Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости

Проекция точки на плоскость, координаты проекции точки на плоскость

В этой статье мы найдем ответы на вопросы о том, как создать проекцию точки на плоскость и как определить координаты этой проекции. Опираться в теоретической части будем на понятие проецирования. Дадим определения терминам, сопроводим информацию иллюстрациями. Закрепим полученные знания при решении примеров.

Содержание
  1. Проецирование, виды проецирования
  2. Проекция точки на плоскость
  3. Нахождение координат проекции точки на плоскость, примеры
  4. Проецирование прямой линии в начертательной геометрии с примерами
  5. Прямые общего и частного положения
  6. Прямые, параллельные плоскостям проекций
  7. Прямые, перпендикулярные плоскостям проекций
  8. Определение натуральной величины прямой
  9. Следы прямой
  10. Взаимное положение прямых
  11. Образование проекций. Методы проецирования
  12. Ортогональный чертеж. Проецирование точки
  13. Октанты
  14. Проекции отрезка прямой линии. Точка на прямой
  15. Прямые частного положения
  16. Определение натуральной величины отрезка прямой общего положения методом прямоугольного треугольника
  17. Следы прямой
  18. Взаимное положение двух прямых
  19. Проецирование плоских углов
  20. Способы проецирования
  21. Проецирование точки, прямой, плоскости
  22. Способы проецирования
  23. Центральное проецирование
  24. Параллельное проецирование
  25. Косоугольное проецирование
  26. Ортогональное проецирование
  27. Эпюр Монжа
  28. Проецирование точки
  29. Принадлежность точек четвертям и октантам
  30. Принадлежность точек плоскостям проекций и осям координат
  31. Проецирование прямой
  32. Прямая общего положения
  33. Прямые особого (частного) положения
  34. Следы прямой
  35. Способ прямоугольного треугольника
  36. Принадлежность точки прямой
  37. Взаимное расположение двух прямых
  38. Определение видимости точек и линий
  39. Перпендикулярность прямых
  40. Проецирование плоскости
  41. Способы задания плоскостей
  42. Следы плоскости
  43. Главные линии плоскости
  44. Углы наклона плоскости к плоскостям проекции
  45. Плоскости особого(частного) положения
  46. Принадлежность точки плоскости
  47. Взаимное расположение прямой и плоскости
  48. Взаимное расположение двух плоскостей
  49. Перпендикулярность прямой и плоскости и двух плоскостей
  50. 📽️ Видео

Видео:Проецирование плоскости общего положенияСкачать

Проецирование плоскости общего положения

Проецирование, виды проецирования

Для удобства рассмотрения пространственных фигур используют чертежи с изображением этих фигур.

Проекция фигуры на плоскость – чертеж пространственной фигуры.

Очевидно, что для построения проекции существует ряд используемых правил.

Проецирование – процесс построения чертежа пространственной фигуры на плоскости с использованием правил построения.

Плоскость проекции — это плоскость, в которой строится изображение.

Использование тех или иных правил определяет тип проецирования: центральное или параллельное.

Частным случаем параллельного проецирования является перпендикулярное проецирование или ортогональное: в геометрии в основном используют именно его. По этой причине в речи само прилагательное «перпендикулярное» часто опускают: в геометрии говорят просто «проекция фигуры» и подразумевают под этим построение проекции методом перпендикулярного проецирования. В частных случаях, конечно, может быть оговорено иное.

Отметим тот факт, что проекция фигуры на плоскость по сути есть проекция всех точек этой фигуры. Поэтому, чтобы иметь возможность изучать пространственную фигуру на чертеже, необходимо получить базовый навык проецировать точку на плоскость. О чем и будем говорить ниже.

Видео:Проекция точки на плоскость, проекция прямой на плоскость. Параллельные прямые.Скачать

Проекция точки на плоскость, проекция прямой на плоскость. Параллельные прямые.

Проекция точки на плоскость

Напомним, что чаще всего в геометрии, говоря о проекции на плоскость, имеют в виду применение перпендикулярной проекции.

Произведем построения, которые дадут нам возможность получить определение проекции точки на плоскость.

Допустим, задано трехмерное пространство, а в нем — плоскость α и точка М 1 , не принадлежащая плоскости α . Начертим через заданную точку М 1 прямую а перпендикулярно заданной плоскости α . Точку пересечения прямой a и плоскости α обозначим как H 1 , она по построению будет служить основанием перпендикуляра, опущенного из точки М 1 на плоскость α . Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости

В случае, если задана точка М 2 , принадлежащая заданной плоскости α , то М 2 будет служить проекцией самой себя на плоскость α .

Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости

Проекция точки на плоскость – это либо сама точка (если она принадлежит заданной плоскости), либо основание перпендикуляра, опущенного из заданной точки на заданную плоскость.

Видео:Построение недостающей проекции плоскости. Принадлежность прямой к плоскостиСкачать

Построение недостающей проекции плоскости. Принадлежность прямой к плоскости

Нахождение координат проекции точки на плоскость, примеры

Пускай в трехмерном пространстве заданы: прямоугольная система координат O x y z , плоскость α , точка М 1 ( x 1 , y 1 , z 1 ) . Необходимо найти координаты проекции точки М 1 на заданную плоскость.

Решение очевидным образом следует из данного выше определения проекции точки на плоскость.

Обозначим проекцию точки М 1 на плоскость α как Н 1 . Согласно определению, H 1 является точкой пересечения данной плоскости α и прямой a , проведенной через точку М 1 (перпендикулярной плоскости). Т.е. необходимые нам координаты проекции точки М 1 – это координаты точки пересечения прямой a и плоскости α .

Таким образом, для нахождения координат проекции точки на плоскость необходимо:

— получить уравнение плоскости α (в случае, если оно не задано). Здесь вам поможет статья о видах уравнений плоскости;

— определить уравнение прямой a , проходящей через точку М 1 и перпендикулярной плоскости α (изучите тему об уравнении прямой, проходящей через заданную точку перпендикулярно к заданной плоскости);

— найти координаты точки пересечения прямой a и плоскости α (статья – нахождение координат точки пересечения плоскости и прямой). Полученные данные и будут являться нужными нам координатами проекции точки М 1 на плоскость α .

Рассмотрим теорию на практических примерах.

Определите координаты проекции точки М 1 ( — 2 , 4 , 4 ) на плоскость 2 х – 3 y + z — 2 = 0 .

Решение

Как мы видим, уравнение плоскости нам задано, т.е. составлять его необходимости нет.

Запишем канонические уравнения прямой a , проходящей через точку М 1 и перпендикулярной заданной плоскости. В этих целях определим координаты направляющего вектора прямой a . Поскольку прямая а перпендикулярна заданной плоскости, то направляющий вектор прямой a – это нормальный вектор плоскости 2 х – 3 y + z — 2 = 0 . Таким образом, a → = ( 2 , — 3 , 1 ) – направляющий вектор прямой a .

Теперь составим канонические уравнения прямой в пространстве, проходящей через точку М 1 ( — 2 , 4 , 4 ) и имеющей направляющий вектор a → = ( 2 , — 3 , 1 ) :

x + 2 2 = y — 4 — 3 = z — 4 1

Для нахождения искомых координат следующим шагом определим координаты точки пересечения прямой x + 2 2 = y — 4 — 3 = z — 4 1 и плоскости 2 х — 3 y + z — 2 = 0 . В этих целях переходим от канонических уравнений к уравнениям двух пересекающихся плоскостей:

x + 2 2 = y — 4 — 3 = z — 4 1 ⇔ — 3 · ( x + 2 ) = 2 · ( y — 4 ) 1 · ( x + 2 ) = 2 · ( z — 4 ) 1 · ( y — 4 ) = — 3 · ( z + 4 ) ⇔ 3 x + 2 y — 2 = 0 x — 2 z + 10 = 0

Составим систему уравнений:

3 x + 2 y — 2 = 0 x — 2 z + 10 = 0 2 x — 3 y + z — 2 = 0 ⇔ 3 x + 2 y = 2 x — 2 z = — 10 2 x — 3 y + z = 2

И решим ее, используя метод Крамера:

∆ = 3 2 0 1 0 — 2 2 — 3 1 = — 28 ∆ x = 2 2 0 — 10 0 — 2 2 — 3 1 = 0 ⇒ x = ∆ x ∆ = 0 — 28 = 0 ∆ y = 3 2 0 1 — 10 — 2 2 2 1 = — 28 ⇒ y = ∆ y ∆ = — 28 — 28 = 1 ∆ z = 3 2 2 1 0 — 10 2 — 3 2 = — 140 ⇒ z = ∆ z ∆ = — 140 — 28 = 5

Таким образом, искомые координаты заданной точки М 1 на заданную плоскость α будут: ( 0 , 1 , 5 ) .

Ответ: ( 0 , 1 , 5 ) .

В прямоугольной системе координат O x y z трехмерного пространства даны точки А ( 0 , 0 , 2 ) ; В ( 2 , — 1 , 0 ) ; С ( 4 , 1 , 1 ) и М1(-1, -2, 5). Необходимо найти координаты проекции М 1 на плоскость А В С

Решение

В первую очередь запишем уравнение плоскости, проходящей через три заданные точки:

x — 0 y — 0 z — 0 2 — 0 — 1 — 0 0 — 2 4 — 0 1 — 0 1 — 2 = 0 ⇔ x y z — 2 2 — 1 — 2 4 1 — 1 = 0 ⇔ ⇔ 3 x — 6 y + 6 z — 12 = 0 ⇔ x — 2 y + 2 z — 4 = 0

Далее рассмотрим еще один вариант решения, отличный от того, что мы использовали в первом примере.

Запишем параметрические уравнения прямой a , которая будет проходить через точку М 1 перпендикулярно плоскости А В С . Плоскость х – 2 y + 2 z – 4 = 0 имеет нормальный вектор с координатами ( 1 , — 2 , 2 ) , т.е. вектор a → = ( 1 , — 2 , 2 ) – направляющий вектор прямой a .

Теперь, имея координаты точки прямой М 1 и координаты направляющего вектора этой прямой, запишем параметрические уравнения прямой в пространстве:

x = — 1 + λ y = — 2 — 2 · λ z = 5 + 2 · λ

Затем определим координаты точки пересечения плоскости х – 2 y + 2 z – 4 = 0 и прямой

x = — 1 + λ y = — 2 — 2 · λ z = 5 + 2 · λ

Для этого в уравнение плоскости подставим:

x = — 1 + λ , y = — 2 — 2 · λ , z = 5 + 2 · λ

Теперь по параметрическим уравнениям x = — 1 + λ y = — 2 — 2 · λ z = 5 + 2 · λ найдем значения переменных x , y и z при λ = — 1 : x = — 1 + ( — 1 ) y = — 2 — 2 · ( — 1 ) z = 5 + 2 · ( — 1 ) ⇔ x = — 2 y = 0 z = 3

Таким образом, проекция точки М 1 на плоскость А В С будет иметь координаты ( — 2 , 0 , 3 ) .

Ответ: ( — 2 , 0 , 3 ) .

Отдельно остановимся на вопросе нахождения координат проекции точки на координатные плоскости и плоскости, которые параллельны координатным плоскостям.

Пусть задана точки М 1 ( x 1 , y 1 , z 1 ) и координатные плоскости O x y , О x z и O y z . Координатами проекции этой точки на данные плоскости будут соответственно: ( x 1 , y 1 , 0 ) , ( x 1 , 0 , z 1 ) и ( 0 , y 1 , z 1 ) . Рассмотрим также плоскости, параллельные заданным координатным плоскостям:

C z + D = 0 ⇔ z = — D C , B y + D = 0 ⇔ y = — D B

И проекциями заданной точки М 1 на эти плоскости будут точки с координатами x 1 , y 1 , — D C , x 1 , — D B , z 1 и — D A , y 1 , z 1 .

Продемонстрируем, как был получен этот результат.

В качестве примера определим проекцию точки М 1 ( x 1 , y 1 , z 1 ) на плоскость A x + D = 0 . Остальные случаи – по аналогии.

Заданная плоскость параллельна координатной плоскости O y z и i → = ( 1 , 0 , 0 ) является ее нормальным вектором. Этот же вектор служит направляющим вектором прямой, перпендикулярной к плоскости O y z . Тогда параметрические уравнения прямой, проведенной через точку M 1 и перпендикулярной заданной плоскости, будут иметь вид:

x = x 1 + λ y = y 1 z = z 1

Найдем координаты точки пересечения этой прямой и заданной плоскости. Подставим сначала в уравнение А x + D = 0 равенства: x = x 1 + λ , y = y 1 , z = z 1 и получим: A · ( x 1 + λ ) + D = 0 ⇒ λ = — D A — x 1

Затем вычислим искомые координаты, используя параметрические уравнения прямой при λ = — D A — x 1 :

x = x 1 + — D A — x 1 y = y 1 z = z 1 ⇔ x = — D A y = y 1 z = z 1

Т.е., проекцией точки М 1 ( x 1 , y 1 , z 1 ) на плоскость будет являться точка с координатами — D A , y 1 , z 1 .

Необходимо определить координаты проекции точки М 1 ( — 6 , 0 , 1 2 ) на координатную плоскость O x y и на плоскость 2 y — 3 = 0 .

Решение

Координатной плоскости O x y будет соответствовать неполное общее уравнение плоскости z = 0 . Проекция точки М 1 на плоскость z = 0 будет иметь координаты ( — 6 , 0 , 0 ) .

Уравнение плоскости 2 y — 3 = 0 возможно записать как y = 3 2 2 . Теперь просто записать координаты проекции точки M 1 ( — 6 , 0 , 1 2 ) на плоскость y = 3 2 2 :

Ответ: ( — 6 , 0 , 0 ) и — 6 , 3 2 2 , 1 2

Видео:Проецирование прямой общего положенияСкачать

Проецирование прямой общего положения

Проецирование прямой линии в начертательной геометрии с примерами

Содержание:

Проецирование прямой линии:

Отрезок прямой линии определяется двумя точками. Следовательно, проекции двух точек определяют проекции отрезка прямой (рисунок 2.1). Проекции отрезка прямой в общем случае всегда будут меньше самого отрезка прямой. В общем случае по проекциям отрезка прямой нельзя определить углы наклона отрезка прямой к плоскостям проекций.

Видео:Точка встречи прямой с плоскостьюСкачать

Точка встречи прямой с плоскостью

Прямые общего и частного положения

Прямые подразделяются на прямые общего и частного положения. Прямая, не параллельная и не перпендикулярная ни одной из плоскостей проекций, называется прямой общего положения (рисунок 2.1а).

Прямые, параллельные или перпендикулярные плоскостям проекций, называются прямыми частного положения (рисунок 2.16, в). Прямые, параллельные плоскостям проекций, называются по имени плоскости, которой они параллельны: горизонталь h, фронталь f и профильная прямая w.

Прямые, перпендикулярные плоскостям проекций, называются проецирующими: горизонтально-проецирующая, фронтально-проецирующая и профильно-проецирующая, в зависимости от плоскости, к которой они перпендикулярны.

Видео:Угол наклона плоскости общего положения относительно плоскостям проекцииСкачать

Угол наклона плоскости общего положения относительно плоскостям проекции

Прямые, параллельные плоскостям проекций

Особенностью эпюра прямых, параллельных плоскостям проекций, является то, что две проекции прямой параллельны осям, а третья проекция наклонена к осям и является натуральной величиной прямой. Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости

Кроме того, по этой проекции прямой можно определить угол наклона прямой к той или иной плоскости проекций.

Среди упомянутых прямых особое место занимают горизонталь h и фронталь f (рисунок 2.2), которые обладают замечательными свойствами и поэтому часто применяются при решении различных задач.

Важнейшими свойствами горизонтали являются: фронтальная

проекция горизонтали Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости

Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости

Видео:10 класс, 6 урок, Параллельность прямой и плоскостиСкачать

10 класс, 6 урок, Параллельность прямой и плоскости

Прямые, перпендикулярные плоскостям проекций

Особенностью эпюра прямых, перпендикулярных плоскостям проекций, является то, что две проекции этих прямых параллельны осям, а третья проекция «вырождается» в точку на той плоскости проекций, которой эта прямая перпендикулярна. Первые две проекции проецирующих прямых являются их натуральной величиной. На рисунке 2.3 представлены эпюры горизонтально- (а), фронтально- (б) и профильно-проецирующих прямых (в). Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости

Видео:Проецирование точки на 3 плоскости проекцийСкачать

Проецирование точки на 3 плоскости проекций

Определение натуральной величины прямой

Так как прямая общего положения проецируется на плоскости проекций с искажением, то задача определения натуральной величины (НВ) прямой по её проекциям является важной. С целью определения НВ прямой разработан метод прямоугольного треугольника, сущность которого понятна из пространственного чертежа (рисунок 2.4а).

Для того, чтобы определить натуральную величину прямой по её проекциям, необходимо на одной из её проекций (на любой) построить прямоугольный треугольник, одним катетом которого является сама проекция, а другим катетом — разность недостающих координат концов отрезка прямой. Тогда гипотенуза треугольника будет являться НВ прямой (рисунок 2.46). Недостающей координатой здесь названа та координата, которая не участвует в построении той или иной проекции прямой. Так, например, горизонтальная проекция прямой строится по координатам X и Y её концов. Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости

Координата Z в построениях не участвует и называется недостающей координатой. Таким образом, при построении прямоугольного треугольника на горизонтальной проекции прямой на катете откладывают разность аппликат, а при построении на фронтальной проекции — разность ординат.

При определении НВ прямой методом прямоугольного треугольника одновременно можно определить углы наклона прямой к плоскостям проекций (углы а° и Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостиОни определятся как углы между гипотенузой и соответствующей проекцией прямой.

Следы прямой

Точки пересечения прямой с плоскостями проекций называются следами прямой. В точках следов прямая переходит из одного октанта в другой. Различают горизонтальный, фронтальный и профильный следы прямой и их соответствующие проекции. На рисунке 2.5 показаны пространственные чертежи прямых общего и частного положения и образование их следов. Прямые, параллельные плоскостям проекций, имеют только два следа, а прямые, перпендикулярные плоскостям проекций, — один след, совпадающий с той проекцией прямой, на которой она проецируется в точку.

Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости

Из пространственных чертежей следует методика построения проекций следов прямой на эпюре (рисунок 2.6).

Взаимное положение прямых

Прямые в пространстве могут быть параллельными, пересекающимися, скрещивающимися и перпендикулярными.

Пространственные чертежи и эпюры параллельных и пересекающихся прямых представлены на рисунке 2.7а, б.

Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости

Признаком параллельных прямых на эпюре является параллельность их одноименных проекций.

Пересекающимися прямыми называются прямые, которые имеют общую точку — точку пересечения. Признаком пересекающихся прямых на эпюре является то, что проекции точки пересечения находятся на одной линии связи.

Частным случаем пересекающихся прямых являются перпендикулярные прямые. В соответствии с теоремой о проецировании прямого угла, прямой угол будет проецироваться на плоскость проекций в натуральную величину в том случае, когда одна из его сторон будет параллельна этой плоскости проекций (Рисунок 2.8). Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости

Cкрещивающимися прямыми называются непараллельные прямые, не имеющие общей точки. Скрещивающиеся прямые в пространстве не пересекаются, но на эпюре их одноименные проекции накладываются друг на друга, что создает впечатление пересечения. Признаком скрещивающихся прямых на проекциях является то, что проекции их мнимых точек пересечения не находятся на одной линии связи (рисунок 2.9а). В мнимых точках пересечения конкурируют две точки, принадлежащие разным прямым, или, другими словами, в мнимых точках конкурируют две прямые. Назовем эту область конкурирующим местом.

При рассмотрении скрещивающихся прямых возникает вопрос о видимости проекций прямых в конкурирующих местах. Этот вопрос может быть решен методом конкурирующих точек (конкурирующих прямых). Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости

Сущность метода заключается в следующем:

  1. Отметить конкурирующее место на рассматриваемой проекции;
  2. Обозначить конкурирующие точки или записать, какие прямые конкурируют;
  3. Провести через конкурирующее место линию связи;
  4. Вдоль линии связи сравнить недостающие координаты конкурирующих точек или конкурирующих прямых;
  5. На рассматриваемой проекции будет видна та точка или прямая, которая имеет наибольшую недостающую координату.

Так на рисунке 2.96 на горизонтальной проекции будет видна точка 1, принадлежащая прямой AВ, или, проще говоря, прямая АВ, так как аппликата прямой АВ вдоль линии связи наибольшая. На фронтальной проекции также будет видна прямая AВ. так как у неё в конкурирующем месте наибольшая ордината.

Метод конкурирующих точек (прямых) используется и при определении видимости проекций прямой и плоскости, двух плоскостей, прямой и поверхности, ребер многогранников и т.д. При этом считается, что плоскости и поверхности геометрически непрозрачны, а видимость прямой в точке встречи с плоскостью или в точках встречи с поверхностью меняется.

На рисунке 2.10 представлена пространственная схема определения видимости проекций прямой MN и плоскости ABCD, пересекающихся друг с другом в точке К. На горизонтальной проекции в конкурирующем месте будет видна прямая ВС, так как её аппликата больше, чем у прямой MN. На фронтальной проекции в конкурирующем месте будет видна прямая MN, так как ордината у неё больше, чем у прямой АВ. Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости

Пример: Определить длину растяжек для крепления антенны к крыше здания (рисунок 2.11).

Решение: Длина растяжек АВ и ВС определена методом прямоугольного треугольника на фронтальной проекции. Длину растяжки KD определять не следует, так как прямая KD является фронталью и её фронтальная проекция Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостипредставляет НВ.

Пример: Построить следы прямой АВ и определить октанты, через которые проходит прямая (рисунок 2.12).

Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости

Решение: Задача решена в пространстве и на эпюре. Так как проекции прямой пересекают оси ОХ и 0Y, то в точках пересечения и будут находится проекции горизонтального, фронтального и профильного следов прямой. Далее по знакам координат точек М, К, N, L определяем, что прямая проходит через октанты ll, I, IV и VIII.

Пример: Определить взаимное положение прямых АВ и CD (рисунок 2.13).

Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости

Решение: Анализ проекций двух заданных прямых приводит к выводу, что они являются профильными прямыми, так как обе их проекции параллельны осям 0Y и 0Z. Анализ взаимной параллельности одноименных проекций позволяет сделать предварительный вывод о том, что прямые АВ и CD параллельны друг другу. Однако такой вывод неправомерен, так как для профильных прямых следует проверить параллельность на профильной проекции. Построив профильные проекции Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости, видно, что прямые скрещиваются.

Пример: Разделить отрезок прямой АВ в отношении 2:3 (рисунок 2.14а). Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости

Решение: Так как отношение отрезков прямой линии равно отношению их проекций, то разделить в данном отношении отрезок прямой на эпюре — значит разделить в том же отношении любую его проекцию.

Задача решается исключительно графическим методом. Представленное решение задачи основано на теореме Фалеса: если на одной стороне угла отложить равные или пропорциональные отрезки и провести через засечки любые параллельные прямые, то другая сторона разделится на равные или пропорциональные отрезки. На рисунке 2.14а дано решение задачи в пространственной форме, а на рисунке 2.146 представлен эпюр решения задачи. На горизонтальной проекции вспомогательная прямая m проводится под произвольно углом, и на ней откладывается пять произвольных отрезков равной длины.

На рисунке 2.14в представлены ещё два способа деления отрезка прямой в заданном отношении.

Изготовление любой детали, строительство сооружений, разработка месторождений полезных ископаемых начинается с составления чертежей, планов и схем. Никакие словесные описания не могут заменить чертеж, который позволяет не только определить форму и размеры всех частей предмета, но и получить наглядное представление о нем.

Начертательная геометрия — один из разделов геометрии, в котором свойства пространственных фигур изучают по их изображениям на той или иной поверхности. Чаще всего за такую поверхность принимают плоскость.

Как и любая научная дисциплина, начертательная геометрия имеет терминологию, которую следует хорошо усвоить, чтобы понимать излагаемый материал.

В геометрии вообще и в начертательной геометрии в частности каждое последующее изложение основывается на предыдущем материале. Такая особенность изучаемого предмета требует систематической, последовательной работы над ним.

Потребность в отображении действительности появилась у человека давно. Об этом свидетельствуют многочисленные изображения первобытного человека на стенах пещер и камнях, на предметах и орудиях труда. С развитием человечества совершенствовалась и техника передачи различных символов (письменность, схемы, чертежи). В Древнем Китае, например, была разработана всеобъемлющая знаковая система, где каждому предмету или явлению соответствовал особый знак (иероглиф). В Древнем Египте при возведении сооружений архитекторы использовали чертежи в виде планов и фасадов.

Основные правила и методы построения изображений (планов зданий, земельных угодий, крепостных укреплений) по законам геометрии были разработаны в эпоху античности. В Древней Греции, за 300 лет до нашей эры, сделаны первые шаги к научному обоснованию метода центрального проецирования. В «Оптике» Евклида содержатся 12 аксиом и 61 теорема об условиях «видения» предметов.

Расцвет классической культуры сменился застоем, и только в эпоху Возрождения, благодаря усилиям школ живописи и архитектуры Италии, Нидерландов и Германии, в истории начертательной геометрии начинается новый период развития. К этому времени относится введение целого ряда основных понятий метода проецирования.

С развитием архитектуры, машинного производства, горной промышленности к изображениям предметов стали предъявлять все более высокие требования, что и привело к необходимости обобщения и систематизации знаний по «теории изображений». Работа знаменитого французского геометра и инженера периода Великой французской революции Гаспара Монжа (1746-1818) «Geometrie Descriptive» (1798 г.) представляет собой первое систематическое изложение общего метода изображения пространственных фигур на плоскости, поднявшее начертательную геометрию на уровень самостоятельной научной дисциплины.

Преподавание начертательной геометрии в России началось уже в первые годы XIX в. в Корпусе инженеров путей сообщения и чуть позже в Горном кадетском корпусе. Первый русский профессор начертательной геометрии Я.И. Севастьянов (1796-1849) в 1821 г. составил курс «Основания начертательной геометрии», ставший классическим учебным пособием по этому предмету.

Среди ученых, внесших наиболее значительный вклад в развитие начертательной геометрии, следует отметить академика Е.С. Федорова (1853-1919), преподававшего в Горном институте. На примере решения задач минералогии и кристаллографии он показал применимость методов начертательной геометрии к исследованиям закономерностей материального мира.

В настоящее время начертательная геометрия является базовой общетехнической дисциплиной, составляющей основу инженерного образования. Было бы, однако, большой ошибкой ограничивать значение начертательной геометрии лишь рамками теоретической основы черчения. Ее методы дают возможность решать самые сложные проблемы в различных областях: горно-геологических науках, химии, физике и др.

Видео:Математика без Ху!ни. Взаимное расположение прямой и плоскости.Скачать

Математика без Ху!ни.  Взаимное расположение прямой и плоскости.

Образование проекций. Методы проецирования

В начертательной геометрии чертеж — основной инструмент решения различных пространственных задач. К выполняемому чертежу предъявляется ряд особых требований, четыре из которых являются наиболее существенными. Чертеж должен быть: 1) наглядным; 2) обратимым; 3) достаточно простым; 4) точным.

Остановимся более подробно на обратимости чертежа. Под этим свойством понимается возможность точного воспроизведения формы и размеров предмета по его изображению. Действительно, для всех видов технических и горно-геологических чертежей это требование является особенно важным, так как по чертежу в машиностроении изготавливается та или иная деталь, в горном деле осуществляется проходка горных выработок, в геологии — оценка запасов полезного ископаемого и т.д.

Основным методом получения изображений в начертательной геометрии является проецирование. Чтобы понять сущность проецирования, обратимся к рис.1.

Выбираем центр проецирования — произвольную точку Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостипространства — и поверхность проецирования, не проходящую через точку Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости, например плоскость проекций Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости. Чтобы спроецировать некоторую точку Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостипространства на плоскость Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости, необходимо через центр проецирования Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостипровести проецирующую прямую Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостидо ее пересечения в точке Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостис плоскостью Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости.

При этом точка Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостиназывается проекцией точки Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостина плоскости Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости. Проекцией фигуры называется совокупность проекций всех ее точек на выбранную поверхность проецирования (например, на рис.1 проекцией треугольника Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостина плоскости Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостиявляется треугольник Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости). Описанный метод проецирования путем проведения проецирующих прямых через точки заданной фигуры и центр проецирования называется центральным.

Если проецирование осуществляется из бесконечно удаленной точки пространства (рис.2), то все проецирующие прямые окажутся взаимно параллельными. Этот метод проецирования называется параллельным, а направление Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости, по которому оно осуществляется, — направлением проецирования.

Если направление параллельного проецирования перпендикулярно плоскости проекций, то проецирование называется прямоугольным или ортогональным. Во всех остальных случаях параллельное проецирование называется косоугольным.

Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости

Изображения, полученные при помощи центрального проецирования, отличаются хорошей наглядностью, что объясняется устройством зрительного аппарата человеческого глаза. Однако этот метод имеет существенные недостатки. Во-первых, сложно построить изображение предмета. Во-вторых, построенные проекции имеют низкие метрические свойства, поэтому вследствие значительных искажений, возникающих при данном методе проецирования, определить истинные размеры предмета весьма сложно. По этим причинам способ центрального проецирования имеет ограниченное применение в практике и используется, когда от чертежа требуется прежде всего наглядность.

Несмотря на то, что параллельное проецирование, по сравнению с центральным, имеет меньшую наглядность, параллельные проекции, особенно ортогональные, обладают лучшей измеримостью и простотой построения.

Задачи, решаемые методами начертательной геометрии, принято делить на метрические и позиционные.

Метрические задачи имеют целью определение размеров различных предметов по их изображению. К таким задачам относится определение натуральной величины геометрических фигур, расстояний и углов между ними; в горно-геологической практике — это задачи на определение глубины и угла наклона буровых скважин, угла падения пласта полезного ископаемого, углов между осями горных выработок и т.п.

Позиционные задачи позволяют определить взаимное расположение различных объектов: точек, прямых линий, плоскостей, пространственных фигур. К этой категории задач относятся, например, установление точки встречи буровой скважины с плоскостью залежи, построение линии пересечения кровли и подошвы пласта полезного ископаемого с горной выработкой и многие другие.

Для быстрого и удобного решения пространственных задач в начертательной геометрии используют несколько систем изображений, особенности которых приведены в табл.1.

Таблица 1

Основные системы изображения, используемые при проецировании

Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости

Область применения той или иной системы изображений зависит, прежде всего, от целей, которые ставятся при построении чертежа. Из представленных в табл.1 систем наиболее широкое применение в техническом проектировании имеет эпюр (ортогональный чертеж). На его основе выполняются рабочие и сборочные чертежи, эскизы деталей, схемы и т.д. Поэтому в дальнейшем изложении курса основное внимание будет уделено именно этому методу построения.

Однако и другие методы проецирования находят применение в горно-геологических работах, поэтому в заключительных разделах будут рассмотрены основные правила изображения предметов при помощи векторных проекций, перспективы, аксонометрической проекции и, более подробно, — проекций с числовыми отметками.

Ортогональный чертеж. Проецирование точки

Любой предмет пространства можно рассматривать как определенную совокупность отдельных точек этого пространства, поэтому для изображения различных предметов необходимо научиться строить изображения отдельной точки пространства.

Представим в пространстве три взаимно перпендикулярные плоскости (рис.3):

  • Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости— горизонтальную плоскость проекций;
  • Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости— фронтальную плоскость проекций;
  • Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости— профильную плоскость проекций.

Для наглядного изображения плоскостей проекций взята кабинетная проекцияКак обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости, известная из курсов геометрии и черчения средней школы.

Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостиКабинетная проекция относится к числу косоугольных, более подробно она будет рассмотрена в разделе «Аксонометрические проекции».

Плоскости проекций пересекаются по прямым, которые называются осями проекций и обозначаются Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости, Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостии Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости. Точка Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости— точка пересечения всех трех осей проекций — называется началом координат.

Представим себе также в пространстве некоторую точку Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости. Чтобы получить проекцию точки Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостина горизонтальной плоскости проекций, необходимо провести через эту точку проецирующую прямую, перпендикулярную плоскости Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостии найти точку пересечения Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостиэтой прямой с плоскостью Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости. Точка Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостиназывается горизонтальной проекцией точки Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости. Путем ортогонального проецирования точки Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостина фронтальную и профильную плоскости проекций образуются ее фронтальная и профильная проекции (соответственно точки Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостии Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости).

Длины отрезков, измеряемые некоторой установленной единицей длины и равные расстояниям от точки Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостидо горизонтальной, фронтальной и профильной плоскостей проекций, называются прямоугольными (декартовыми) координатами:

  • по оси Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостиабсцисса, равная длине отрезка Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости;
  • по оси Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостиордината, равная длине отрезка Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости;
  • по оси Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостиаппликата, равная длине отрезка Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости.

Три координаты точки однозначно определяют ее положение в пространстве.

Взаимно перпендикулярные плоскости, изображенные на рис.3, дают нам пространственный чертеж. Для получения трех проекций точки в плоскости чертежа плоскости проекций Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости, Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостии Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостиусловно совмещают с плоскостью чертежа. Это совмещение выполняется следующим образом.

Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости

Фронтальная плоскость проекций Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостипринимается за плоскость чертежа, горизонтальная плоскость проекций Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостисовмещается с плоскостью чертежа вращением вокруг оси Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости, а профильная плоскость проекций Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости— вращением вокруг оси Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости. Направление вращения на рис.3 показано стрелками.

При совмещении плоскости Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостис плоскостью чертежа положительное направление оси Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостисовмещается с отрицательным направлением оси Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости, а отрицательное направление — с положительным направлением оси Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости. На чертеже изображение оси Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостипринято обозначать Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости. При совмещении плоскости Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостис плоскостью чертежа положительное направление оси Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостисовмещается с отрицательным направлением оси Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости, а отрицательное направление — с положительным направлением оси Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости. На чертеже изображение оси у принято обозначать Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости.

В результате образуется ортогональный чертеж, или эпюр (от франц. epure — чертеж, проект). На эпюре изображают только проекции геометрических объектов, а не сами объекты.

Любые две проекции точки, изображенные на эпюре, связаны между собой линией проекционной связи, перпендикулярной оси проекций (на чертеже ее обозначают штриховой линией):

  • Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостигоризонтальная и фронтальная проекции (точки Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостии Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости) расположены на линии проекционной связи, перпендикулярной оси Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости;
  • Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостифронтальная и профильная проекции (точки Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостии Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости) — на линии проекционной связи, перпендикулярной оси Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости;
  • Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостигоризонтальная и профильная проекции (точки Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостии Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости) — на линии проекционной связи, перпендикулярной оси Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости.

Вследствие того, что отрезки Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостии Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостиявляются изображением одной и той же координаты Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости, точки Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостии Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостисвязывают дугой окружности с центром в начале координат.

Каждая проекция точки Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостиопределяется двумя координатами: горизонтальная проекция Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости— координатами Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости; фронтальная проекция Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостиКак обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости, профильная проекция Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостиКак обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости.

Положение точки Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостиможет быть задано как графически, так и аналитически. Пример графического изображения точки Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостирассмотрен нами на рис.3. Аналитическая форма задания точки представляет собой числовое выражение трех координат точки Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостив выбранных единицах длины. Например, запись Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостиозначает, что Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости.

От аналитической формы задания точки легко перейти к графическому изображению этой точки на ортогональном чертеже.

Пример 1. Построить проекции точки Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости.

1. Выбираем единичный отрезок (рис.4).

2. С учетом знака откладываем на осях проекций координатные отрезки:

Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости

3. Отмечаем точки Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости.

4. Из построенных точек Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости— проводим линии проекционной связи, перпендикулярные осям проекций, и на их пересечениях отмечаем проекции точки Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости:

Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости

Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости

Две проекции точки, построенные на эпюре, однозначно определяют ее положение в пространстве. По двум проекциям заданной точки можно построить третью, и притом только одну.

Пример 2. Построить третью проекцию точки Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостипо двум заданным (рис.5).

1. Даны фронтальная и профильная проекции точки Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости: фронтальная проекция Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостиопределяется координатами Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости,

Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости

профильная проекция Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостиопределяется координатами Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости

Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости

2. Из имеющихся проекций проводим линии проекционной связи, перпендикулярные осям проекций, и определяем координатные отрезки Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостиравные соответствующим координатам точки Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости:

Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости

3. На пересечении линий проекционной связи с осями проекций отмечаем точки Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости.

4. Строим третью, горизонтальную проекцию точки Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости(рис.6). Горизонтальная проекция Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостиопределяется координатами

Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости

При определении точки Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостипо Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостиперенос осуществляется с оси Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостина соответствующее по знаку направление оси Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости.

В зависимости от расположения точки относительно плоскостей проекций различают:

1) точки общего положения, не принадлежащие плоскостям проекций (к ним относится, например, точка А на рис.3);

2) точки частного положения, лежащие в плоскостях проекций Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости, на осях проекций Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостиили в начале координат.

У точки общего положения все три координаты отличны от нуля.

Если точка лежит в плоскости проекций, то ее координата по оси, перпендикулярной этой плоскости проекций, равна нулю. Если точка лежит на оси проекций, то две другие ее координаты равны нулю. Если все три координаты точки равны нулю, то точка лежит в начале координат.

Рассмотрим некоторые частные случаи положения точки: когда точка лежит в какой-нибудь плоскости проекций или на какой-нибудь оси проекций.

Точка Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостирис.7 принадлежит горизонтальной плоскости проекций. Горизонтальная проекция Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостиэтой точки совпадает с самой точкой, фронтальная проекция Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостилежит на оси Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости, а профильная проекция Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости— на оси Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости. Координата точки Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостипо оси Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостиравна нулю, и, следовательно, точка Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостилежит в начале координат.

Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости

Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости

Точка Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостирис.8 лежит на оси Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости. С самой точкой совпадают ее горизонтальная Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостии профильная Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостипроекции, причем на ортогональном чертеже горизонтальная проекция лежит на оси Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости, а профильная — на оси Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости. Фронтальная проекция Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостилежит в начале координат.

Октанты

Плоскости проекций Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости, Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостии Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостиявляются неограниченными поверхностями и при взаимном пересечении делят пространство на восемь трехгранных углов, или октантов (от лат. octans — восьмая часть).

Нумерация октантов в полупространствах приведена на рис.9. Знаки координат в каждом из октантов указаны в табл.2.

Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости

Таблица 2

Знаки прямоугольных координат в различных октантах

Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости

Проекции отрезка прямой линии. Точка на прямой

Прямую линию можно рассматривать как совокупность точек. Из школьного курса геометрии известно, что через две точки можно провести прямую и притом только одну.

Пусть нам даны на эпюре точки Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостии Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости. Две проекции каждой из этих точек однозначно определяют их положение в пространстве (рис.10). Если мы соединим одноименные проекции точек, то получим проекции прямой. Точки Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостии Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостиограничивают отрезок прямой и определяют положение этой прямой как бесконечной линии.

Таким образом, прямая линия на эпюре может быть задана двумя проекциями отрезка, принадлежащего этой прямой. По двум проекциям отрезка всегда можно построить его третью проекцию и притом только одну.

Если прямая не параллельна ни одной из плоскостей проекций, то она пересекает все плоскости проекций и не проецируется ни на одну из них в натуральную величину. Такую прямую называют прямой общего положения. Ни одна из ее проекций не параллельна осям. Прямая Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостина рис.10 — это прямая общего положения.

Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости

Точка принадлежит прямой линии, если ее проекции лежат на одноименных проекциях этой линии.

Если на прямой Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостимы выберем какую-либо точку Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости, то проекции этой точки будут лежать на одноименных проекциях прямой (рис.11).

Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости

Таким образом, если точка принадлежит заданной прямой, то для построения проекций этой точки на эпюре необходимо и достаточно знать положение хотя бы одной проекции точки, поскольку недостающие проекции легко найти в пересечении линий проекционной связи с соответствующими проекциями прямой.

Прямые частного положения

Прямая, параллельная одной или двум плоскостям проекций, называется прямой частного положения.

Рассмотрим пример, когда прямая параллельна одной плоскости проекций. В этом случае прямая проецируется на эту плоскость в натуральную величину, а две другие проекции -параллельны осям проекций.

Горизонтальная прямая — прямая, параллельная плоскости Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости(рис.12). Горизонтальная проекция отрезка горизонтальной прямой равна его натуральной величине. Фронтальная проекция горизонтальной прямой всегда параллельна оси Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости. Угол Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостимежду горизонтальной проекцией горизонтальной прямой и осью Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостиявляется углом между этой прямой и фронтальной плоскостью проекций.

Фронтальная прямая — прямая, параллельная плоскости Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости. Фронтальная проекция отрезка (рис.13) фронтальной прямой равна его натуральной величине; горизонтальная проекция фронтальной прямой всегда параллельна оси Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости. Угол Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостимежду фронтальной проекцией фронтальной прямой и осью Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостиявляется углом между фронтальной прямой и горизонтальной плоскостью проекций.

Профильная прямая — прямая, параллельная плоскости Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости. Профильная проекция отрезка (рис.14) профильной прямой равна его натуральной величине; горизонтальная проекция профильной прямой всегда параллельна оси Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости, а фронтальная — оси Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости. Угол Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостимежду профильной проекцией профильной прямой и осью является углом между прямой и горизонтальной плоскостью проекций; угол Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостимежду профильной проекцией прямой и осью Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости— углом между прямой и фронтальной плоскостью проекций.

Если прямая параллельна двум плоскостям проекций, т.е. перпендикулярна третьей плоскости проекций, то на эти две плоскости проекции прямая проецируется в натуральную величину, а третья проекция представляет собой точку. Такие прямые называют проецирующими.

Горизонтально-проецирующая прямая — прямая, перпендикулярная плоскости Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости(прямая Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостина рис.15). Фронтальная и профильная проекции отрезка горизонтально-проецирующей прямой равны его натуральной величине, а ее горизонтальная проекция представляет собой точку.

Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости

Фронтально-проецирующая прямая -прямая, перпендикулярная плоскости Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости(прямая Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостина рис.15). Горизонтальная и профильная проекции отрезка фронтально-проецирующей прямой равны его натуральной величине, а ее фронтальная проекция представляет собой точку.

Профильно-проецирующая прямая — прямая, перпендикулярная плоскости Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости(рис.16). Горизонтальная и фронтальная проекции отрезка профильно-проецирующей прямой равны его натуральной величине, профильная проекция профильно-проецирующей прямой представляет собой точку.

Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости

Определение натуральной величины отрезка прямой общего положения методом прямоугольного треугольника

Ортогональная проекция отрезка прямой общего положения на любую плоскость проекций всегда меньше длины самого отрезка. Рассмотрим правила определения натуральной величины отрезка прямой методом прямоугольного треугольника.

Предположим, что точки Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостии Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостилежат в I октанте (рис.17). Соединим эти точки и получим отрезок некоторой прямой Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости. Построим горизонтальную и фронтальную проекции этой прямой. Из точки Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостипроведем линию, параллельную Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости, которая в пересечении с линией проекционной связи даст точку Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости.

Рассмотрим стороны прямоугольного треугольника Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости:

  • • гипотенуза треугольника Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостиопределяет натуральную величину отрезка Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости;
  • • один катет Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостипредставляет собой горизонтальную проекцию отрезка Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости;
  • • второй катет Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостиравен разности координат точек Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостии Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостипо оси Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости: Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости.

На ортогональном чертеже оказывается достаточно данных для построения треугольника, равного рассмотренному (рис.17). Для этого к горизонтальной проекции Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости«пристроен» второй катет — разность координат Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости. Гипотенуза Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостипостроенного треугольника — натуральная величина отрезка Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости.

Истинную величину отрезка можно определить, построив прямоугольный треугольник, катетом которого является и фронтальная проекция отрезка (рис.18): при этом второй катет окажется равным разности координат Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости. Для треугольника, построенного на профильной проекции отрезка, вторым катетом будет разность координат Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости.

Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости

На рис.18 истинная величина отрезка Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостиопределена три раза: гипотенузы построенных прямоугольных треугольников имеют равную длину и все они определяют истинную величину отрезка Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости.

Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости

В общем случае, натуральная величина отрезка прямой общего положения равна гипотенузе прямоугольного треугольника, одним катетом которого является проекция отрезка прямой, а вторым — разность «третьих» координат (табл.3).

Под термином «третья координата» подразумевается координата, которая отсутствует в проекции, выбранной в качестве катета прямоугольного треугольника. Так, горизонтальная проекция отрезка строится по координатам Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостии Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости, следовательно, «третьей» координатой в этом случае будет координата Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости. Аналогично у фронтальной проекции отрезка «третьей» координатой будем считать координату Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости, а у профильной — координату Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости.

Таблица 3

Геометрические элементы при определении истинной величины отрезка примой Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостиметодом прямоугольного треугольника

Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости

Координаты концов отрезка могут иметь разные знаки. Тогда разность координат определяется с учетом знака. Например, если координата Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскоститочки Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостиположительная, а точки Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостиотрицательная, то разность координат

Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости

Угол наклона прямой к плоскости проекций — это угол между прямой и ее проекцией. Следовательно, определяя истинную величину отрезка прямой методом прямоугольного треугольника, одновременно можно найти и угол ее наклона к плоскости проекций. Угол между гипотенузой и соответствующей проекцией отрезка равен углу наклона этой прямой к данной плоскости проекций.

Пример 3. Определить истинную величину отрезка Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостии угол наклона прямой к плоскости Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости(рис.19).

Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости

1. По табл.3 определяем, что для нахождения угла наклона к плоскости Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостинадо построить прямоугольный треугольник, в котором одним катетом будет горизонтальная проекция отрезка Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости, а вторым — разность координат по оси Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости.

2. Определяем координаты по оси Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскоститочек Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостии Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостии их разность:

Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости

3. Строим прямоугольный треугольник, в котором за катет принимаем горизонтальную проекцию Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости. В качестве второго катета откладываем расстояние, равное Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости.

4. Гипотенуза построенного треугольника есть истинная величина отрезка Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости, а угол при вершине Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости(угол Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости) — угол наклона прямой к плоскости Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости.

Следы прямой

Следом прямой называется точка пересечения прямой линии с плоскостью проекций. Прямая общего положения пересекает все три плоскости проекций и, следовательно, имеет три следа. Прямая линия частного положения не имеет следа на плоскости проекций, если она параллельна этой плоскости.

Выберем две точки, точку Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости, лежащую в плоскости проекций Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостии точку Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости— в плоскости проекций Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости(рис.20). Через эти точки проведем прямую.

Точка пересечения Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостипрямой линии с горизонтальной плоскостью проекций называется горизонтальным следом прямой; точка пересечения Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостипрямой линии с фронтальной плоскостью проекций — фронтальным следом прямой; точка пересечения Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостипрямой линии с профильной плоскостью проекций — профильным следом прямой.

Следы прямой совпадают с проекциями этих следов в той плоскости, где они расположены: Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости.

Поскольку точка Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостилежит в плоскости Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости, ее фронтальная проекция Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостирасполагается на оси Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости, а профильная Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости— на оси Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости. Горизонтальная проекция Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскоститочки Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскоститакже располагается на оси Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости, а профильная проекция Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостилежит на оси Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости. Горизонтальная проекция профильного следа Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостилежит на оси Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости, а фронтальная проекция Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости— на оси Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости.

Охарактеризуем особенности построения каждой проекции каждого из трех следов на ортогональном чертеже (рис.20).

Горизонтальный след Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости:

  • фронтальная проекция горизонтального следа Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостилежит на пересечении фронтальной проекции прямой с осью Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости(с этой точки обычно начинают построения);
  • горизонтальная проекция горизонтального следа Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостилежит на пересечении горизонтальной проекции прямой с линией проекционной связи, проведенной из проекции Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостиперпендикулярно оси Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости;
  • профильная проекция горизонтального следа Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостилежит на пересечении профильной проекции прямой с осью Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости.

Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости

Фронтальный след Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости:

  • горизонтальная проекция фронтального следа Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостилежит в точке пересечения горизонтальной проекции прямой с осью Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости;
  • фронтальная проекция фронтального следа Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостилежит на пересечении фронтальной проекции прямой с линией проекционной связи, проведенной из точки Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостиперпендикулярно оси Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости;
  • профильная проекция фронтального следа Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостилежит на пересечении профильного следа прямой с осью Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости.

Профильный след Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости:

  • горизонтальная проекция профильного следа Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостилежит на пересечении горизонтальной проекции прямой с осью Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости;
  • фронтальная проекция профильного следа Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостилежит на пересечении фронтальной проекции прямой с осью Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости;
  • профильная проекция профильного следа Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостинаходится в точке пересечения профильной проекции прямой с линией проекционной связи, проведенной из Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостиперпендикулярно оси Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости.

Необходимо отметить, что построение профильных проекций следов Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостиможет проводиться по двум уже построенным проекциям (горизонтальной и фронтальной), как было показано в разделе 1.2.

Пример 4. Построить проекции следов прямой Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости(рис.21).

1. Находим фронтальную проекцию горизонтального следа Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости, продолжив Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостидо пересечения с осью Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости.

2. Из точки Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостипроводим линию проекционной связи до ее пересечения с продолжением Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостиЗдесь расположена точка Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости.

3. По двум проекциям Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостии Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостистроим третью — Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости, которая может быть также построена как точка пересечения профильной проекции прямой с осью Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости.

4. Находим горизонтальную проекцию фронтального следа Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостив пересечении Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостис осью Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости.

5. Из точки Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостипроводим линию проекционной связи до ее пересечения с фронтальной проекцией прямой Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостии получаем точку Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости.

6. По двум проекциям фронтального следа Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостии Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостистроим третью его проекцию — Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости, которая лежит в пересечении профильной проекции прямой с осью Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости.

7. В пересечении Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостис осью Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостистроим точку Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости(горизонтальную проекцию профильного следа).

8. В пересечении Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостис осью Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостиполучаем фронтальную проекцию профильного следа — точку Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости.

9. По двум проекциям Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостии Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостистроим профильную проекцию профильного следа Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостиКак обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости.

Взаимное положение двух прямых

Две прямые могут пересекаться, быть параллельными друг другу и скрещиваться.

Пересекающиеся прямые имеют одну общую точку. Если прямые линии пересекаются, то одноименные проекции этих прямых тоже пересекаются (рис.22, а), причем проекции точки пересечения лежат на одной линии проекционной связи.

Параллельные прямые лежат в одной плоскости и не имеют общих точек. Одноименные проекции двух параллельных прямых параллельны между собой (рис.22, б).

Скрещивающиеся прямые, в отличие от пересекающихся и параллельных прямых, не лежат в одной плоскости. Хотя одноименные проекции двух скрещивающихся прямых и могут пересекаться, но точки их пересечения не лежат на одной линии проекционной связи (рис.22, в).

Две точки, лежащие на скрещивающихся прямых и на одном перпендикуляре к плоскости проекций, называются конкурирующими. Проекции конкурирующих точек лежат в точке пересечения одноименных проекций скрещивающихся прямых (точки / и 2 на фронтальной плоскости проекций, точки 3 и 4 на горизонтальной плоскости проекций — см. рис.22, в)Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости.

Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостиПри помощи конкурирующих точек определяется взаимная видимость прямых и плоскостей относительно друг друга.

Проецирование плоских углов

Плоский угол проецируется на плоскость проекций без искажения, если плоскость угла параллельна плоскости проекций. Это справедливо в отношении любого угла — острого или тупого. Исключение составляет только прямой угол, который проецируется на плоскость проекций без искажения, если хотя бы одна его сторона параллельна плоскости проекций (рис.23).

Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости

Рекомендую подробно изучить предметы:
  1. Инженерная графика
  2. Начертательная геометрия
  3. Компас
  4. Автокад
  5. Черчение
  6. Проекционное черчение
  7. Аксонометрическое черчение
  8. Строительное черчение
  9. Техническое черчение
  10. Геометрическое черчение
Ещё лекции с примерами решения и объяснением:
  • Проецирование плоскости
  • Плоскость на эпюре Монжа
  • Позиционные задачи
  • Методы преобразования эпюра Монжа
  • Взаимное положение плоскостей, прямой линии и плоскости
  • Взаимное расположение точки, прямых и плоскостей
  • Перпендикулярность геометрических объектов
  • Метод замены плоскостей проекций

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Видео:Частное положение точек. Точки принадлежащие к плоскостям проекции.Скачать

Частное положение точек. Точки принадлежащие к плоскостям проекции.

Способы проецирования

Содержание:

Система обозначений

С целью отделения групп геометрических объектов введены такие символические обозначения:

  • точки обозначаются большими буквами латинского алфавита А, В, С, . или натуральными числами Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости…, в том числе начало отсчёта О,основа перпендикуляра N; точки пересечения линии с линией, плоскостью, поверхностью K, M, N; следы прямой H, F, Р;узловые и вспомогательные точкиКак обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости…;
  • невидимые точки по необходимости обозначаются в круглых скобках: (А), (Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости) и т.д.;
  • отрезки прямых и дуги кривых линий складываются из комбинации двух больших букв, которые обозначают начало и конец: АВ, ВС, DE и т.д.;
  • прямые и кривые линии, лучи обозначаются маленькими буквами латинского алфавита a, b,c, …, в том числе прямые уровня h, f, p; проецирующие прямые u, v, w;проецирующие оси вращения i, j, k;прямая, перпендикулярная другой прямой или плоскости,– п; оси прямоугольной системы координат х, у, z; оси вспомогательной системы координат s; оси натурального трёхгранника τ, n, b;
  • углы между прямыми, прямой и плоскостью, двумя плоскостями обозначаются маленькими греческими буквами α, β, γ, …;
  • плоскости и их отсеки, кривые поверхности и пространственные тела обозначаются большими буквами греческого алфавита Σ, Φ, Ω, …, в том числе плоскости проекций П,плоскости проекций прямоугольной системы координатКак обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостивспомогательные плоскости проекций, перпендикулярные к одной из основных,Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостиплоскости проекций при аксонометрическом и косоугольном проецировании П /;
  • следы плоскости Σ обозначаются Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости
  • – проекции геометрического объекта на плоскости проекций обозначаются нижним или верхним индексом: Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостиили Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости
  • элемент множества одноимённых геометрических объектов обозначается верхним индексом в круглых скобках: Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости

Символы латинского и греческого алфавитов приведены в приложении А

Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости

Видео:Как найти проекцию точки на прямую. Линейная алгебраСкачать

Как найти проекцию точки на прямую. Линейная алгебра

Проецирование точки, прямой, плоскости

Проекция точки определяется как пересечение плоскости (гиперплоскости), содержащей эту точку и параллельную плоскости, задающей проекцию. В случае, когда плоскость (гиперплоскость), задающая проекцию, ортогональна прямой, мы получаем ортогональную проекцию (это может быть её альтернативным определением).

Способы проецирования

Известны два метода проецирования: центральное и параллельное.

Проецирование (лат. Projicio – бросаю вперёд) – процесс получения изображения предмета (пространственного объекта) на какой-либо поверхности с помощью световых или зрительных лучей (лучей, условно соединяющих глаз наблюдателя с какой-либо точкой пространственного объекта), которые называются проецирующими.

Центральное проецирование

Для изображения геометрических объектов на плоскости применяют процедуру проецирования, которая состоит в проведении через точку А луча l и дальнейшем определении точки A1 его пересечения с плоскостью проецирования П1 (рис. 1.1 а). Полученная точка А1 называется проекцией точки А на плоскость П1.

Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости

Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостиЦентральное проецирование

В центральном проецировании лучи, пронизывающие точки тела, «выходят» из одной точки S – центра проецирования (рис. 1.1 б). Разновидностями центрального проецирования являются угловая (рис. 1.2 а) и фронтальная (рис. 1.2 б) перспективы.

Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости

Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостиРазновидности перспективы

Центральное проецирование характеризуется положением центра проецирования

Центральная проекция предмета схожа с изображением, которое воспринимает глаз человека, а также с изображением, полученным посредством фотографии. Этот способ проецирования является наиболее наглядным (способствует зрительному восприятию предметов), но наиболее сложным в своей реализации. Он применяется преимущественно в живописи, строительстве и архитектуре.

Параллельное проецирование

Косоугольное проецирование

Параллельное проецирование можно рассматривать как отдельный случай центрального проецирования, для которого центр S бесконечно удалён от плоскости П1. В этом случае лучи, пронизывающие каждую точку тела, взаимно параллельны (рис. 1.3).

В отличие от центрального, параллельное проецирование характеризуется ориентацией лучей относительно плоскости проекций.

В случае, когда лучи не перпендикулярны к плоскости П1, проецирование называется косоугольным (рис. 1.3).

Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости

Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостиКосоугольное проецирование

Косоугольное проецирование используется преимущественно для решения специальных задач на определение точек и линий пересечения геометрических фигур. При этом, как правило, плоскость проекции занимает особое положение относительно системы трёх взаимно перпендикулярных плоскостей (см. п. 2.5).

Ортогональное проецирование

Ортогональное проецирование является отдельным случаем параллельного проецирования, в котором лучи перпендикулярны плоскости проекций (рис. 1.4).

Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости

Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостиОртогональное проецирование

Метод ортогонального проецирования положенный в основу построения конструкторской документации, а именно сборочных и рабочих чертежей и эскизов в машиностроении.

Основные свойства ортогонального проецирования будут рассмотрены по мере преподавания материала.

Эпюр Монжа

Эпюр Монжа (от франц. epure – чертёж) – чертёж, в котором пространственная фигура изображена с использованием проецирования на систему двух или трёх взаимно перпендикулярных площадей П1, П2, П3 с дальнейшим условным совмещением последних в одну плоскость (рис. 1.5 а). П1, П2, П3горизонтальная, фронтальная и профильная плоскости проекций.

Чертёж, построенный методом проекций, называется проецирующим, или комплексным чертежом. На рис. 1.5 б построен комплексный чертёж точки А, который складывается из трёх проекций последней: А1 – горизонтальная проекция; А2 – фронтальная проекция; А3 – профильная проекция точки А.

Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости

Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостиПостроение комплексного чертежа точки

Линии, которые проходят через пары проекций А1А2, А1А3, А2А3, называются линиями проекционной связи. Они перпендикулярны или параллельны координатным осям х, y, z.

На комплексном чертеже ось у дублируется. Это приводит к тому, что одну из проекций точки можно обозначить по двум другим, как это показано стрелками на рис. 1.5 б.

Проецирование точки

Центральное проецирование заключается в проведении через каждую точку ( А, В, С ,…) изображаемого объекта и определённым образом выбранный центр проецирования ( S ) прямой линии ( SA , SB , >… — проецирующего луча ).

Принадлежность точек четвертям и октантам

Пространство условно можно разделить с помощью плоскостей проекций П1, П2 на четыре части – четверти (рис. 1.6 а), а с помощью плоскостей П1, П2, П3 (рис. 1.6 б) – на восемь частей – октантов (от греческого οκτώ – восемь).

Каждая из проекций точки А (рис. 1.5 б) определяется парой координат: А1(x,y), А2(x,z), А3(y,z). Знак «+» или «–» при числовом значении x, y, z позволяет сделать вывод про принадлежность точки А той или другой четверти, октанту (табл. 1.1 – 1.2). Примеры комплексных чертежей точек, которые принадлежат разным четвертям и октантам, приведены на рис. 1.7.

Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости

Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостиЧетверти (а) и октанты (б).

Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости

Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости

Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостиПринадлежность точек четвертям и октантам

Принадлежность точек плоскостям проекций и осям координат

Координаты точки иногда называют так: х – ширина; у – глубина; z – высота. В случае, когда высота z точки равна нулю, точка принадлежит плоскости П1 (рис. 1.8, точка А). Если глубина у точки равна нулю, точка принадлежит плоскости П2 (рис. 1.8, точка В). В случае нулевой ширины х, точка принадлежит плоскости П3 (рис. 1.8, точка С).

Если две координаты точки равны нулю, точка принадлежит оси, которая отвечает за третью (не нулевую) координату. Например, точка, которая имеет координаты (Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости), принадлежит оси у, поскольку у ≠ 0, х = z = 0.

Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости

Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостиПринадлежность точек плоскостям проекций.

Проецирование прямой

Проецирующие прямыепрямые перпендикулярные одной из плоскостей проекций. Проекцией проецирующей прямой на плоскость проекций, к которой она перпендикулярна, является точка (след прямой).

Прямая общего положения

Прямую l в пространстве можно задать двумя точками А и В, которые ей принадлежат (рис. 1.9 а). Проекцией прямой на любую плоскость проекций является прямая (рис. 1.9) или точка (см. п. 1.4.2, рис. 1.11).

Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости

Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостиПрямая общего положения

Прямая, не параллельная и не перпендикулярная ни одной из плоскостей проекций, называется прямой общего положения.

Прямые особого (частного) положения

Прямые, параллельные или перпендикулярные к плоскостям проекций, называются прямыми особого(частного) положения. Их детальное рассмотрение обусловлено тем, что эти линии используются для решения большинства задач начертательной геометрии.

Прямые особого положения подразделяются на два вида:

а) прямая уровня – прямая, параллельная только одной из плоскостей проекций:

1) горизонталь h – прямая, параллельная П1 (рис. 1.10 а);

2) фронталь f – прямая, параллельная П2 (рис. 1.10 б);

3) профильная прямая уровня p – прямая, параллельная П3 (рис. 1.10 в);

б) проецирующая прямая – прямая, перпендикулярная плоскости проекций:

1) горизонтально- проецирующая прямая u – прямая, перпендикулярная П1 (рис. 1.11 а);

2) фронтально-проецирующая пряма v – прямая, перпендикулярная П2 (рис. 1.11 б);

3) профильно-проецирующая пряма w – прямая, перпендикулярная П3 (рис. 1.11 в)

Длина отрезка прямой уровня h, f, p, соответственно на плоскостях проекций П1, П2, П3 является действительной длиной размещённого в пространстве отрезка. Таким образом, прямая уровня проецируется на одну из плоскостей проекций в натуральную величину (аббревиатура НВ).

Углы наклона прямой уровня к плоскостям проекций можно определять как углы наклона его проекций к осям координат (рис. 1.10, табл. 1.3). Например, угол β наклона горизонтали h к П2 обозначается как угол между проекцией h1 и осью х.

Отрезки проецирующих прямых проецируются на одну из плоскостей проекций в точку, а на две другие – в натуральную величину (рис. 1.11).

Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости

Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостиПрямые уровня

Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости

Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости

Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостиПроецирующие прямые

Следы прямой

Точки пересечения прямой с плоскостями проекций называются следами. Прямая общего положения имеет три следа – горизонтальный Н, фронтальный F, профильный Р (рис. 1.12).

Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости

Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостиСледы прямых общего положения

Способы определения следов прямой общего положения:

а) для определения горизонтального следа Н прямой l необходимо продолжить фронтальную проекцию l2 до пересечения с осью х (эта точка является фронтальной проекцией Н2 горизонтального следа) и провести вертикальную линию проекционной связи до пересечения с продолжением горизонтальной проекции l1. Полученная точка является горизонтальным следом Н прямой l и совпадает с его горизонтальной проекцией Н1 (рис. 1.13 а – б);

б) для определения фронтального следа F прямой l необходимо продолжить горизонтальную проекцию l1 до пересечения с осью х (эта точка является горизонтальной проекцией F1 фронтального следа) и провести вертикальную линию проекционной связи до пересечения с продолжением фронтальной проекции l2. Полученная точка является фронтальным следом F прямой l и совпадает с его фронтальной проекцией F2 (рис. 1.13 а);

в) для определения профильного следа Р прямой l необходимо продолжить фронтальную проекцию l2 до пересечения с осью z (эта точка является фронтальной проекцией Р2 профильного следа) и провести горизонтальную линию проекционной связи до пересечения с продолжением профильной проекции l3. Полученная точка является профильным следом Р прямой l и совпадает с его профильной проекцией Р3 (рис. 1.13 б).

Прямая уровня имеет только два следа, которые не принадлежат той плоскости, которой прямая параллельна (рис. 1.14)

. Проецирующая прямая имеет только один след, который совпадает с той проекцией прямой, которая является точкой (рис. 1.15).

Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости

Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостиОпределение следов прямой

Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости

Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостиСледы прямых уровня

Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости

Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостиСледы проецирующих прямых

Способ прямоугольного треугольника

Длины проекций А1В1, А2В2, А3В3 отрезка АВ прямой общего положения всегда меньше, чем натуральная величина этого отрезка. Поэтому возникает проблема определения натуральной величины отрезка по известным его проекциям. Эта задача решается с помощью способа прямоугольного треугольника (рис. 1.16), который позволяет определять. в том числе, углы α, β, γ наклона отрезка к плоскостям проекций П1, П2, П3 соответственно.

Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости

Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостиСпособ прямоугольного треугольника

Суть способа прямоугольного треугольника:

а) для определения на плоскости П1 натуральной величины отрезка АВ необходимо определить разность ∆z высот точек А, В и отложить отрезок Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостидлиной ∆z перпендикулярно к горизонтальной проекции А1В1. Длина гипотенузы Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостипрямоугольного треугольника Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостиявляется натуральной величиной отрезка АВ. Угол между горизонтальной проекцией А1В1 отрезка и его натуральной величиной Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостиравен углу α наклона отрезка АВ к плоскости П1;

б) для определения на плоскости П2 натуральной величины отрезка АВ необходимо определить разность ∆у глубин точек А, В и отложить отрезок Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостидлиной ∆у перпендикулярно фронтальной проекции А2В2. Длина гипотенузы Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостипрямоугольного треугольника Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостиявляется натуральной величиной отрезка АВ. Угол между фронтальной проекцией А2В2 отрезка и его натуральной величиной Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостиравен углу β наклона отрезка АВ к плоскости П2;

в) для определения на плоскости П3 натуральной величины отрезка АВ необходимо определить разность ∆х ширины точек А, В и отложить отрезок Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостидлиной ∆х перпендикулярно профильной проекции А3В3. Длина гипотенузы Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостипрямоугольного треугольника Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостиявляется натуральной величиной отрезка АВ. Угол между профильной проекцией А3В3 отрезка и его натуральной величиной Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостиравен углу γ наклона отрезка АВ к плоскости П3.

Принадлежность точки прямой

В начертательной геометрии принадлежность точки А прямой l определяется с помощью проекций этих объектов.

Условие принадлежности точки прямой Точка А принадлежит прямой l, если три её ортогональные проекции A1, A2, A3 принадлежат соответствующим проекциям l1, l2, l3 прямой (рис. 1.17 а).

На рис. 1.17 б показаны три проекции точки А, которая принадлежит прямой l. На рис. 1.18 а точка В не принадлежит прямой Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости, поскольку две её проекции В1, В3 не принадлежат соответствующим проекциям Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостипрямой. На рис. 1.18 б точка С не принадлежит прямой р профильного уровня, поскольку одна из её проекций С3 не принадлежит проекции Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостипрямой.

Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости

Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостиПринадлежность точки прямой

Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости

Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостиНепринадлежность точки прямой

Взаимное расположение двух прямых

Две прямые в пространстве могут пересекаться (рис. 1.19 а), быть параллельными (рис. 1.19 б) или скрещивающимися .

Условие пересечения двух прямых

Две прямые l, m пересекаются в точке А, если три ортогональные проекции А1, А2, А3 являются точками пересечения соответствующих проекций прямых (рис. 1.20 а).

Условие параллельности двух прямых

Две прямые l, m параллельны, если три их ортогональные проекции попарно параллельны (рис. 1.20 б).

Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости

Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостиПересекающиеся и параллельные прямые

Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости

Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостиУсловия пересечения и параллельности двух прямых

В случае, когда прямые не параллельны и не пересекаются, они являются скрещивающимися. их взаимное размещение рассмотрено в п. 1.4.7.3.

Особый случай прямых, которые пересекаются под прямым углом, рассмотрен в п. 1.4.8.

Определение видимости точек и линий

Определение видимости — это определение точек предмета, лежащих на одном луче проецирования (называемых конкурирующими), и обозначение на чертеже только тех из них, которые расположены по этому лучу ближе к наблюдателю.

Видимость внешнего контура

При решении задач начертательной геометрии необходимо учитывать видимость геометрических объектов (точек и линий). Среди совокупности всех объектов необходимо выделять такие два вида (рис. 1.21):

а)внешний контур – совокупность линий, которые находятся за границами всех других объектов на данной плоскости проекций;

б) сходящиеся линии– совокупность линий, пересекающихся в одной точке(.рёбра многогранника)

Правило определения видимости внешнего контура

Внешний контур на данной плоскости проекций всегда является видимым (рис. 1.21).

Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости

Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостиВидимость точек и линий

Видимость сходящихся линий

Сходящиеся линии на разных плоскостях проекций могут иметь разную видимость.

Правило определения видимости сходящихся линий

Видимость сходящихся линий совпадает с видимостью точки их пересечения (рис. 1.22):

а) видимы на П1,если точка пересечения имеет наибольшую высоту;

б) видимы на П2, если точка пересечения имеет наибольшую глубину;

в) видимы на П3, если точка пересечения имеет наибольшую ширину.

Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости

Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостиВидимость сходящихся линий (рёбер многогранника)

На рис. 1.22 четыре сходящиеся линии на горизонтальной проекции являются видимыми, поскольку высота z точки K их пересечения наибольшая. Три сходящиеся линии на фронтальной и профильной проекциях невидимы, поскольку точки М, N их пересечения являются невидимыми.

Метод конкурирующих точек

Метод конкурирующих точек позволяет определить взаимное расположение точек двух скрещивающихся прямых (рис. 1.23).

Суть метода конкурирующих точек

а) для определения того, какая из двух скрещивающихся прямых l, m глубже, на них выбираются точки 1, 2, размещённые на общей фронтально-проецирующей прямой v. На горизонтальной плоскости проекций находятся глубины у выбранных точек и делается вывод о том, какая линия впереди, какая сзади;

б) для определения того, какая из двух скрещивающихся прямых l, m выше, на них выбираются точки 3, 4, размещённые на общей горизонтально-проецирующей прямой Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости. На фронтальной плоскости проекций находятся высоты z выбранных точек и делается вывод о том, какая линия выше, какая ниже;

в) для определения того ,какая из двух скрещивающихся прямых l, m размещена слева, а какая справа, на них выбираются точки 5, 6 на общей профильно-проецирующей прямой w. На фронтальной плоскости проекций находятся широты х выбранных точек и делается вывод о том, какая линия слева, какая справа.

Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости

Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостиМетод конкурирующих точек

На рис. 1.23 точка 2 находится глубже, поэтому её фронтальная проекция Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостиявляется невидимой. В дальнейшем невидимые точки будут обозначаться в круглых скобках, например, Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости. Проекция Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскоститакже является невидимой, поскольку точка 4 размещена ниже точки 3. Точка 6 находится слева от точки 5, поэтому проекция Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостиявляется невидимой.

Метод конкурирующих точек применяется, например, для определения видимости рёбер многогранников (рис. 1.24):

а) на горизонтальной проекции из пары скрещивающихся прямых АВ, СD первая является невидимой, поскольку из фронтальной проекции видно, что А2В2 находится ниже, чем C2D2;

б) на фронтальной проекции из пары скрещивающихся прямых АС, BD первая является невидимой, поскольку из горизонтальной проекции видно, что А1С1 находится сзади от В1D1;

в) на профильной проекции из пары скрещивающихся прямых АD, ВС вторая является невидимой, поскольку из фронтальной проекции видно, что В2С2 находится справа от А2D2.

Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости

Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостиВидимость скрещивающихся прямых

Перпендикулярность прямых

Ортогональные проекции двух прямых общего положения, которые пересекаются под прямым углом, в общем случае не являются перпендикулярными. Другими словами, прямой угол при его проецировании на плоскости проекций П1, П2, П3 искажается (рис. 1.25).

Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости

Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостиПроецирование прямого угла

Существуют отдельные случаи, когда прямой угол проецируется в натуральную величину. Эти случаи описываются теоремой о проецировании прямого угла.

Теорема о проецировании прямого угла

Прямой угол проецируется в натуральную величину на ту плоскость проекций, которой параллельна одна из его сторон (рис. 1.26 а).

Как следствие теоремы, прямой угол между прямой общего положения l и горизонталью h проецируется в натуральную величину на плоскость проекций П1; между l и фронталью f – на плоскость П2 (рис. 1.26 б).

Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости

Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостиТеорема проецирования прямого угла

Способ построения прямой общего положения, перпендикулярной заданной, описан в пп. 1.6.1.1 – 1.6.1.2.

Проецирование плоскости

Проецирование — это построение изображения геометрического объекта на плоскости путем проведения через все его точки воображаемых проецирующих лучей до пересечения их с плоскостью, называемой плоскостью проекций.

Способы задания плоскостей

Плоскость Σ в пространстве можно задать шестью способами (рис. 1.27):

а) тремя точками А, В, С, которые не принадлежат одной прямой;

б) прямой l и точкой D, которая её не принадлежит;

в) двумя параллельными прямыми а и b;

г) двумя пересекающимися прямыми c, d;

д) плоской фигурой Ф (треугольник, окружность и т.д.);

е) следами Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости– линиями пересечения плоскости с плоскостями проекций (см. п. 1.5.2).

Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости

Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостиСпособы задания плоскостей

Разнообразие способов задания плоскостей обусловливает существование в начертательной геометрии большого количества способов решения задач.

Следы плоскости

Следами Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостиплоскости называются линии её пересечения с плоскостями проекций П1, П2, П3. Каждый след может быть построен по двум точкам – соответствующим следам двух прямых этой плоскости (рис. 1.28).

Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости

Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостиСледы плоскости общего положения

Правило определения следов плоскости:

а) для определения горизонтального следа Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостиплоскости Σ необходимо выбрать на ней две прямые l, m и определить горизонтальные следы Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостиэтих прямых (см. п. 1.4.3). Горизонтальный след Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостиплоскости Σ проводится через точки Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостидо пересечения с осями х, у. Полученные точки Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостиявляются точками пересечения плоскости Σ с осями координат х, у;

б) для определения фронтального следа Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостиплоскости Σ достаточно определить фронтальный след F одной из прямых (например, l). Фронтальный след Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостиплоскости Σ проводится через точки Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостиF до пересечения осью z. Полученная точка Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостиявляется точкой пересечения плоскости Σ с осью z;

в) профильный след Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостиплоскости Σ проходит через точки Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостиСовокупность параметров Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостиназывается определителем плоскости.

Свойства следов плоскости:

а) каждая пара следов плоскости общего положения пересекается на оси координат: Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости– на оси х; Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости– на оси z; Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости– на оси у. Это свойство даёт возможность определять один из следов плоскости по двум другим;

б) следы плоскости являются отдельным случаем линий уровня, которые принадлежат плоскостям проекций: горизонтальный след является горизонталью с нулевой высотой; фронтальный след является фронталью с нулевой глубиной; профильный след является прямой профильного уровня с нулевой шириной;

в) проекция следа плоскости на одну из плоскостей проекций является натуральной величиной (НВ), а на две другие – совпадает с осями координат (табл. 1.4); Обозначенные свойства позволяют использовать следы плоскости для быстрого решения задач начертательной геометрии.

Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости

Главные линии плоскости

Главными линиями плоскости (рис. 1.29) являются:

а) прямые уровня: горизонталь h, фронталь f , профильная прямая уровня p. Линиями уровня плоскости можно выбирать её следы Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости

б) линии наибольшего наклона – прямые линии, которые образуют наибольший угол с плоскостями проекций.

Свойства линий наибольшего наклона:

а) линия Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостинаибольшего наклона к П1 перпендикулярна любой горизонтали h плоскости; б) линия Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостинаибольшего наклона к П2 перпендикулярна любой фронтали f плоскости;

в) линия Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостинаибольшего наклона к П3 перпендикулярна любой прямой профильного уровня р плоскости.

Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости

Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостиГлавные линии плоскости

Углы наклона плоскости к плоскостям проекции

Углы α, β, γ наклона плоскости Σ к плоскостям проекций П1, П2, П3 определяются как углы наклона линий наибольшего наклона Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостик соответствующим плоскостям проекций (рис. 1.29). Например, угол β между Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостии П2 является углом наклона плоскости Σ к П2.

Натуральная величина углов наклона плоскости Σ к плоскостям проекций П1, П2, П3 определяется способами преобразования комплексного чертежа (см. раздел 2), кроме случаев, обозначенных в п. 1.5.5.

Плоскости особого(частного) положения

В начертательной геометрии различают такие виды плоскостей:

а) плоскость общего положения – плоскость, не параллельная и не перпендикулярная ни одной из плоскостей проекций (рис. 1.27 – 1.29);

б) плоскость уровня – плоскость, параллельная плоскости проекций:

1) горизонтальная плоскость уровня – плоскость, параллельная П1 (рис. 1.30 а);

2) фронтальная плоскость уровня –плоскость, параллельная П2 (рис. 1.30 б);

3) профильная плоскость уровня–плоскость, параллельная П3 (рис. 1.30 в);

в) проецирующая плоскость – плоскость, перпендикулярная только одной плоскости проекций:

1) горизонтальнопроецирующая плоскость – плоскость, перпендикулярная П1 (рис. 1.31 а);

2) фронтальнопроецирующая плоскость – плоскость, перпендикулярная П2 (рис. 1.31 б);

3) профильно-проецирующая плоскость – плоскость, перпендикулярная П3 (рис. 1.31 в).

Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости

Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостиПлоскости уровня

Свойства плоскостей особого(частного) положения:

а) горизонтальная плоскость уровня не имеет горизонтального следа, а её фронтальный и профильный следы перпендикулярны оси z;

б) фронтальная плоскость уровня не имеет фронтального следа, а её горизонтальный и профильный следы перпендикулярны оси y;

в) профильная плоскость уровня не имеет профильного следа, а её горизонтальный и фронтальный следы перпендикулярны оси х;

г) фронтальный и профильный следы горизонтально-проецирующей плоскости параллельны оси z;

д) горизонтальный и профильный следы фронтально-проецирующей плоскости параллельны оси у;

е) горизонтальный и фронтальный следи профильно-проецирующей плоскости параллельны оси х;

ж) углы α, β, γ наклона проецирующих плоскостей к плоскостям проекций П1, П2, П3 являются углами наклона следов к осям координат (рис. 1.31).

Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости

Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости

Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостиПроецирующие плоскости

Плоскости особого положения широко используются при решении задач на пересечение геометрических объектов (см. п. 1.5.8, рис. 1.42 – 1.44; раздел 4; п. 6.4, рис. 6.18, 6.21 – 6.23).

Принадлежность точки плоскости

Точка А принадлежит плоскости Σ, если она принадлежит любой линии l (например, прямой) этой плоскости (рис. 1.32).

Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости

Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостиПринадлежность точки плоскости

Для определения неизвестных проекций точки А, принадлежащей плоскости Σ, по одной известной проекции (например, А2) применяются такие способы:

а) способ прямой общего положения: через известную проекцию А2 точки проводится фронтальная проекция l2 прямой общего положения; вводятся вспомогательные точки Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостипрямой и определяются их горизонтальные и профильные проекции, с помощью которых строятся проекции l1, l3 прямой l. По условию принадлежности точки А прямой l (см. п. 1.4.5, рис. 1.17) определяются проекции А1, А3 (рис. 1.33);

б) способ прямой особого(частного) положения:

1) способ горизонтали: через известную проекцию А2 точки проводится фронтальная проекция h2 горизонтали (параллельно оси х); вводится вспомогательная точка 1 и определяется её горизонтальная проекция, через которую проводится h1 (параллельно горизонтальному следу Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостиплоскости). С помощью вертикальной линии проекционной связи определяется проекция А1. Проекция А3 является точкой пересечения линий проекционной связи, проведенных с А1, А2 (рис. 1.34 а);

2) способ фронтали: через известную проекцию А2 точки проводится фронтальная проекция f2 фронтали (параллельно Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости). Вводиться вспомогательная точка 2 и определяется её горизонтальная проекция, через которую проводится f1 (параллельно оси х). С помощью вертикальной линии проекционной связи определяется проекция А1; Проекция А3 является точкой пересечения линий проекционной связи, проведенных с А1, А2 (рис. 1.34 б);

3) способ профильной прямой уровня: через известную проекцию А2 точки проводится фронтальная проекция р2 профильной прямой уровня (параллельно оси z). Вводится вспомогательная точка 3 и определяется её профильная проекция, через которую проводится р3 (параллельно Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости). С помощью горизонтальной линии проекционной связи определяется проекция А3. Проекция А1 является точкой пересечения линий проекционной связи, проведенных из проекций А2, А3 (рис. 1.34 в).

Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости

Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостиСпособ прямой общего положения

Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости

Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостиСпособ прямых особого положения

Взаимное расположение прямой и плоскости

Прямая l в пространстве может принадлежать плоскости Σ, быть параллельною ей или пересекать её (рис. 1.35 а – в).

Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости

Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостиВзаимное расположение прямой и плоскости

Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости

Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостиПринадлежность прямой плоскости

Условие принадлежности прямой плоскости

Прямая l принадлежит плоскости Σ, если две ей точки А, В принадлежат этой плоскости (рис. 1.35 а).

Определение неизвестных проекций прямой l, которая принадлежит плоскости Σ, состоит в определении неизвестных проекций двух точек А, В этой прямой способами, описанными в п. 1.5.6. Например (рис. 1.36), если известна фронтальная проекция отрезка АВ, который принадлежит плоскости Σ, заданной параллельными прямыми а, b, проводится фронтальная проекция прямой l общего положения через А2, В2. С помощью двух вспомогательных точек 1, 2, принадлежащих прямым а, b плоскости, и вертикальных линий проекционной связи определяются горизонтальные проекции А1В1 точек прямой l.

На рис. 1.36 оси координат не обозначены, поскольку для решения многих позиционных задач начертательной геометрии необходимости в их построении нет.

Условие параллельности прямой и плоскости

Прямая l параллельна плоскости Σ, если она параллельна любой прямой m этой плоскости (рис. 1.35 б).

Способ построения прямой, параллельной плоскости

Для построения проекций прямой l, проходящей через точку D параллельно плоскости Σ, необходимо построить проекции любой прямой m, принадлежащей плоскости. Проекции прямой l будут проходить через проекции точки D параллельно соответствующим проекциям прямой m, (рис. 1.37). Поскольку существует бесконечное число способов проведения прямой m в плоскости Σ, задача о параллельности прямой и плоскости имеет бесконечное множество решений.

Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости

Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостиПараллельность прямой и плоскости

Если прямая l не принадлежит и не параллельна плоскости Σ, они пересекаются в точке K (рис. 1.35 в), которая определяется способами вспомогательной секущей плоскости , замены плоскостей проекций (см. п. 2.1.8, 2.2.6), косоугольного проецирования (см. п. 2.5).

Суть способа вспомогательной секущей плоскости при определении точки пересечения прямой и плоскости

Для определения точки K пересечения прямой l и плоскости Σ (заданной, например, треугольником АВС) необходимо провести через прямую l вспомогательную плоскость особого положения (например, горизонтально-проецирующую) и определить линию m пересечения этой плоскости с заданной плоскостью . Искомая точка K является точкой пересечения прямых l, m (рис. 1.38). Задача о нахождении точки пересечения прямой и плоскости дополняется определением видимости частей прямой l методом конкурирующих точек (см. п. 1.4.7.3).

Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости

Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостиСпособ вспомогательной секущей плоскости

В начертательной геометрии вспомогательные секущие плоскости особого положения обозначаются одним из следов (например, плоскость Ω на рис. 1.38 показана горизонтальным следом Ω1).

Взаимное расположение двух плоскостей

Две плоскости в пространстве могут совпадать, быть параллельными или пересекаться по линии (рис. 1.39).

Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости

Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостиВзаимное расположение двух плоскостей

Условие совпадения двух плоскостей

Плоскость принадлежит плоскости Σ, если они имеют три общие точки А, В, С (рис. 1.39 а). Определение неизвестных проекций плоскости Ω, ,которая принадлежит плоскости Σ, состоит в определении неизвестных проекций трёх точек А, В, С плоскости способами, описанными в п. 1.5.6 – 1.5.7. Например (рис. 1.40), для нахождения неизвестной горизонтальной проекции треугольника АВС, принадлежащего плоскости Σ, применены методы прямой l общего положения и горизонтали h.

Условие параллельности двух плоскостей

Плоскость параллельна плоскости Σ, если пара непараллельных прямых плоскости параллельна паре непараллельных прямых плоскости Σ (рис. 1.39 б).

Способ построения параллельных плоскостей

Для построения проекций плоскости Ω, проходящей через точку D параллельно плоскости Σ (заданной, например, параллельными прямыми a, b), необходимо построить проекции двух непараллельных прямых с, d, принадлежащих плоскости Σ. Искомая плоскость буде задана двумя прямыми l, m, проекции которых проходят через соответствующие проекции точки D параллельно проекциям вспомогательных прямых с, d (рис. 1.41).

Если плоскости Ω, Σ не совпадают и не параллельны, то они пересекаются по прямой линии (рис. 1.39 в).

Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости

Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостиСовпадение плоскостей

Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости

Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостиПараллельность плоскостей

Линия пересечения двух плоскостей определяется такими способами:

а) способ вспомогательных секущих плоскостей (рис. 1.42);

б) способ плоскостей-посредников особого(частного) положения (рис. 1.43 – 1.44);

в) способ следов (рис. 1.45);

г) способы преобразования комплексного чертежа (см. п. 2.1.8, 2.3.5);

д) способ косоугольного проецирования (см. п. 2.5).

Суть способа вспомогательных секущих плоскостей при определении линии пересечения двух плоскостей

Линия k пересечения плоскостей Ω, Σ определяется по двум её точкам M, N. Каждая из этих точек является точкой пересечения плоскости Σ с любыми двумя линиями а, b плоскости Ω. Каждая из точек M, N определяется методом вспомогательной секущей плоскости (см. п. 1.5.7, рис. 1.38).

Например, на рис. 1.42 одна из плоскостей задана треугольником АВС, другая – параллельными прямыми a, b. Для определения точки М пересечения плоскостей по прямой а проводится фронтально-проецирующая плоскость Ψ, заданная фронтальным следом Ψ2, м находится линия l пересечения вспомогательной плоскости Ψ с треугольником АВС. Точка М является точкой пересечения прямой l с прямой а. Для определения точки N пересечения плоскостей по прямой b проводится фронтально-проецирующая плоскость Θ, заданная фронтальным следом Θ2, и находится линия m пересечения вспомогательной плоскости Θ с треугольником АВС. Точка N — точка пересечения прямой m с прямой b. Линия k пересечения двух заданных плоскостей проходит через точки M, N. Задача о нахождении линии пересечения двух плоскостей дополняется определением видимости частей прямых a, b и отрезков АВ, ВС, АС. Проекции k1, k2 линии пересечения двух плоскостей всегда видимы.

Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости

Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостиСпособ вспомогательных секущих плоскостей

Суть способа плоскостей-посредников при определении линии пересечения двух плоскостей

Линия k пересечения плоскостей Ω, Σ определяется по двум её точкам M, N. Для определения точки М вводится плоскость Ψ особого положения, которая пересекает заданные плоскости по прямым линиям a, b. Точкой пересечения этих прямых является точка М. Для определения точки N вводится плоскость Θ особого положения, пересекающая заданные плоскости по прямым линиям с, d. Точкой пересечения этих прямых является точка N. Искомая линия k пересечения плоскостей Ω, Σ проходит через найденные точки М, N (рис. 1.43).

Например, на рис. 1.44 две плоскости заданы треугольниками АВС, DEF. Для определения точки М пересечения плоскостей вводится фронтально-проецирующая плоскость Ψ, заданная фронтальным следом Ψ2, и находятся линии a, b её пересечения с треугольниками АВС, DEF. Точка М является точкой пересечения прямых a, b. Для определения точки N пересечения плоскостей вводится горизонтальная плоскость уровня Θ, заданная фронтальным следом Θ2, и находятся линии с, d её пересечения с треугольниками АВС, DEF. Точка N является точкой пересечения прямых c, d.

Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости

Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостиСпособ плоскостей — посредников

Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости

Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостиСпособ плоскостей — посредников особого положения

Суть способа следов при определении линии пересечения двух площадей

Линия k пересечения плоскостей Σ, Ω строится по двум точкам M, N. Строятся следы плоскостей. Точки M, N являются точками пересечения двух пар одноимённых следов плоскостей (рис. 1.45).

Например, на рис. 1.46 плоскость Σ задана параллельными прямыми a, b, плоскость – треугольником АВС. Горизонтальный след Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостиплоскости Σ строится по двум следам Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостипрямых a, b. Фронтальный след Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостипроходит через точку Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостии фронтальный след F прямой а. Горизонтальный след Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостиплоскости строится по двум следам Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостипрямых АВ, ВС. Фронтальный след Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостипроходит через точку Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостии фронтальный след Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостипрямой АВ. Точка М, которая совпадает со своей горизонтальной проекцией М1, является точкой пересечения горизонтальных следов Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостиТочка N, которая совпадает со своей фронтальной проекцией N2, является точкой пересечения фронтальных следов Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости. Проекции М2, N1 находятся на оси х. Горизонтальная проекция k1 искомой линии k пересечения двух площадей проходит через точки М1, N1, фронтальная k2 – через точки М2, N2.

Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости

Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостиСпособ следов

Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости

Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостиОпределение линии пересечения плоскостей способом следов

Способ следов можно рассматривать как частный случай способа плоскостей-посредников, в котором плоскости-посредники являются двумя плоскостями проекций (на рис. 1.46 – П1, П2).

Перпендикулярность прямой и плоскости и двух плоскостей

Условие перпендикулярности прямой и плоскости

Прямая п перпендикулярна плоскости Σ, если она перпендикулярна двум не параллельным прямым этой плоскости (рис. 1.47).

Как эти прямые удобно выбирать линии уровня плоскости, например, горизонталь h и фронталь f. Только в этом случае прямые углы между п, h и f проецируются в натуральную величину на П1, П2 (см. п. 1.4.8, рис. 1.26).

Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости

Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостиПерпендикулярность прямой и плоскости

Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости

Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостиПостроение прямой, перпендикулярной плоскости

На рис. 1.48 построены проекции прямой п, которая проходит через точку D перпендикулярно плоскости Σ, заданной параллельными прямыми a, b. В плоскости Σ через произвольно выбранную её точку А проведены горизонталь h и фронталь f. из горизонтальной проекции D1 точки D проведена горизонтальная проекция Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостиперпендикулярная проекции h1. из фронтальной проекции D2 проведена фронтальная проекция Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости, перпендикулярная проекции f2.

Условие перпендикулярности двух плоскостей

Две плоскости Ω, Σ перпендикулярны, если любая прямая Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости, которая принадлежит первой плоскости, перпендикулярна второй плоскости (рис. 1.49).

Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости

Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостиПерпендикулярность плоскостей

Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости

Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостиПостроение взаимно перпендикулярных плоскостей

На рис. 1.50 построены проекции плоскости Ω, которая проходит через точку D перпендикулярно плоскости Σ, заданной параллельными прямыми a, b. Плоскость задана двумя прямыми Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостипересекающимися в точке D. При этом прямая Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостиперпендикулярна плоскости Σ (рис. 1.48). Прямая Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскостиимеет произвольную ориентацию в пространстве, поэтому задача построения двух взаимно перпендикулярных плоскостей имеет бесконечное число решений.

Линия пересечения взаимно перпендикулярных плоскостей по необходимости определяется одним из способов, описанных в п. 1.5.8.

Примеры и образцы решения задач:

Услуги по выполнению чертежей:

Присылайте задания в любое время дня и ночи в ➔ Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости Как обозначается проекция точки а на плоскость если проецирующая прямая параллельна этой плоскости

Официальный сайт Брильёновой Натальи Валерьевны преподавателя кафедры информатики и электроники Екатеринбургского государственного института.

Все авторские права на размещённые материалы сохранены за правообладателями этих материалов. Любое коммерческое и/или иное использование кроме предварительного ознакомления материалов сайта natalibrilenova.ru запрещено. Публикация и распространение размещённых материалов не преследует за собой коммерческой и/или любой другой выгоды.

Сайт предназначен для облегчения образовательного путешествия студентам очникам и заочникам по вопросам обучения . Наталья Брильёнова не предлагает и не оказывает товары и услуги.

📽️ Видео

Прямая на плоскости. Проекция точки на прямуюСкачать

Прямая на плоскости.  Проекция точки на прямую

Определение кратчайшей расстоянии от точки до плоскостиСкачать

Определение кратчайшей расстоянии от точки до плоскости

Проецирование точки на три плоскости проекцийСкачать

Проецирование точки на три плоскости проекций

Проецирование плоскости частного положенияСкачать

Проецирование плоскости частного положения

Взаимно перпендикулярные плоскости. Определение кратчайшей расстоянии от точки до прямойСкачать

Взаимно перпендикулярные плоскости. Определение кратчайшей расстоянии от точки до прямой

Способ замены (перемены) плоскостей проекции. Определение истинной величины отрезка и плоской фигурыСкачать

Способ замены (перемены) плоскостей проекции. Определение истинной величины отрезка и плоской фигуры

Построение параллельной плоскости на расстояние 30 мм.Скачать

Построение параллельной плоскости на расстояние 30 мм.

Определение кратчайшей расстояние от точки до плоскости способом замены плоскостей проекцииСкачать

Определение кратчайшей расстояние от точки до плоскости способом замены плоскостей проекции

Параллельность прямых и плоскостей в пространстве. Практическая часть - решение задачи. 10 класс.Скачать

Параллельность прямых и плоскостей в пространстве. Практическая часть - решение задачи. 10 класс.
Поделиться или сохранить к себе: