Как найти высоту равнобедренного треугольника через радиус вписанной окружности

Треугольник вписанный в окружность

Как найти высоту равнобедренного треугольника через радиус вписанной окружности

Содержание
  1. Определение
  2. Формулы
  3. Радиус вписанной окружности в треугольник
  4. Радиус описанной окружности около треугольника
  5. Площадь треугольника
  6. Периметр треугольника
  7. Сторона треугольника
  8. Средняя линия треугольника
  9. Высота треугольника
  10. Свойства
  11. Доказательство
  12. Радиус вписанной окружности в равнобедренный треугольник онлайн
  13. 1. Радиус вписанной в равнобедренный треугольник окружности, если известны основание и боковая сторона
  14. 2. Радиус вписанной в равнобедренный треугольник окружности, если известны основание и угол при основании
  15. 3. Радиус вписанной в равнобедренный треугольник окружности, если известны боковая сторона и угол при основании
  16. 4. Радиус вписанной в равнобедренный треугольник окружности, если известны боковая сторона и высота
  17. 5. Радиус вписанной в равнобедренный треугольник окружности, если известны основание и высота
  18. Формулы для нахождения высоты треугольника
  19. Нахождение высоты треугольника
  20. Высота в разностороннем треугольнике
  21. Высота в равнобедренном треугольнике
  22. Высота в прямоугольном треугольнике
  23. Высота в равностороннем треугольнике
  24. Примеры задач
  25. 📽️ Видео

Видео:Свойство окружности, описанной около равнобедренного треугольникаСкачать

Свойство окружности, описанной около равнобедренного треугольника

Определение

Треугольник, вписанный в окружность — это треугольник, который
находится внутри окружности и соприкасается с ней всеми тремя вершинами.

На рисунке 1 изображена окружность, описанная около
треугольника
и окружность, вписанная в треугольник.

ВD = FC = AE — диаметры описанной около треугольника окружности.

O — центр вписанной в треугольник окружности.

Как найти высоту равнобедренного треугольника через радиус вписанной окружности

Видео:НАЙДИТЕ ВЫСОТУ РАВНОСТОРОННЕГО ТРЕУГОЛЬНИКАСкачать

НАЙДИТЕ ВЫСОТУ РАВНОСТОРОННЕГО ТРЕУГОЛЬНИКА

Формулы

Радиус вписанной окружности в треугольник

r — радиус вписанной окружности.

  1. Радиус вписанной окружности в треугольник,
    если известна площадь и все стороны:

Радиус вписанной окружности в треугольник,
если известны площадь и периметр:

Радиус вписанной окружности в треугольник,
если известны полупериметр и все стороны:

Радиус описанной окружности около треугольника

R — радиус описанной окружности.

  1. Радиус описанной окружности около треугольника,
    если известна одна из сторон и синус противолежащего стороне угла:

Радиус описанной окружности около треугольника,
если известны все стороны и площадь:

Радиус описанной окружности около треугольника,
если известны все стороны и полупериметр:

Площадь треугольника

S — площадь треугольника.

  1. Площадь треугольника вписанного в окружность,
    если известен полупериметр и радиус вписанной окружности:

Площадь треугольника вписанного в окружность,
если известен полупериметр:

Площадь треугольника вписанного в окружность,
если известен высота и основание:

Площадь треугольника вписанного в окружность,
если известна сторона и два прилежащих к ней угла:

Площадь треугольника вписанного в окружность,
если известны две стороны и синус угла между ними:

[ S = fracab cdot sin angle C ]

Периметр треугольника

P — периметр треугольника.

  1. Периметр треугольника вписанного в окружность,
    если известны все стороны:

Периметр треугольника вписанного в окружность,
если известна площадь и радиус вписанной окружности:

Периметр треугольника вписанного в окружность,
если известны две стороны и угол между ними:

Сторона треугольника

a — сторона треугольника.

  1. Сторона треугольника вписанного в окружность,
    если известны две стороны и косинус угла между ними:

Сторона треугольника вписанного в
окружность, если известна сторона и два угла:

Средняя линия треугольника

l — средняя линия треугольника.

  1. Средняя линия треугольника вписанного
    в окружность, если известно основание:

Средняя линия треугольника вписанного в окружность,
если известныдве стороны, ни одна из них не является
основанием, и косинус угламежду ними:

Высота треугольника

h — высота треугольника.

  1. Высота треугольника вписанного в окружность,
    если известна площадь и основание:

Высота треугольника вписанного в окружность,
если известен сторона и синус угла прилежащего
к этой стороне, и находящегося напротив высоты:

[ h = b cdot sin alpha ]

Высота треугольника вписанного в окружность,
если известен радиус описанной окружности и
две стороны, ни одна из которых не является основанием:

Видео:Окружность вписана в равнобедренный треугольник. Найти её радиус.Скачать

Окружность вписана в равнобедренный треугольник. Найти её радиус.

Свойства

  • Центр вписанной в треугольник окружности
    находится на пересечении биссектрис.
  • В треугольник, вписанный в окружность,
    можно вписать окружность, причем только одну.
  • Для треугольника, вписанного в окружность,
    справедлива Теорема Синусов, Теорема Косинусов
    и Теорема Пифагора.
  • Центр описанной около треугольника окружности
    находится на пересечении серединных перпендикуляров.
  • Все вершины треугольника, вписанного
    в окружность, лежат на окружности.
  • Сумма всех углов треугольника — 180 градусов.
  • Площадь треугольника вокруг которого описана окружность, и
    треугольника, в который вписана окружность, можно найти по
    формуле Герона.

Видео:РАДИУС вписанной окружности #математика #огэ #огэматематика #данирСкачать

РАДИУС вписанной окружности #математика #огэ #огэматематика #данир

Доказательство

Около любого треугольника, можно
описать окружность притом только одну.

Как найти высоту равнобедренного треугольника через радиус вписанной окружности

окружность и треугольник,
которые изображены на рисунке 2.

окружность описана
около треугольника.

  1. Проведем серединные
    перпендикуляры — HO, FO, EO.
  2. O — точка пересечения серединных
    перпендикуляров равноудалена от
    всех вершин треугольника.
  3. Центр окружности — точка пересечения
    серединных перпендикуляров — около
    треугольника описана окружность — O,
    от центра окружности к вершинам можно
    провести равные отрезки — радиусы — OB, OA, OC.

окружность описана около треугольника,
что и требовалось доказать.

Подводя итог, можно сказать, что треугольник,
вписанный в окружность
— это треугольник,
в котором все серединные перпендикуляры
пересекаются в одной точке, и эта точка
равноудалена от всех вершин треугольника.

Видео:Шестнадцатое задание ОГЭ по математике (1) #огэ #огэ2023 #огэматематика #огэпоматематике #математикаСкачать

Шестнадцатое задание ОГЭ по математике (1) #огэ #огэ2023 #огэматематика #огэпоматематике #математика

Радиус вписанной окружности в равнобедренный треугольник онлайн

С помощю этого онлайн калькулятора можно найти радиус вписанной в треугольник окружности, в том числе радиус вписанной в равнобедренный треугольник окружности. Для нахождения радиуса вписанной в треугольник окружности выберите тип треугольника, введите известные данные в ячейки и нажмите на кнопку «Вычислить». Теоретическую часть и численные примеры смотрите ниже.

Открыть онлайн калькулятор

Видео:Задача 6 №27934 ЕГЭ по математике. Урок 148Скачать

Задача 6 №27934 ЕГЭ по математике. Урок 148

1. Радиус вписанной в равнобедренный треугольник окружности, если известны основание и боковая сторона

Пусть известны известны основание a и боковая сторона b равнобедренного треугольника (Рис.1). Выведем формулу вычисления радиуса вписанной окружности через основание и боковую сторону.

Как найти высоту равнобедренного треугольника через радиус вписанной окружности

Радиус вписанной в треугольник окружности через три стороны a, b, c вычисляется из следующей формулы:

Как найти высоту равнобедренного треугольника через радиус вписанной окружности(1)

где полупериметр p вычисляется из формулы:

Как найти высоту равнобедренного треугольника через радиус вписанной окружности.(2)

Учитывая, что у равнобедренного треугольника боковые стороны равны (( small b=c )), имеем:

( small p=frac ) ( small =frac, )(3)
( small p-a=frac-a ) ( small =frac, )(4)
( small p-b=p-c=frac-b ) ( small =frac. )(5)

Подставляя (3)-(5) в (1), получим формулу вычисления радиуса вписанной в равнобедренный треугольник окружности:

Как найти высоту равнобедренного треугольника через радиус вписанной окружности,
Как найти высоту равнобедренного треугольника через радиус вписанной окружности.(6)

Пример 1. Известны основание a=13 и боковая сторона b=7 равнобедренного треугольника. Найти радиус окружности вписанной в треугольник.

Решение. Для нахождения радиуса окружности вписанной в треугольник воспользуемся формулой (6). Подставим значения ( small a,; b ) в (6):

Как найти высоту равнобедренного треугольника через радиус вписанной окружности

Ответ: Как найти высоту равнобедренного треугольника через радиус вписанной окружности

Видео:Найти радиус равнобедренного прямоугольного треугольника 3 задание проф. ЕГЭ по математикеСкачать

Найти радиус равнобедренного прямоугольного треугольника 3 задание проф. ЕГЭ по математике

2. Радиус вписанной в равнобедренный треугольник окружности, если известны основание и угол при основании

Пусть известны основание a и прилежащий к ней угол β равнобедренного треугольника (Рис.2). Выведем формулу радиуса вписанной в треугольник окружности.

Как найти высоту равнобедренного треугольника через радиус вписанной окружности

Из центра вписанной окружности проведем перпендикуляры OH и OE к сторонам a=BC и b=AC, соответственно (r=OH=OE). Соединим точки C и O. Полученные прямоугольные треугольники OCE и OCH равны по гипотенузе и катету (см. статью Прямоугольный треугольник. Тогда ( small angle OCE=angle OCH=frac. ) Для прямоугольного треугольника OCH можно записать:

( small frac=frac<large frac>=mathrmfrac .)

Откуда получим формулу радиуса вписанной в треугольник окружности:

( small r=frac cdot mathrmfrac .)(8)
( small r=frac cdot frac .)(9)

Пример 2. Известны основание ( small a=15 ) и ( small beta=30° ) равнобедренного треугольника. Найти радиус окружности вписанной в треугольник.

Решение. Для нахождения радиуса окружности вписанный в треугольник воспользуемся формулой (8) (или (9)). Подставим значения ( small a=15, ; beta=30° ) в (8):

Как найти высоту равнобедренного треугольника через радиус вписанной окружности

Ответ: Как найти высоту равнобедренного треугольника через радиус вписанной окружности

Видео:КАК НАЙТИ ВЫСОТУ ТРЕУГОЛЬНИКА? ЕГЭ и ОГЭ #shorts #егэ #огэ #математика #профильныйегэ #треугольникСкачать

КАК НАЙТИ ВЫСОТУ ТРЕУГОЛЬНИКА? ЕГЭ и ОГЭ #shorts #егэ #огэ #математика #профильныйегэ #треугольник

3. Радиус вписанной в равнобедренный треугольник окружности, если известны боковая сторона и угол при основании

Пусть известны боковая сторона b и угол при основании β равнобедренного треугольника (Рис.3). Найдем формулу радиуса вписанной в треугольник окружности.

Как найти высоту равнобедренного треугольника через радиус вписанной окружности

Высота равнобедренного треугольника AH делит равнобедренный треугольник ABC на две равные части. Тогда для треугольника AHC справедливо равенство:

( small frac=frac<large frac>= cos beta .)
( small a=2b cdot cos beta .)(10)

Подставляя (10) в (8), получим формулу вписанной в равнобедренный треугольник окружности:

( small r=frac cdot mathrmfrac=frac cdot mathrmfrac ) ( small =b cos beta cdot mathrmfrac )
( small r=b cdot cos beta cdot mathrmfrac )(11)

Учитывая формулы половинного угла тригонометрических функций, формулу (11) можно записать и так:

( small r=b cdot frac )(12)

Пример 3. Известны боковая сторона равнобедренного треугольника: ( small b=9 ) и угол при основании β=35°. Найти радиус окружности вписанной в треугольник.

Решение. Для нахождения радиуса окружности вписанной в треугольник воспользуемся формулой (11) (или (12)).

Подставим значения ( small b=9 ,; beta=35° ) в (11):

Как найти высоту равнобедренного треугольника через радиус вписанной окружности

Ответ: Как найти высоту равнобедренного треугольника через радиус вписанной окружности

Видео:Задание 16 ОГЭ по математике. Окружность вписана в равносторонний треугольник.Скачать

Задание 16 ОГЭ по математике. Окружность вписана в  равносторонний  треугольник.

4. Радиус вписанной в равнобедренный треугольник окружности, если известны боковая сторона и высота

Пусть известны боковая сторона b и высота h равнобедренного треугольника (Рис.4). Найдем формулу радиуса вписанной в треугольник окружности.

Как найти высоту равнобедренного треугольника через радиус вписанной окружности

Формула радиуса вписанной окружности через площадь и полупериметр имеет следующий вид (см. статью на странице Радиус вписанной в треугольник окружности онлайн) :

Как найти высоту равнобедренного треугольника через радиус вписанной окружности,(13)
Как найти высоту равнобедренного треугольника через радиус вписанной окружности(14)

Так как треугольник AHC прямоугольный, то из Теоремы Пифагора имеем:

( small left( fracright)^2=b^2-h^2 )
( small a=2 cdot sqrt )(15)

Площадь равнобедренного треугольника по основанию и высоте вычисляется из формулы:

( small S=frac cdot a cdot h. )(16)

Подставим (15) в (16):

( small S=h cdot sqrt )(17)

Учитывая, что для равнобедренного треугольника b=c, а также равенство (15), получим:

( small p=frac ) ( small =frac ) ( small =frac+b )( small =b+ sqrt )(18)

Подставляя, наконец, (17) и (18) в (13), получим формулу радиуса вписанной в равнобедренный треугольник окружности:

( small r=frac ) ( small =frac<large h cdot sqrt><large b+ sqrt> )(19)

Пример 4. Боковая сторона и высота равнобедренного треугольника равны ( small b=7 ,) ( small h=5, ) соответственно. Найти радиус окружности вписанной в треугольник.

Решение. Для нахождения радиуса окружности вписанной в равнобедренный треугольник воспользуемся формулой (19). Подставим значения ( small b=7 ,) ( small h=5 ) в (19):

Как найти высоту равнобедренного треугольника через радиус вписанной окружности

Ответ: Как найти высоту равнобедренного треугольника через радиус вписанной окружности

Видео:Вписанная и описанная около равнобедренного треугольника, окружностьСкачать

Вписанная и описанная около равнобедренного треугольника,  окружность

5. Радиус вписанной в равнобедренный треугольник окружности, если известны основание и высота

Пусть известны основание a и высота h равнобедренного треугольника (Рис.5). Найдем формулу радиуса вписанной в равнобедренный треугольник окружности.

Как найти высоту равнобедренного треугольника через радиус вписанной окружности

Из формулы (15) найдем b:

( small b^2-h^2=left( frac right)^2 )
( small b^2= frac +h^2 )
( small b= frac cdot sqrt)(20)

Подставляя (20) в (19), получим формулу радиуса вписанной окружности в равнобедренный треугольник:

( small r=frac<large h cdot sqrt><large b+ sqrt>) ( small =frac<large h cdot sqrt<frac+h^2-h^2>><large frac cdot sqrt+ sqrt<frac+h^2-h^2>>) ( small = large frac< h cdot frac>< frac cdot sqrt+frac >)
( small r=large frac<a+ sqrt>)(21)

Пример 5. Основание и высота равнобедренного треугольника равны ( small a=7 ,) ( small h=9, ) соответственно. Найти радиус окружности вписанной в треугольник.

Решение. Для нахождения радиуса окружности вписанной в равнобедренный треугольник воспользуемся формулой (21). Подставим значения ( small a=7 ,) ( small h=9 ) в (21):

Как найти высоту равнобедренного треугольника через радиус вписанной окружности

Ответ: Как найти высоту равнобедренного треугольника через радиус вписанной окружности

Видео:№690. Найдите основание равнобедренного треугольника, если центр вписанной в него окружностиСкачать

№690. Найдите основание равнобедренного треугольника, если центр вписанной в него окружности

Формулы для нахождения высоты треугольника

В данной публикации мы рассмотрим формулы, с помощью которых можно найти высоту в различных видах треугольников, а также разберем примеры решения задач для закрепления материала.

Видео:Задание 16 ОГЭ по математике. Окружность описана около равностороннего треугольника. Задача 2Скачать

Задание 16 ОГЭ по математике. Окружность описана около  равностороннего   треугольника. Задача 2

Нахождение высоты треугольника

Напомним, высота треугольника – это отрезок, проведенный перпендикулярно из вершины фигуры к противоположной стороне.

Высота в разностороннем треугольнике

Высоту треугольника abc, проведенного к стороне a, можно найти по формулам ниже:

Как найти высоту равнобедренного треугольника через радиус вписанной окружности

1. Через площадь и длину стороны

Как найти высоту равнобедренного треугольника через радиус вписанной окружности

где S – площадь треугольника.

2. Через длины всех сторон

Как найти высоту равнобедренного треугольника через радиус вписанной окружности

где p – это полупериметр треугольника, который рассчитывается так:

Как найти высоту равнобедренного треугольника через радиус вписанной окружности

3. Через длину прилежащей стороны и синус угла

Как найти высоту равнобедренного треугольника через радиус вписанной окружности

4. Через стороны и радиус описанной окружности

Как найти высоту равнобедренного треугольника через радиус вписанной окружности

Как найти высоту равнобедренного треугольника через радиус вписанной окружности

где R – радиус описанной окружности.

Высота в равнобедренном треугольнике

Длина высоты ha, опущенной на основание a равнобедренного треугольника, рассчитывается по формуле:

Как найти высоту равнобедренного треугольника через радиус вписанной окружности

Как найти высоту равнобедренного треугольника через радиус вписанной окружности

Высота в прямоугольном треугольнике

Как найти высоту равнобедренного треугольника через радиус вписанной окружности

Высота, проведенная к гипотенузе, может быть найдена:

1. Через длины отрезков, образованных на гипотенузе

Как найти высоту равнобедренного треугольника через радиус вписанной окружности

2. Через стороны треугольника

Как найти высоту равнобедренного треугольника через радиус вписанной окружности

Примечание: две остальные высоты в прямоугольном треугольнике являются его катетами.

Высота в равностороннем треугольнике

Для равностороннего треугольника со стороной a формула расчета высоты выглядит следующим образом:

Как найти высоту равнобедренного треугольника через радиус вписанной окружности

Как найти высоту равнобедренного треугольника через радиус вписанной окружности

Видео:№706. Найдите сторону равностороннего треугольника, если радиус описанной около него окружностиСкачать

№706. Найдите сторону равностороннего треугольника, если радиус описанной около него окружности

Примеры задач

Задача 1
Найдите высоту треугольника, проведенную из вершины B к стороне AC, если известно, что AB = 7 см, а угол BAC = 45°.

Решение
В данном случае нам поможет формула для нахождения высоты через сторону и синус прилежащего угла:

Как найти высоту равнобедренного треугольника через радиус вписанной окружности

Задача 2
Найдите длину основания равнобедренного треугольника, если высота, проведенная к нему, равняется 3 см, а боковые стороны – 5 см.

Решение
Вывести формулу для нахождения длины основания можно из формулы расчета высоты в равнобедренном треугольнике:

📽️ Видео

Геометрия Радиус окружности вписанной в равнобедренный треугольник, составляет 2/9 высотыСкачать

Геометрия Радиус окружности вписанной в равнобедренный треугольник, составляет 2/9 высоты

ЕГЭ 6 номер. Нахождение диаметра описанной окружности около равнобедренного треугольникаСкачать

ЕГЭ 6 номер. Нахождение диаметра описанной окружности около равнобедренного треугольника

Задание 24 Площадь вписанного равнобедренного треугольникаСкачать

Задание 24 Площадь вписанного равнобедренного треугольника

Равнобедренный треугольник. Свойства равнобедренного треугольника | Математика | TutorOnlineСкачать

Равнобедренный треугольник. Свойства равнобедренного треугольника | Математика | TutorOnline

Радиус окружности, описанной около правильного треугольника, равен 3. Найдите высоту треугольникаСкачать

Радиус окружности, описанной около правильного треугольника, равен 3. Найдите высоту треугольника

Вписанные и описанные окружности. Геометрия 9 класс. Ключевая задача №2.Скачать

Вписанные и описанные окружности. Геометрия 9 класс. Ключевая задача №2.

ЕГЭ профиль #3 / Радиус описанной окружности / Равносторонний треугольник / решу егэСкачать

ЕГЭ профиль #3 / Радиус описанной окружности / Равносторонний треугольник / решу егэ
Поделиться или сохранить к себе: