Как найти высоту конуса если известна длина окружности

Как найти высоту конуса. Теория и формулы

Как найти высоту конуса если известна длина окружности

Прочитав данную статью, вы узнаете, как найти высоту конуса. Приведенный в ней материал поможет глубже разобраться в вопросе, а формулы окажутся весьма полезными в решении задач. В тексте разобраны все необходимые базовые понятия и свойства, которые обязательно пригодятся на практике.

Видео:Длина окружности. Математика 6 класс.Скачать

Длина окружности. Математика 6 класс.

Фундаментальная теория

Перед тем, как найти высоту конуса, необходимо разобраться с теорией.

Конус — фигура, которая плавно сужается от плоского основания (часто, хотя и необязательно, кругового) до точки, называемой вершиной.

Конус формируется набором отрезков, лучей или прямых, соединяющих общую точку с основанием. Последнее может ограничиваться не только окружностью, но и эллипсом, параболой или гиперболой.

Как найти высоту конуса если известна длина окружности

Ось — это прямая (если таковая имеется), вокруг которой фигура имеет круговую симметрию. Если угол между осью и основой составляет девяносто градусов, то конус принято называть прямым. Именно такая вариация чаще всего встречается в задачах.

Если в основе лежит многоугольник, то объект является пирамидой.

Отрезок, соединяющий вершину и линию, ограничивающую основание, называют образующей.

Видео:№553. Найдите высоту конуса, если площадь его осевого сечения равна 6 дм2, а площадьСкачать

№553. Найдите высоту конуса, если площадь его осевого сечения равна 6 дм2, а площадь

Как найти высоту конуса

Подойдем к вопросу с другой стороны. Для начала используем объем конуса. Чтобы его найти нужно вычислить произведение высоты с третьей частью площади.

Очевидно, что из этого можно получить формулу высоты конуса. Достаточно лишь сделать правильные алгебраические преобразования. Разделим обе части равенства на S и умножим на тройку. Получим:

Теперь вы знаете, как найти высоту конуса. Однако для решения задач вам могут понадобиться и другие знания.

Видео:+Как найти длину окружностиСкачать

+Как найти длину окружности

Важные формулы и свойства

Приведенный ниже материал однозначно поможет вам в решении конкретных задач.

Центр массы тела находится на четвертой части оси, начиная от основы.

В проективной геометрии цилиндр — это просто конус, вершина которого находится на бесконечности.

Как найти высоту конуса если известна длина окружности

Следующие свойства работают только для прямого кругового конуса.

  • Даны радиус основания r и высота h, тогда формула для площади будет выглядеть так: П × r 2 . Соответственно изменится и окончательное уравнение. V = 1/3 × П × r 2 × h.
  • Вычислить площадь боковой поверхности можно перемножив число «пи», радиус и длину образующей. S = П × r × l.
  • Пересечение произвольной плоскости с фигурой является одним из конических сечений.

Часто встречаются задачи, где необходимо использовать формулу для объема усеченного конуса. Она выводится из обычной и имеет такой вид:

V = 1/3 × П × h × (R 2 + Rr + r 2 ), где: r -радиус нижнего основания, R — верхнего.

Всего этого будет вполне достаточно для решения разнообразнейших примеров. Разве что могут понадобиться знания, не связанные с этой темой, например, свойства углов, теорема Пифагора и другое.

Видео:№555. Высота конуса равна 10 см. Найдите площадь сечения, проходящего через вершину конусаСкачать

№555. Высота конуса равна 10 см. Найдите площадь сечения, проходящего через вершину конуса

Радиус и высота конуса

Как найти высоту конуса если известна длина окружности

Видео:Длина окружности. Площадь круга. 6 класс.Скачать

Длина окружности. Площадь круга. 6 класс.

Свойства

Через радиус конуса можно найти все параметры конуса, связанные с основанием, а значение высоты позволяет вычислить площади, объемы и все остальные объемные параметры конуса. Так, диаметр конуса равен удвоенному радиусу, периметр окружности в основании вычисляется по стандартной формуле через радиус, равно как и площадь основания. d=2r P=2πr S_(осн.)=πr^2

Прямоугольный треугольник, образованный высотой конуса, радиусом основания и образующей конуса, связывает эти три значения теоремой Пифагора, по которой можно вычислить неизвестную образующую, а также угол между образующей и основанием. Тем временем, угол α рассчитывается из равнобедренного треугольника, сформированного двумя образующими и диаметром из того принципа, что сумма всех углов в треугольнике равна 180 градусам. (рис.40.1, 40.2) l=√(h^2+r^2 ) tan⁡β=h/r α=180°-2β

Чтобы найти площадь боковой поверхности конуса, необходимо умножить радиус и апофему на число π. Площадь полной поверхности конуса состоит из площади его основания и площади боковой поверхности. В обеих формулах вместо апофемы нужно подставить квадратный корень через высоту и радиус, полученный по теореме Пифагора. S_(б.п.)=πrl=πr√(h^2+r^2 ) S_(п.п.)=S_(б.п.)+S_(осн.)=πrl+πr^2=πr(l+r)=πr(√(h^2+r^2 )+r)

Чтобы найти объем конуса, достаточно знать значения радиуса и высоты, тогда формула объема выглядит как произведение числа π на квадрат радиуса и высоту, деленное на три. V=1/3 S_(осн.) h=(πr^2 h)/3

Радиус сферы, вписанной в конус, зависит не только от радиуса основания конуса и его высоты, но и от образующей, поэтому чтобы вычислить радиус вписанной сферы конуса через радиус конуса и высоту, нужно вместо образующей подставить полученное для нее выше выражение. Радиус описанной сферы может быть представлен сразу формулой только с переменными радиуса и высоты. (рис.40.3, 40.4) r_1=hr/(l+r)=rh/(√(h^2+r^2 )+r) R=(h^2+r^2)/2h

Видео:Длина окружности. Площадь круга - математика 6 классСкачать

Длина окружности. Площадь круга - математика 6 класс

Как найти высоту конуса если известен объем

Прочитав данную статью, вы узнаете, как найти высоту конуса. Приведенный в ней материал поможет глубже разобраться в вопросе, а формулы окажутся весьма полезными в решении задач. В тексте разобраны все необходимые базовые понятия и свойства, которые обязательно пригодятся на практике.

Видео:КАК ИЗМЕРИТЬ ДЛИНУ ОКРУЖНОСТИ? · ФОРМУЛА + примеры · Длина окружности как найти? Математика 6 классСкачать

КАК ИЗМЕРИТЬ ДЛИНУ ОКРУЖНОСТИ? · ФОРМУЛА + примеры · Длина окружности как найти? Математика 6 класс

Фундаментальная теория

Перед тем, как найти высоту конуса, необходимо разобраться с теорией.

Конус – фигура, которая плавно сужается от плоского основания (часто, хотя и необязательно, кругового) до точки, называемой вершиной.

Конус формируется набором отрезков, лучей или прямых, соединяющих общую точку с основанием. Последнее может ограничиваться не только окружностью, но и эллипсом, параболой или гиперболой.

Как найти высоту конуса если известна длина окружности

Ось – это прямая (если таковая имеется), вокруг которой фигура имеет круговую симметрию. Если угол между осью и основой составляет девяносто градусов, то конус принято называть прямым. Именно такая вариация чаще всего встречается в задачах.

Если в основе лежит многоугольник, то объект является пирамидой.

Отрезок, соединяющий вершину и линию, ограничивающую основание, называют образующей.

Видео:№547. Высота конуса равна 15 см, а радиус основания равен 8 см. Найдите образующую конуса.Скачать

№547. Высота конуса равна 15 см, а радиус основания равен 8 см. Найдите образующую конуса.

Как найти высоту конуса

Подойдем к вопросу с другой стороны. Для начала используем объем конуса. Чтобы его найти нужно вычислить произведение высоты с третьей частью площади.

Очевидно, что из этого можно получить формулу высоты конуса. Достаточно лишь сделать правильные алгебраические преобразования. Разделим обе части равенства на S и умножим на тройку. Получим:

Теперь вы знаете, как найти высоту конуса. Однако для решения задач вам могут понадобиться и другие знания.

Видео:11 класс. Геометрия. Объем цилиндра. 14.04.2020Скачать

11 класс. Геометрия. Объем цилиндра. 14.04.2020

Важные формулы и свойства

Приведенный ниже материал однозначно поможет вам в решении конкретных задач.

Центр массы тела находится на четвертой части оси, начиная от основы.

В проективной геометрии цилиндр – это просто конус, вершина которого находится на бесконечности.

Как найти высоту конуса если известна длина окружности

Следующие свойства работают только для прямого кругового конуса.

  • Даны радиус основания r и высота h, тогда формула для площади будет выглядеть так: П × r 2 . Соответственно изменится и окончательное уравнение. V = 1/3 × П × r 2 × h.
  • Вычислить площадь боковой поверхности можно перемножив число «пи», радиус и длину образующей. S = П × r × l.
  • Пересечение произвольной плоскости с фигурой является одним из конических сечений.

Часто встречаются задачи, где необходимо использовать формулу для объема усеченного конуса. Она выводится из обычной и имеет такой вид:

V = 1/3 × П × h × (R 2 + Rr + r 2 ), где: r -радиус нижнего основания, R – верхнего.

Всего этого будет вполне достаточно для решения разнообразнейших примеров. Разве что могут понадобиться знания, не связанные с этой темой, например, свойства углов, теорема Пифагора и другое.

Конус — тело в евклидовом пространстве, полученное объединением всех лучей, исходящих из одной

точки (вершины конуса) и проходящих через плоскую поверхность.

Иногда конусом называют часть такого тела, имеющую ограниченный объём и полученную объединением

всех отрезков, соединяющих вершину и точки плоской поверхности (последнюю в таком случае

называют основанием конуса, а конус называют опирающимся на данное основание).

Воспользуйтесь онлайн калькулятором для расчета объема пирамиды: объем конуса, онлайн расчет.

Для расчета объемов других тел воспользуйтесь этим калькулятором: калькулятор объемов фигур.

  • Отрезок, соединяющий вершину и границу основания, называется образующей конуса.
  • Объединение образующих конуса называется образующей (или боковой) поверхностью конуса.

Образующая поверхность конуса является конической поверхностью.

  • Отрезок, опущенный перпендикулярно из вершины на плоскость основания (а также длина такого

отрезка), называется высотой конуса.

  • Угол раствора конуса — угол между двумя противоположными образующими (угол при вершине

конуса, внутри конуса).

  • Если основание конуса имеет центр симметрии (например, является кругом или эллипсом) и

ортогональная проекция вершины конуса на плоскость основания совпадает с этим центром, то

конус называется прямым. При этом прямая, соединяющая вершину и центр основания, называется

осью конуса.

  • Косой (наклонный) конус — конус, у которого ортогональная проекция вершины на основание не

совпадает с его центром симметрии.

  • Круговой конус — конус, основание которого является кругом.
  • Прямой круговой конус (часто его называют просто конусом) можно получить вращением

прямоугольного треугольника вокруг прямой, содержащей катет (эта прямая представляет собой ось

  • Конус, опирающийся на эллипс, параболу или гиперболу, называют соответственно

эллиптическим, параболическим и гиперболическим конусом (последние два имеют бесконечный

  • Часть конуса, лежащая между основанием и плоскостью, параллельной основанию и находящейся

между вершиной и основанием, называется усечённым конусом, или коническим слоем.

Объем конуса вычисляется по формуле:

Как найти высоту конуса если известна длина окружности

где R — радиус основания конуса,

Как найти высоту конуса если известна длина окружности

Усеченный конус.

Усеченный конус получится, если в конусе провести сечение, параллельное основанию. Тело

ограниченное этим сечением, основанием и боковой поверхностью конуса называется усеченным конусом.

Объем усеченного конуса вычисляется по формуле:

Как найти высоту конуса если известна длина окружности

h – высота конуса

r – радиус верхнего основания

R – радиус нижнего основания

или по формуле объема усечённого конуса (не обязательно прямого и кругового):

Как найти высоту конуса если известна длина окружности

S1 и S2 — площади соответственно верхнего (ближнего к вершине) и нижнего оснований,

h и H — расстояния от плоскости соответственно верхнего и нижнего основания до вершины.

Конус — это трехмерная фигура, в основании которой лежит круг. Чтобы найти объем конуса достаточно знать два параметра — высоту (h) и радиус основания (r).

Если мы сравним формулу объема конуса с формулой объема цилиндра, то мы увидим, что объем конуса в 3 раза меньше объема цилиндра с той же высотой и радиусом основания.

Как найти высоту конуса если известна длина окружности

Нахождение объема конуса, формула объема конуса

Подставив значения в формулу, можно легко найти объем:

📸 Видео

Вычисление высоты конуса - типовое заданиеСкачать

Вычисление высоты конуса - типовое задание

КАК НАЙТИ ДИАМЕТР ОКРУЖНОСТИ, ЕСЛИ ИЗВЕСТНА ДЛИНА ОКРУЖНОСТИ? Примеры | МАТЕМАТИКА 6 классСкачать

КАК НАЙТИ ДИАМЕТР ОКРУЖНОСТИ, ЕСЛИ ИЗВЕСТНА ДЛИНА ОКРУЖНОСТИ? Примеры | МАТЕМАТИКА 6 класс

№561. Вычислите площадь основания и высоту конуса, если разверткой его боковой поверхностиСкачать

№561. Вычислите площадь основания и высоту конуса, если разверткой его боковой поверхности

🔴 Через точку, делящую высоту конуса в отношении ... | ЕГЭ БАЗА 2018 | ЗАДАНИЕ 16 | ШКОЛА ПИФАГОРАСкачать

🔴 Через точку, делящую высоту конуса в отношении ... | ЕГЭ БАЗА 2018 | ЗАДАНИЕ 16 | ШКОЛА ПИФАГОРА

КАК НАЙТИ ПЛОЩАДЬ КРУГА, ЕСЛИ ИЗВЕСТЕН ДИАМЕТР? Примеры | МАТЕМАТИКА 6 классСкачать

КАК НАЙТИ ПЛОЩАДЬ КРУГА, ЕСЛИ ИЗВЕСТЕН ДИАМЕТР? Примеры | МАТЕМАТИКА 6 класс

Задача 6 №27612 ЕГЭ по математике. Урок 62Скачать

Задача 6 №27612 ЕГЭ по математике. Урок 62

Вычисляем высоту через координаты вершин 1Скачать

Вычисляем высоту через координаты вершин  1

🔴 Объём конуса равен 27. Через точку, делящую ... | ЕГЭ БАЗА 2018 | ЗАДАНИЕ 16 | ШКОЛА ПИФАГОРАСкачать

🔴 Объём конуса равен 27. Через точку, делящую ... | ЕГЭ БАЗА 2018 | ЗАДАНИЕ 16 | ШКОЛА ПИФАГОРА

Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

Усеченный конус. 11 класс.Скачать

Усеченный конус. 11 класс.

2 задание ЕГЭ профиль стереометрияСкачать

2 задание ЕГЭ профиль стереометрия
Поделиться или сохранить к себе: