, вполне достаточно
Пример №16
Найдите центр данной окружности.
Решение:
Обозначим на данной окружности три производные точки А, В и С (рис. 246).
Представим хорды АВ, ВС и проведем их серединные перпендикуляры n и m. Точка О, в которой пересекаются прямые n и m., — центр данной окружности. Ведь ОА = ОВ = ОС.
Пример №17
Через данную точку проведите касательную к данной окружности.
Решение:
Если данная точка А лежит на окружности центра О (рис. 247, а), проводим луч ОА, потом — прямую АК, перпендикулярную к ОА. Прямая АК — касательная, которую и требовалось построить.
Если точка А лежит вне данной окружности центра О (рис. 247, б), то на диаметре ОА описываем окружность. Она пересечется с данной окружностью в двух точках К и Р. Прямые АК и АР — искомые касательные, поскольку (Из точек К и Р вспомогательной окружности ее диаметр ОМ виден под прямыми углами АКО и АРО.) В этом случае задача имеет два решения.
Свойство диаметра, перпендикулярного хорде
Диаметр, перпендикулярный хорде, проходит через ее середину. Докажите.
Решение
Пусть СО — диаметр окружности с центром О, АВ — хорда этой окружности, Докажем, что М — точка пересечения отрезков АВ и СD— середина отрезка АВ.
В случае, когда хорда АВ сама является диаметром, точка М совпадает с центром О и утверждение задачи очевидно. Пусть хорда АВ не является диаметром (рис. 165). Проведем радиусы OA и ОВ. Тогда в равнобедренном треугольнике АОВ высота ОМ является медианой. Итак, AM = ВМ, что и требовалось доказать.
Докажите самостоятельно еще одно утверждение (опорное): диаметр окружности, проведенной через середину хорды, не являющейся диаметром, перпендикулярен этой хорде.
Касательная к окружности
Определение и свойство касательной
Любая прямая, проходящая через точки окружности, называется секущей; ее отрезок, лежащий внутри окружности, является хордой. На рисунке 167 хорда CD — отрезок секущей b . Рассмотрим теперь прямую, имеющую с окружностью только одну общую точку.
Определение:
Касательной к окружности называется прямая, имеющая с окружностью единственную общую точку. Общая точка касательной и окружности называется точкой касания.
На рисунке 167 прямая а является касательной к окружности с центром О. Иначе говоря, прямая а касается окружности с центром О в точке А .
Определим взаимное расположение касательной и радиуса окружности, проведенного в точку касания.
Теорема (свойство касательной)
Касательная к окружности перпендикулярна радиусу, проведенному в точку касания.
Доказательство:
Пусть прямая а касается окружности с центром О в точке А (рис. 168). Докажем, что Применим метод доказательства от противного.
Пусть отрезок OA не является перпендикуляром к прямой а. Тогда, по теореме о существовании и единственности перпендикуляра к прямой, из точки О можно провести перпендикуляр ОB к прямой а . На луче АВ от точки В отложим отрезок ВС, равный АВ , и соединим точки О и С . Поскольку по построению отрезок ОВ — медиана и высота треугольника АОС, то этот треугольник равнобедренный с основанием АС, то есть OA = ОС . Таким образом, расстояние между точками О и С равно радиусу окружности, и, по определению радиуса, точка С должна лежать на данной окружности. Но это противоречит определению касательной, поскольку А — единственная общая точка окружности с прямой а. Из этого противоречия следует, что наше предположение неверно, то есть OA . Теорема доказана.
Признак касательной
Докажем теорему, обратную предыдущей.
Теорема: (признак касательной)
Если прямая проходит через точку окружности перпендикулярно радиусу, проведенному в эту точку, то она является касательной к окружности.
Доказательство:
Пусть прямая а проходит через точку А, лежащую на окружности с центром О, причем . Докажем, что а — касательная к окружности. Согласно определению касательной, нам необходимо доказать, что окружность имеет с прямой а единственную общую точку. Применим метод доказательства от противного.
Пусть прямая а имеет с окружностью общую точку В , отличную от А (рис. 169). Тогда из определения окружности ОА = ОВ как радиусы, то есть треугольник АОВ равнобедренный с основанием АВ. По свойству углов равнобедренного треугольника , что противоречит теореме о сумме углов треугольника.
Следовательно, точка А — единственная общая точка окружности и прямой а, значит, прямая а — касательная к окружности.
Свойство отрезков касательных
Пусть даны окружность с центром О и точка А, не принадлежащая кругу, ограниченному данной окружностью (рис. 170).
Через точку А можно провести две касательные к данной окружности. Отрезки, соединяющие данную точку А с точками касания, называют отрезками касательных, проведенных из точки А к данной окружности. На рисунке 170 АВ и АС — отрезки касательных, проведенных к окружности из точки А .
Опорная задача
Отрезки касательных, проведенных из данной точки к окружности, равны. Докажите.
Решение
Пусть АВ и АС — отрезки касательных, проведенных к окружности с центром О из точки А (рис. 170). Рассмотрим треугольники АОВ и АОС. По свойству касательной то есть эти треугольники являются прямоугольными с общей гипотенузой АО и равными катетами ОВ = ОС как радиусы окружности). Следовательно, по гипотенузе и катету, откуда АВ = АС.
Касание двух окружностей
Определение:
Две окружности, имеющие общую точку, касаются в этой точке, если они имеют в ней общую касательную.
Общая точка двух окружностей в таком случае называется точкой касания окружностей.
Различают два вида касания окружностей: внутреннее и внешнее.
Касание окружностей называется внутренним, если центры окружностей лежат по одну сторону от общей касательной, проведенной через точку касания (рис. 171, а);
Касание окружностей называется внешним, если центры окружностей лежат по разные стороны от общей касательной, проведенной через точку касания (рис. 171, б).
Рис. 171 Касание двух окружностей. 1. внутреннее; 2. внешнее.
По свойству касательной радиусы данных окружностей, проведенные в точку касания, перпендикулярны общей касательной. Из теоремы о существовании и единственности прямой, перпендикулярной данной, следует, что центры касающихся окружностей и точка касания окружнос тей лежат на одной прямой.
Касающиеся окружности имеют единствен ную общую точку — точку касания.
Если данные окружности имеют радиусы R и r (R > r), то расстояние между центрами окружностей равно R-r в случае внутреннего касания и R+r в случае внешнего касания.
Задачи на построение
Что такое задачи на построение?
Задачи на построение представляют собой отдельный класс геометрических задач, решение которых подчиняется определенным правилам. Цель решения этих задач — построение геометрических фигур с заданными свойствами с помощью чертежных инструментов. Если в условии задачи нет специальных примечаний, то имеются в виду построения с помощью циркуля и линейки. С помощью линейки можно провести:
- произвольную прямую;
- прямую, проходящую через данную точку;
- прямую, проходящую через две данные точки.
Заметим, что никаких других построений линейкой выполнять нельзя. В частности, с помощью линейки нельзя откладывать отрезки заданной длины.
Циркуль — от латинского «циркулус» — окружность, круг.
С помощью циркуля можно:
- провести окружность (часть окружности) произвольного или заданного радиуса с произвольным или заданным центром;
- отложить от начала данного луча отрезок заданной длины.
Кроме того, можно отмечать на плоскости точки и находить точки пересечения прямых и окружностей.
Все перечисленные операции называют элементарными построениями, а решить задачу на построение — это значит найти последовательность элементарных построений, после выполнения которых искомая фигура считается построенной, и доказать, что именно эта фигура удовлетворяет условию задачи.
Итак, решение задач на построение заключается не столько в самом построении фигуры, сколько в нахождении способа построения и доказательстве того, что полученная фигура искомая.
Основные задачи на построение
Если каждый шаг построений описывать полностью, решение некоторых задач может оказаться довольно громоздким. С целью упрощения работы выделяют несколько важнейших задач, которые считаются основными и не детализируются каждый раз при решении более сложных задач.
Построение треугольника с данными сторонами | |||||||||||||||||||||||||||||||||||
Построение биссектрисы угла | |
Пусть дан неразвернутый угол с вершиной А . Построим его биссектрису. | |
С помощью циркуля построим окружность произвольного радиуса с центром А . Пусть В к С — точки пересечения этой окружности со сторонами данного угла. | |
Построим окружности того же радиуса с центрами В и С . Пусть D — точка пересечения этих окружностей. | |
Проведем луч AD. По построению (по третьему признаку). Отсюда , то есть AD — биссектриса данного угла А . |
Построение перпендикулярной прямой | |
Пусть даны прямая а и точка О . Построим прямую, проходящую через точку О и перпендикулярную прямой а . Рассмотрим два случая | |
Точка O лежит на прямой а | |
Построим окружности радиуса АВ с центрами А и В. Пусть С — одна из точек их пересечения. Проведем прямую через точки С и О. | |
По построению отрезок СО — медиана равностороннего треугольника ABC , которая является также его высотой. Итак, , то есть прямая СО — искомая. | |
Точка O не лежит на прямой а | |
Построим окружность с центром О , которая пересекает прямую O, в точках А и В . | |
Построими окружности того же радиуса с центрами A и В . Пусть Ol — точка пересечения этих окружностей, причем точки О и Ol лежат по разные стороны от прямой а . | |
Проведем прямую . Пусть С — точка пересечения прямых и а . По построению (по третьему признаку). Отсюда . Тогда ОС — биссектриса равнобедренного треугольника АОВ , проведенная к основанию. Она также является медианой и высотой треугольника. Следовательно, а , то есть прямая — искомая. |
Отметим, что построенная прямая перпендикулярна отрезку АВ и проходит через его середину. Такую прямую называют серединным перпендикуляром к отрезку.
Пользуясь описанными построениями, несложно решить задачи на построение середины данного отрезка и на построение прямой, параллельной данной.
Для построения середины отрезка АВ достаточно провести две окружности радиуса АВ с центрами в точках А к В (рис. 172). Обозначив точки пересечения этих окружностей через и можно определить середину отрезка AB как точку пересечения прямых АВ и , после чего провести доказательство, аналогичное доказательству предыдущей задачи.
Для построения прямой, проходящей через данную точку О параллельно данной прямой а, достаточно провести через точку О прямую b , перпендикулярную а, и прямую с, перпендикулярную b (рис. 173). Тогда а || с по теореме о двух прямых, перпендикулярных третьей.
Таким образом, основными задачами на построение будем считать следующие:
- построение треугольника с данными сторонами;
- построение угла, равного данному неразвернутому углу;
- построение биссектрисы данного неразвернутого угла;
- построение прямой, проходящей через данную точку перпендикулярно данной прямой;
- построение серединного перпендикуляра к данному отрезку;
- построение середины данного отрезка;
- построение прямой, проходящей через данную точку параллельно данной прямой.
Если эти задачи применяются как вспомогательные при решение более сложных задач, соответствующие построения можно подробно не описывать.
Решение задач на построение
Решение задач на построение состоит из четырех основных этапов: анализ, построение, доказательство, исследование.
Общая схема решения задач на построение | ||
Рекомендую подробно изучить предметы: |
|
Ещё лекции с примерами решения и объяснением: |
- Описанные и вписанные окружности
- Плоские и пространственные фигуры
- Взаимное расположение точек и прямых
- Сравнение и измерение отрезков и углов
- Решение треугольников
- Треугольники и окружность
- Площадь треугольника
- Соотношения между сторонами и углами произвольного треугольника
При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org
Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи
Сайт пишется, поддерживается и управляется коллективом преподавателей
Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.
Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.
Видео:ТРИГОНОМЕТРИЯ С НУЛЯ - Единичная Окружность // Подготовка к ЕГЭ по МатематикеСкачать
Когда точка лежит над окружностью
Видео:Определение принадлежности точки окружностиСкачать
Касательная к окружности
О чем эта статья:
Видео:Окружность. 7 класс.Скачать
Касательная к окружности, секущая и хорда — в чем разница
В самом названии касательной отражается суть понятия — это прямая, которая не пересекает окружность, а лишь касается ее в одной точке. Взглянув на рисунок окружности ниже, несложно догадаться, что точку касания от центра отделяет расстояние, в точности равное радиусу.
Касательная к окружности — это прямая, имеющая с ней всего одну общую точку.
Если мы проведем прямую поближе к центру окружности — так, чтобы расстояние до него было меньше радиуса — неизбежно получится две точки пересечения. Такая прямая называется секущей, а отрезок, расположенный между точками пересечения, будет хордой (на рисунке ниже это ВС ).
Секущая к окружности — это прямая, которая пересекает ее в двух местах, т. е. имеет с ней две общие точки. Часть секущей, расположенная внутри окружности, будет называться хордой.
Видео:Точка O – центр окружности, на которой лежат точки ... | ОГЭ 2017 | ЗАДАНИЕ 10 | ШКОЛА ПИФАГОРАСкачать
Свойства касательной к окружности
Выделяют четыре свойства касательной, которые необходимо знать для решения задач. Два из них достаточно просты и легко доказуемы, а вот еще над двумя придется немного подумать. Рассмотрим все по порядку.
Касательная к окружности и радиус, проведенный в точку касания, взаимно перпендикулярны.
Не будем принимать это на веру, попробуем доказать. Итак, у нас даны:
- окружность с центральной точкой А;
- прямая а — касательная к ней;
- радиус АВ, проведенный к касательной.
Докажем, что касательная и радиус АВ взаимно перпендикулярны, т.е. а ⟂ АВ.
Пойдем от противного — предположим, что между прямой а и радиусом АВ нет прямого угла и проведем настоящий перпендикуляр к касательной, назвав его АС.
В таком случае наш радиус АВ будет считаться наклонной, а наклонная, как известно, всегда длиннее перпендикуляра. Получается, что АВ > АС. Но если бы это было на самом деле так, наша прямая а пересекалась бы с окружностью два раза, ведь расстояние от центра А до нее — меньше радиуса. Но по условию задачи а — это касательная, а значит, она может иметь лишь одну точку касания.
Итак, мы получили противоречие. Делаем вывод, что настоящим перпендикуляром к прямой а будет вовсе не АС, а АВ.
Курсы подготовки к ОГЭ по математике от Skysmart придадут уверенности в себе и помогут освежить знания перед экзаменом.
Задача
У нас есть окружность, центр которой обозначен О. Из точки С проведена прямая, и она касается этой окружности в точке А. Известно, что ∠АСО = 28°. Найдите величину дуги АВ.
Мы знаем, что касательная АС ⟂ АО, следовательно ∠САО = 90°.
Поскольку нам известны величины двух углов треугольника ОАС, не составит труда найти величину и третьего угла.
∠АОС = 180° — ∠САО — ∠АСО = 180° — 90° — 28° = 62°
Поскольку вершина угла АОС лежит в центре окружности, можно вспомнить свойство центрального угла — как известно, он равен дуге, на которую опирается. Следовательно, АВ = 62°.
Если провести две касательных к окружности из одной точки, лежащей вне этой окружности, то их отрезки от этой начальной точки до точки касания будут равны.
Докажем и это свойство на примере. Итак, у нас есть окружность с центром А, давайте проведем к ней две касательные из точки D. Обозначим эти прямые как ВD и CD . А теперь выясним, на самом ли деле BD = CD.
Для начала дополним наш рисунок, проведем еще одну прямую из точки D в центр окружности. Как видите, у нас получилось два треугольника: ABD и ACD . Поскольку мы уже знаем, что касательная и радиус к ней перпендикулярны, углы ABD и ACD должны быть равны 90°.
Итак, у нас есть два прямоугольных треугольника с общей гипотенузой AD. Учитывая, что радиусы окружности всегда равны, мы понимаем, что катеты AB и AC у этих треугольников тоже одинаковой длины. Следовательно, ΔABD = ΔACD (по катету и гипотенузе).. Значит, оставшиеся катеты, а это как раз наши BD и CD (отрезки касательных к окружности), аналогично равны.
Важно: прямая, проложенная из стартовой точки до центра окружности (в нашем примере это AD), делит угол между касательными пополам.
Задача 1
У нас есть окружность с радиусом 4,5 см. К ней из точки D, удаленной от центра на 9 см, провели две прямые, которые касаются окружности в точках B и C. Определите градусную меру угла, под которым пересекаются касательные.
Решение
Для этой задачи вполне подойдет уже рассмотренный выше рисунок окружности с радиусами АВ и АC. Поскольку касательная ВD перпендикулярна радиусу АВ , у нас есть прямоугольный треугольник АВD. Зная длину его катета и гипотенузы, определим величину ∠BDA.
∠BDA = 30° (по свойству прямоугольного треугольника: угол, лежащий напротив катета, равного половине гипотенузы, составляет 30°).
Мы знаем, что прямая, проведенная из точки до центра окружности, делит угол между касательными, проведенными из этой же точки, пополам. Другими словами:
∠BDC = ∠BDA × 2 = 30° × 2 = 60°
Итак, угол между касательными составляет 60°.
Задача 2
К окружности с центром О провели две касательные КМ и КN. Известно, что ∠МКN равен 50°. Требуется определить величину угла ∠NМК.
Решение
Согласно вышеуказанному свойству мы знаем, что КМ = КN. Следовательно, треугольник МNК является равнобедренным.
Углы при его основании будут равны, т.е. ∠МNК = ∠NМК.
∠МNК = (180° — ∠МКN) : 2 = (180° — 50°) : 2 = 65°
Соотношение между касательной и секущей: если они проведены к окружности из одной точки, лежащей вне окружности, то квадрат расстояния до точки касания равен произведению длины всей секущей на ее внешнюю часть.
Данное свойство намного сложнее предыдущих, и его лучше записать в виде уравнения.
Начертим окружность и проведем из точки А за ее пределами касательную и секущую. Точку касания обозначим В, а точки пересечения — С и D. Тогда CD будет хордой, а отрезок AC — внешней частью секущей.
Задача 1
Из точки М к окружности проведены две прямые, пусть одна из них будет касательной МA, а вторая — секущей МB. Известно, что хорда ВС = 12 см, а длина всей секущей МB составляет 16 см. Найдите длину касательной к окружности МA.
Решение
Исходя из соотношения касательной и секущей МА 2 = МВ × МС.
Найдем длину внешней части секущей:
МС = МВ — ВС = 16 — 12 = 4 (см)
МА 2 = МВ × МС = 16 х 4 = 64
Задача 2
Дана окружность с радиусом 6 см. Из некой точки М к ней проведены две прямые — касательная МA и секущая МB . Известно, что прямая МB пересекает центр окружности O. При этом МB в 2 раза длиннее касательной МA . Требуется определить длину отрезка МO.
Решение
Допустим, что МО = у, а радиус окружности обозначим как R.
В таком случае МВ = у + R, а МС = у – R.
Поскольку МВ = 2 МА, значит:
МА = МВ : 2 = (у + R) : 2
Согласно теореме о касательной и секущей, МА 2 = МВ × МС.
(у + R) 2 : 4 = (у + R) × (у — R)
Сократим уравнение на (у + R), так как эта величина не равна нулю, и получим:
Поскольку R = 6, у = 5R : 3 = 30 : 3 = 10 (см).
Ответ: MO = 10 см.
Угол между хордой и касательной, проходящей через конец хорды, равен половине дуги, расположенной между ними.
Это свойство тоже стоит проиллюстрировать на примере: допустим, у нас есть касательная к окружности, точка касания В и проведенная из нее хорда AВ. Отметим на касательной прямой точку C, чтобы получился угол AВC.
Задача 1
Угол АВС между хордой АВ и касательной ВС составляет 32°. Найдите градусную величину дуги между касательной и хордой.
Решение
Согласно свойствам угла между касательной и хордой, ∠АВС = ½ АВ.
АВ = ∠АВС × 2 = 32° × 2 = 64°
Задача 2
У нас есть окружность с центром О, к которой идет прямая, касаясь окружности в точке K. Из этой точки проводим хорду KM, и она образует с касательной угол MKB, равный 84°. Давайте найдем величину угла ОMK.
Решение
Поскольку ∠МКВ равен половине дуги между KM и КВ, следовательно:
КМ = 2 ∠МКВ = 2 х 84° = 168°
Обратите внимание, что ОМ и ОK по сути являются радиусами, а значит, ОМ = ОК. Из этого следует, что треугольник ОMK равнобедренный.
∠ОКМ = ∠ОМК = (180° — ∠КОМ) : 2
Так как центральный угол окружности равен угловой величине дуги, на которую он опирается, то:
∠ОМК = (180° — ∠КОМ) : 2 = (180° — 168°) : 2 = 6°
Видео:№198. Точка А лежит в плоскости α, а точка В удалена от этой плоскости на расстояние 9 см. Точка МСкачать
Точка внутри и вне окружности
Этот видеоурок доступен по абонементу
У вас уже есть абонемент? Войти
На этом занятии мы изучим тему «Точка внутри и вне окружности». На этом итоговом уроке мы повторим понятие окружности, вспомним ее основные свойства. Рассмотрим примеры расположения точки внутри и вне окружности. Вместе с преподавателем решим несколько задач на эту тему.
Видео:Точка, прямая и отрезок. 1 часть. 7 класс.Скачать
Вычислительная геометрия, или как я стал заниматься олимпиадным программированием. Часть 2
Вступление
Это вторая часть моей статьи посвящена вычислительной геометрии. Думаю, эта статья будет интереснее предыдущей, поскольку задачки будут чуть сложнее.
Начнем с взаимного расположения точки относительно прямой, луча и отрезка.
Задача №1
Определить взаимное расположении точки и прямой: лежит выше прямой, на прямой, под прямой.
Решение
Понятно, что если прямая задана своим уравнением ax + by + c = 0, то тут и решать нечего. Достаточно подставить координаты точки в уравнение прямой и проверить чему оно равно. Если больше нуля, то точка находится в верхней полуплоскости, если равна нулю, то точка находится на прямой и если меньше нуля, то точка находится в нижней полуплоскости. Интереснее случай, когда прямая задана, задана координатами двух точек назовем их P1(x1, y1), P2(x2, y2). В этом случае можно спокойно найти коэффициенты a, b и c и применить предыдущее рассуждение. Но надо сначала подумать, оно нам надо? Конечно, нет! Как я говорил косое произведения — это просто жемчужина вычислительной геометрии. Давайте применим его. Известно, что косое произведение двух векторов положительно, если поворот от первого вектора ко второму идет против часовой стрелки, равно нулю, если векторы коллинеарны и отрицательно, если поворот идет по часовой стрелки. Поэтому нам достаточно посчитать косое произведение векторов P1P2 и P1M и по его знаку сделать вывод.
Задача №2
Определить принадлежит ли точка лучу.
Решение
Давайте вспомним, что такое луч: луч — это прямая, ограниченная точкой с одной стороны, а с другой стороны бесконечная. То есть луч задается некоторой начальной точкой и любой точкой лежащей на нем. Пусть точка P1(x1, y1) — начало луча, а P2(x2, y2) — любая точка принадлежащая лучу. Понятно, что если точка принадлежит лучу, то она принадлежит и прямой проходящей через эти точки, но не наоборот. Поэтому принадлежность прямой является необходимым, но не достаточным условием для принадлежности лучу. Поэтому от проверки косового произведения нам никуда не деться. Для достаточного условия нужно вычислить еще и скалярное произведение тех же векторов. Если оно меньше нуля, то точка не принадлежит лучу, если же оно не отрицательно, то точка лежит на луче. Почему так? Давайте посмотрим на рисунок.
Итак, для того чтобы точка M(x, y) лежала на луче с начальной точкой P1(x1, y1), где P2(x2, y2) лежит на луче необходимо и достаточно выполнения двух условий:
1. [P1P2, P1M] = 0 – косое произведение (точка лежит на прямой)
2. (P1P2, P1M) ≥ 0 – скалярное произведение (точка лежит на луче)
Задача №3
Определить принадлежит ли точка отрезку.
Решение
Пусть точки P1(x1, y1), P2(x2, y2) концы заданного отрезка. Опять-таки необходимым условием принадлежности точки отрезку является ее принадлежность прямой проходящей через P1, P2. Далее нам нужно определить лежит ли точка между точками P1 и P2, для этого нам на помощь приходит скалярное произведение векторов только на этот раз других: (MP1, MP2). Если оно меньше либо равно нуля, то точка лежит на отрезке, иначе вне отрезка. Почему так? Посмотрим на рисунок.
Итак, для того чтобы точка M(x, y) лежала на отрезке с концами P1(x1, y1), P2(x2, y2) необходимо и достаточно выполнения условий:
1. [P1P2, P1M] = 0 – косое произведение (точка лежит на прямой)
2. (MP1,MP2) ≤ 0 – скалярное произведение (точка лежит между P1 и P2)
Задача №4
Взаимное расположение двух точек относительно прямой.
Решение
В этой задаче необходимо определить по одну или по разные стороны относительно прямой находятся две точки.
Если точки находятся по разные стороны относительно прямой, то косые произведения имеют разные знаки, а значит их произведение отрицательно. Если же точки лежат по одну сторону относительно прямой, то знаки косых произведений совпадают, значит, их произведение положительно.
Итак:
1. [P1P2, P1M1] * [P1P2, P1M2] 0 – точки лежат по одну сторону.
3. [P1P2, P1M1] * [P1P2, P1M2] = 0 – одна (или две) из точек лежит на прямой.
Кстати, задача об определении наличия точки пересечения у прямой и отрезка решается точно также. Точнее, это и есть эта же задача: отрезок и прямая пересекаются, когда концы отрезка находятся по разные стороны относительно прямой или когда концы отрезка лежат на прямой, то есть необходимо потребовать [P1P2, P1M1] * [P1P2, P1M2] ≤ 0.
Задача №5
Определить пересекаются ли две прямые.
Решение
Будем считать, что прямые не совпадают. Понятно, что прямые не пересекаются, только если они параллельны. Поэтому, найдя условие параллельности, мы можем, определить пересекаются ли прямые.
Допустим прямые заданы своими уравнениями a1x + b1y + c1 = 0 и a2x + b2y + c2 = 0. Тогда условие параллельности прямых заключается в том, что a1b2 — a2b1 = 0.
Если же прямые заданы точками P1(x1, y1), P2(x2, y2), M1(x3, y3), M2(x4, y4), то условие их параллельности заключается в проверки косого произведения векторов P1P2 и M1M2: если оно равно нулю, то прямые параллельны.
В общем, то когда прямые заданы своими уравнениями мы тоже проверяем косое произведение векторов (-b1, a1), (-b2, a2) которые называются направляющими векторами.
Задача №6
Определить пересекаются ли два отрезка.
Решение
Вот эта задача мне, действительно, нравится. Отрезки пересекаются тогда, когда, концы каждого отрезка лежат по разные стороны от другого отрезка. Посмотрим на рисунок:
Итак, нам нужно проверить, чтобы концы каждого из отрезков лежали по разные стороны относительного концов другого отрезка. Пользуемся косым произведением векторов. Посмотрите на первый рисунок: [P1P2, P1M2] > 0, [P1P2, P1M1] [P1P2, P1M2] * [P1P2, P1M1] 2 + b 2 ).
Задача №8
Расстояние от точки до луча.
Решение
Эта задача отличается от предыдущей тем, что в этом случае может получиться, так что перпендикуляр из точки не падает на луч, а падает на его продолжение.
В случае, когда перпендикуляр не падает на луч необходимо найти расстояние от точки до начала луча – это и будет ответом на задачу.
Как же определить падает ли перпендикуляр на луч или нет? Если перпендикуляр не падает на луч, то угол MP1P2 – тупой иначе острый (прямой). Поэтому по знаку скалярного произведения векторов мы можем определить попадает ли перпендикуляр на луч или нет:
1. (P1M, P1P2) 2 .
Теперь рассмотрим случай, когда центр второго круга O2 находится между точками O1 и C. В этом случае получим отрицательное значение величины d2. Использование отрицательного значения d2 приводит к отрицательному значению α. В этом случае необходимо для правильного ответа прибавить к α 2π.
Заключение
Ну вот и все. Мы рассмотрели не все, но наиболее часто встречаемые задачи вычислительной геометрии касающиеся взаимного расположения объектов.
📸 Видео
5 класс, 22 урок, Окружность и кругСкачать
Точки на числовой окружностиСкачать
ОГЭ ЗАДАНИЕ 16 ТОЧКА О ЦЕНТР ОКРУЖНОСТИ, НА КОТОРОЙ ЛЕЖАТ ТОЧКИ А В И ССкачать
2020 точка О центр окружности на которой лежат точки A B и C известно что Угол ABC равен 62 градусаСкачать
Построение окружности по трём точкам.Скачать
Тригонометрическая окружность. Как выучить?Скачать
#207. Окружность девяти точек | лемма о трезубце | ортотреугольник | прямая ЭйлераСкачать
Стереометрия 10 класс. Часть 1 | МатематикаСкачать
Точка O – центр окружности, на которой лежат точки ... | ОГЭ 2017 | ЗАДАНИЕ 10 | ШКОЛА ПИФАГОРАСкачать
ОГЭ 2019. Задание 17. Разбор задач. Геометрия. Окружность.Скачать