Как найти векторы зная их длину и угол между ними

Видео:Угол между векторами. 9 класс.Скачать

Угол между векторами. 9 класс.

Сложение векторов: длина суммы векторов и теорема косинусов

Видео:18+ Математика без Ху!ни. Скалярное произведение векторов. Угол между векторами.Скачать

18+ Математика без Ху!ни. Скалярное произведение векторов. Угол между векторами.

Определения скалярного произведения векторов через угол между ними

Сложение векторов по правилу треугольника (суммой векторов Как найти векторы зная их длину и угол между нимии Как найти векторы зная их длину и угол между ниминазывается вектор Как найти векторы зная их длину и угол между ними, начало которого совпадает с началом вектора Как найти векторы зная их длину и угол между ними, а конец — с концом вектора Как найти векторы зная их длину и угол между ними, при условии, что начало вектора Как найти векторы зная их длину и угол между нимиприложено к концу вектора Как найти векторы зная их длину и угол между ними) даёт возможность упрощать выражение перед вычислением произведений векторов.

Сложение векторов, заданных координатами (при сложении одноимённые координаты складываются) даёт возможность узнать, как расположен относительно начала координат вектор, являющийся суммой слагаемых векторов. Подробно эти две операции разбирались на уроке «Векторы и операции над векторами».

Теперь же нам предстоит узнать, как найти длину вектора, являющегося результатом сложения векторов. Для этого потребуется использовать теорему косинусов. Такую задачу приходится решать, например, когда дорога из пункта A в пункт С — не прямая, а отклоняется от прямой, чтобы пройти ещё через какой-то пункт B, а нужно узнать длину предполагаемой прямой дороги. Кстати, геодезия — одна из тех сфер деятельности, где тригонометрические функции применяются во всех их полноте.

Как найти векторы зная их длину и угол между ними

При сложении векторов для нахождения длины суммы векторов используется теорема косинусов. Пусть Как найти векторы зная их длину и угол между нимии Как найти векторы зная их длину и угол между ними— векторы, Как найти векторы зная их длину и угол между ними— угол между ними, а Как найти векторы зная их длину и угол между ними— сумма векторов как результат сложения векторов по правилу треугольника. Тогда верно следующее соотношение:

Как найти векторы зная их длину и угол между ними,

где Как найти векторы зная их длину и угол между ними— угол, смежный с углом Как найти векторы зная их длину и угол между ними. У смежных углов одна сторона общая, а другие стороны лежат на одной прямой (см. рисунок выше).

Поэтому для сложения векторов и определения длины суммы векторов нужно извлечь квадратный корень из каждой части равенства, тогда получится формула длины:

Как найти векторы зная их длину и угол между ними.

В случае вычитания векторов (Как найти векторы зная их длину и угол между ними) происходит сложение вектора Как найти векторы зная их длину и угол между нимис вектором Как найти векторы зная их длину и угол между ними, противоположным вектору Как найти векторы зная их длину и угол между ними, то есть имеющим ту же длину, но противоположным по направлению. Углы между и Как найти векторы зная их длину и угол между нимии Как найти векторы зная их длину и угол между нимии между Как найти векторы зная их длину и угол между нимии Как найти векторы зная их длину и угол между нимиявляются смежными углами, у них, как уже было отмечено, одна сторона общая, а другие стороны лежат на одной прямой. В случае вычитания векторов для нахождения длины разности векторов нужно знать следующее свойство косинусов смежных углов:

косинусы смежных углов равны по абсолютной величине (величине по модулю), но имеют противоположные знаки.

Перейдём к примерам.

Видео:Угол между векторами | МатематикаСкачать

Угол между векторами | Математика

Сложение векторов — решение примеров

Пример 1. Векторы Как найти векторы зная их длину и угол между нимии Как найти векторы зная их длину и угол между нимиобразуют угол Как найти векторы зная их длину и угол между ними. Их длины: Как найти векторы зная их длину и угол между нимии Как найти векторы зная их длину и угол между ними. Выполнить сложение векторов и найти их сумму Как найти векторы зная их длину и угол между ними. Выполнить вычитание векторов и найти их разность Как найти векторы зная их длину и угол между ними.

Решение. Из элементарной тригонометрии известно, что Как найти векторы зная их длину и угол между ними.

Шаг 1. Выполняем сложение векторов. Находим длину суммы векторов, поставляя в формулу длины косинус угла, смежного с углом между векторами:

Как найти векторы зная их длину и угол между ними

Шаг 2. Выполняем вычитание векторов. Находим длину разности векторов, подставляя в формулу косинус «изначального» угла:

Как найти векторы зная их длину и угол между ними

Выполнить сложение и вычитание векторов самостоятельно, а затем посмотреть решение

Пример 2. Векторы Как найти векторы зная их длину и угол между нимии Как найти векторы зная их длину и угол между нимиобразуют угол Как найти векторы зная их длину и угол между ними. Их длины: Как найти векторы зная их длину и угол между нимии Как найти векторы зная их длину и угол между ними. Выполнить сложение векторов и найти их сумму Как найти векторы зная их длину и угол между ними. Выполнить вычитание векторов и найти их разность Как найти векторы зная их длину и угол между ними.

Пример 3. Даны длины векторов Как найти векторы зная их длину и угол между нимии длина их суммы Как найти векторы зная их длину и угол между ними. Найти длину их разности Как найти векторы зная их длину и угол между ними.

Шаг 1. По теореме косинусов составляем уравнение, чтобы найти косинус угла, смежного с углом между векторами и находим его:

Как найти векторы зная их длину и угол между ними

Не забываем, что косинус смежного угла получился со знаком минус. Это значит, что косинус «изначального» угла будет со знаком плюс.

Шаг 2. Выполняем вычитание векторов. Находим длину разности векторов, подставляя в формулу косинус «изначального» угла:

Как найти векторы зная их длину и угол между ними

Пример 4. Даны длины векторов Как найти векторы зная их длину и угол между нимии длина их разности Как найти векторы зная их длину и угол между ними. Найти длину их суммы Как найти векторы зная их длину и угол между ними.

Шаг 1. По теореме косинусов составляем уравнение, чтобы найти косинус «изначального» угла (задача обратная по отношению к примеру 1) и находим его:

Как найти векторы зная их длину и угол между ними

Шаг 2. Меняем знак косинуса и получаем косинус смежного угла между Как найти векторы зная их длину и угол между нимии Как найти векторы зная их длину и угол между ними:

Как найти векторы зная их длину и угол между ними

Шаг 3. Выполняем сложение векторов. Находим длину суммы векторов, подставляя в формулу косинус смежного угла:

Как найти векторы зная их длину и угол между ними

Пример 5. Векторы Как найти векторы зная их длину и угол между нимии Как найти векторы зная их длину и угол между нимивзаимно перпендикулярны, а их длины Как найти векторы зная их длину и угол между ними. Найти длину их суммы Как найти векторы зная их длину и угол между нимии и длину их разности Как найти векторы зная их длину и угол между ними.

Два смежных угла, как нетрудно догадаться из приведённого в начале урока определения, в сумме составляют 180 градусов. Следовательно, смежный с прямым углом (90 градусов) угол — тоже прямой (тоже 90 градусов). Косинус такого угла равен нулю, то же самое относится и к косинусу смежного угла. Поэтому, подставляя это значение в выражения под корнем в формуле длины суммы и разности векторов, получаем нули как последние выражения — произведения под знаком корня. То есть длины суммы и разности данных векторов равны, вычисляем их:

Как найти векторы зная их длину и угол между ними

Пример 6. Какому условию должны удовлетворять векторы Как найти векторы зная их длину и угол между нимии Как найти векторы зная их длину и угол между ними, чтобы имели место слелующие соотношения:

1) длина суммы векторов равна длине разности векторов, т. е. Как найти векторы зная их длину и угол между ними,

2) длина суммы векторов больше длины разности векторов, т. е. Как найти векторы зная их длину и угол между ними,

3) длина суммы векторов меньше длины разности векторов, т. е. Как найти векторы зная их длину и угол между ними?

Находим условие для первого соотношения. Для этого решаем следующее уравнение:

Как найти векторы зная их длину и угол между ними

То есть, для того, чтобы длина суммы векторов была равна длине их разности, необходимы, чтобы косинус угла между ними и косинус смежного ему угла были равны. Это условие выполняется, когда углы образуют прямой угол.

Находим условие для второго соотношения. Решаем уравнение:

Как найти векторы зная их длину и угол между ними

Найденное условие выполняется, когда косинус угла между векторами меньше косинуса смежных углов. То есть, чтобы длина суммы векторов была больше длины разности векторов, необходимо, чтобы углы образовали острый угол (пример 1).

Находим условие для третьего соотношения. Решаем уравнение:

Как найти векторы зная их длину и угол между ними

Найденное условие выполняется, когда косинус угла между векторами больше косинуса смежных углов. То есть, чтобы длина суммы векторов была меньше длины разности векторов, необходимо, чтобы углы образовали тупой угол.

Видео:Нахождение длины вектора через координаты. Практическая часть. 9 класс.Скачать

Нахождение длины вектора через координаты. Практическая часть. 9 класс.

Скалярное произведение векторов

Как найти векторы зная их длину и угол между ними

О чем эта статья:

11 класс, ЕГЭ/ОГЭ

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Видео:Урок 3. Произведение векторов и загадочный угол между векторами. Высшая математика | TutorOnlineСкачать

Урок 3. Произведение векторов и загадочный угол между векторами. Высшая математика | TutorOnline

Основные определения

Система координат — способ определить положение и перемещение точки или тела с помощью чисел или других символов.

Координаты — это совокупность чисел, которые определяют положение какого-либо объекта на прямой, плоскости, поверхности или в пространстве. Как найти координаты точки мы рассказали в этой статье.

Скаляр — это величина, которая полностью определяется в любой координатной системе одним числом или функцией.

Вектор — направленный отрезок прямой, для которого указано, какая точка является началом, а какая — концом.

Как найти векторы зная их длину и угол между ними

Вектор с началом в точке A и концом в точке B принято обозначать как →AB. Векторы также можно обозначать малыми латинскими буквами со стрелкой или черточкой над ними, вот так: →a.

Скалярное произведение — это операция над двумя векторами, результатом которой является скаляр, то есть число, которое не зависит от выбора системы координат.

Результат операции является число. То есть при умножении вектор на вектор получается число. Если длины векторов |→a|, |→b| — это числа, косинус угла — число, то их произведение |→a|*|→b|*cos∠(→a, →b) тоже будет числом.

Чтобы разобраться в теме этой статьи, нам еще нужно узнать особенности угла между векторами.

Видео:Нахождение угла между векторами через координаты. 9 класс.Скачать

Нахождение угла между векторами  через координаты. 9 класс.

Угол между векторами

Угол между векторами ∠(→a, →b) может принимать значения от 0° до 180° градусов включительно. Аналитически это можно записать в виде двойного неравенства: 0°=

2. Если угол между векторами равен 90°, то такие векторы перпендикулярны друг другу.

Как найти векторы зная их длину и угол между ними

3. Если векторы направлены в разные стороны, тогда угол между ними 180°.

Как найти векторы зная их длину и угол между ними

Также векторы могут образовывать тупой угол. Это выглядит так:

Как найти векторы зная их длину и угол между ними

Видео:Математика без Ху!ни. Угол между векторами, применение скалярного произведения.Скачать

Математика без Ху!ни. Угол между векторами, применение скалярного произведения.

Скалярное произведение векторов

Определение скалярного произведения можно сформулировать двумя способами:

Скалярное произведение двух векторов a и b дает в результате скалярную величину, которая равна сумме попарного произведения координат векторов a и b.

Скалярным произведением двух векторов a и b будет скалярная величина, равная произведению модулей этих векторов, умноженная на косинус угла между ними:

→a * →b = →|a| * →|b| * cosα

Как найти векторы зная их длину и угол между ними

  • Алгебраическая интерпретация.
  • Что важно запомнить про геометрическую интерпретацию скалярного произведения:

    • Если угол между векторами острый и векторы ненулевые, то скалярное произведение положительно, то есть cosα > 0. Как найти векторы зная их длину и угол между ними
    • Если угол между векторами тупой и векторы ненулевые, то скалярное произведение отрицательно, так как cosα

    Видео:Как находить угол между векторамиСкачать

    Как находить угол между векторами

    Скалярное произведение в координатах

    Вычисление скалярного произведения можно произвести через координаты векторов в заданной плоскости или в пространстве.

    Скалярным произведением двух векторов на плоскости или в трехмерном пространстве в прямоугольной системе координат называется сумма произведений соответствующих координат векторов →a и →b.

    То есть для векторов →a = (ax, ay), →b = (bx, by) на плоскости в прямоугольной декартовой системе координат формула для вычисления скалярного произведения имеет вид: (→a, →b) = ax*bx + ay*by

    А для векторов →a = (ax, ay, az), →b = (bx, by, bz) в трехмерном пространстве скалярное произведение в координатах находится так: (→a, →b) = ax*bx + ay*by + az*bz

    Докажем это определение:



      Сначала докажем равенства
      Как найти векторы зная их длину и угол между ними

    для векторов →a = (ax, ay), →b = (bx, by) на плоскости, заданных в прямоугольной декартовой системе координат.

    Отложим от начала координат (точка О) векторы →OB = →b = (bx, by) и →OA = →a = (ax, ay)

    Тогда, →AB = →OB — →OA = →b — →a = (bx — ax, by — ay)

    Будем считать точки О, А и В вершинами треугольника ОАВ. По теореме косинусов можно записать:
    Как найти векторы зная их длину и угол между ними

    Как найти векторы зная их длину и угол между ними

    то последнее равенство можно переписать так:

    Как найти векторы зная их длину и угол между ними

    а по первому определению скалярного произведения имеем

    Как найти векторы зная их длину и угол между ними

    Как найти векторы зная их длину и угол между ними

  • Вспомнив формулу вычисления длины вектора по координатам, получаем
    Как найти векторы зная их длину и угол между ними
  • Абсолютно аналогично доказывается справедливость равенств (→a, →b) = |→a|*|→b|*cos(→a, →b) = ax*bx + ay*by + ax*bz для векторов →a = (ax, ay, az), →b = (bx, by, bz), заданных в прямоугольной системе координат трехмерного пространства.
  • Формула скалярного произведения векторов в координатах позволяет заключить, что скалярный квадрат вектора равен сумме квадратов всех его координат: на плоскости (→a, →a) = ax2 + ay2 в пространстве (→a, →a) = ax2 + ay2 + az2.
  • Записывайтесь на наши курсы по математике для учеников с 1 по 11 классы!

    Видео:Вектор. Сложение и вычитание. 9 класс | МатематикаСкачать

    Вектор. Сложение и вычитание. 9 класс | Математика

    Формулы скалярного произведения векторов заданных координатами

    Формула скалярного произведения векторов для плоских задач

    В плоской задаче скалярное произведение векторов a = и b = можно найти по формуле:

    a * b = ax * bx + ay * by

    Формула скалярного произведения векторов для пространственных задач

    В пространственной задаче скалярное произведение векторов a = и b = можно найти по формуле:

    a * b = ax * bx + ay * by + az * bz

    Формула скалярного произведения n-мерных векторов

    В n-мерном пространстве скалярное произведение векторов a = и b = можно найти по формуле:

    a * b = a1 * b1 + a2 * b2 + . + an * bn

    Видео:ВЫЧИТАНИЕ ВЕКТОРОВ ЧАСТЬ I #егэ #огэ #математика #геометрия #профильныйегэСкачать

    ВЫЧИТАНИЕ ВЕКТОРОВ ЧАСТЬ I #егэ #огэ #математика #геометрия #профильныйегэ

    Свойства скалярного произведения

    Свойства скалярного произведения векторов:



      Скалярное произведение вектора самого на себя всегда больше или равно нулю. В результате получается нуль, если вектор равен нулевому вектору.

    →0 * →0 = 0

    Скалярное произведение вектора самого на себя равно квадрату его модуля:

    →a * →a = →∣∣a∣∣2

    Операция скалярного произведения коммуникативна, то есть соответствует переместительному закону:

    →a * →b = →b * →a

    Операция скалярного умножения дистрибутивна, то есть соответствует распределительному закону:

    (→a + →b) * →c = →a * →c + →b * →c

    Сочетательный закон для скалярного произведения:

    (k * →a) * →b = k * (→a * →b)

    Если скалярное произведение двух ненулевых векторов равно нулю, то эти векторы ортогональны, то есть перпендикулярны друг другу:

    a ≠ 0, b ≠ 0, a * b = 0 a ┴ b

    Эти свойства очень легко обосновать, если отталкиваться от определения скалярного произведения в координатной форме и от свойств операций сложения и умножения действительных чисел.

    Для примера докажем свойство коммутативности скалярного произведения (→a, →b) = (→b, →a)

    По определению (→a, →b) = ax*bx + ay*by и (→b, →a) = bx*ax + by*ay. В силу свойства коммутативности операции умножения действительных чисел, справедливо ax*bx = bx*ax b ay*by = by*ay, тогда ax*bx + ay*by = bx*ax + by*ay.

    Следовательно, (→a, →b) = (→b, →a), что и требовалось доказать.

    Аналогично доказываются остальные свойства скалярного произведения.

    Следует отметить, что свойство дистрибутивности скалярного произведения справедливо для любого числа слагаемых, то есть,

    Как найти векторы зная их длину и угол между ними

    Как найти векторы зная их длину и угол между ними

    Как найти векторы зная их длину и угол между ними

    Видео:Скалярное произведение векторов. 9 класс.Скачать

    Скалярное произведение векторов. 9 класс.

    Примеры вычислений скалярного произведения

    Пример 1.

    Вычислите скалярное произведение двух векторов →a и →b, если их длины равны 3 и 7 единиц соответственно, а угол между ними равен 60 градусам.

    У нас есть все данные, чтобы вычислить скалярное произведение по определению:

    (→a,→b) = →|a| * →|b| * cos(→a,→b) = 3 * 7 cos60° = 3 * 7 * 1/2 = 21/2 = 10,5.

    Ответ: (→a,→b) = 21/2 = 10,5.

    Пример 2.

    Найти скалярное произведение векторов →a и →b, если →|a| = 2, →|b| = 5, ∠(→a,→b) = π/6.

    Используем формулу →a * →b = →|a| * →|b| * cosα.

    В данном случае:

    →a * →b = →|a| * →|b| * cosα = 2 * 5 * cosπ/6 = 10 * √3/2 = 5√3

    Пример 3.

    Как найти скалярное произведение векторов →a = 7*→m + 3*→n и →b = 5*→m + 8*→n, если векторы →m и →n перпендикулярны и их длины равны 3 и 2 единицы соответственно.

    Как найти векторы зная их длину и угол между ними

    По свойству дистрибутивности скалярного произведения имеем

    Как найти векторы зная их длину и угол между ними

    Сочетательное свойство позволяет нам вынести коэффициенты за знак скалярного произведения:

    Как найти векторы зная их длину и угол между ними

    В силу свойства коммутативности последнее выражение примет вид

    Как найти векторы зная их длину и угол между ними

    Итак, после применения свойств скалярного произведения имеем

    Как найти векторы зная их длину и угол между ними

    Осталось применить формулу для вычисления скалярного произведения через длины векторов и косинус угла между ними:

    Как найти векторы зная их длину и угол между ними

    Пример 4.

    В правильной треугольной призме ABCA1B1C1, все ребра которой равны 1, найти косинус угла между прямыми AB1 и BC1.

    Как найти векторы зная их длину и угол между ними



      Введем систему координат.
      Как найти векторы зная их длину и угол между ними

    Если сделать выносной рисунок основания призмы, получим понятный плоскостной рисунок с помощью которого можно легко найти координаты всех интересующих точек.

    Как найти векторы зная их длину и угол между ними

  • Точка А имеет координаты (0;0;0). Точка С — (1;0;0). Точка В — (1/2;√3/2;0). Тогда точка В1 имеет координаты (1/2;√3/2;1), а точка С1 – (1;0;1).
  • Найдем координаты векторов →AB1 и →BC1:
    Как найти векторы зная их длину и угол между ними
  • Найдем длины векторов →AB1 и →BC1:
    Как найти векторы зная их длину и угол между ними
  • Найдем скалярное произведение векторов →AB1 и →BC1:
    Как найти векторы зная их длину и угол между ними
  • Найдем косинус угла между прямыми AB1 и BC1:
    Как найти векторы зная их длину и угол между ними
  • Пример 5.

    а) Проверить ортогональность векторов: →a(1; 2; -4) и →b(6; -1; 1) .

    б) Выяснить, будут ли перпендикулярными отрезки KL и MN, если K(3;5), L(-2;0), M(8;-1), N(1;4).

    а) Выясним, будут ли ортогональны пространственные векторы. Вычислим их скалярное произведение: →ab = 1*6 + 2*(-1) + (-4)*1 = 0, следовательно

    Как найти векторы зная их длину и угол между ними

    б) Здесь речь идёт об обычных отрезках плоскости, а задача всё равно решается через векторы. Найдем их: →KL(-2-3; 0-5) = →KL(-5; -5), →MN(1-8; 4-(-1)) = →MN(-7;5)

    Вычислим их скалярное произведение: →KL*→MN = -5*(-7) + (-5)*5 = 10 ≠ 0, значит, отрезки KL и MN не перпендикулярны.

    Обратите внимание на два существенных момента:

    • В данном случае нас не интересует конкретное значение скалярного произведения, важно, что оно не равно нулю.
    • В окончательном выводе подразумевается, что если векторы не ортогональны, значит, соответствующие отрезки тоже не будут перпендикулярными. Геометрически это очевидно, поэтому можно сразу записывать вывод об отрезках, что они не перпендикулярны.

    Ответ: а) →a перпендикулярно →b, б) отрезки KL, MN не перпендикулярны.

    Пример 6.

    Даны три вершины треугольника A(-1; 0), B(3; 2), C(5; -4). Найти угол при вершине B — ∠ABC.

    По условию чертеж выполнять не требуется, но для удобства можно сделать:

    Как найти векторы зная их длину и угол между ними

    Требуемый угол ∠ABC помечен зеленой дугой. Сразу вспоминаем школьное обозначение угла: ∠ABC — особое внимание на среднюю букву B — это и есть нужная нам вершина угла. Для краткости можно также записать просто ∠B.

    Из чертежа видно, что угол ∠ABC треугольника совпадает с углом между векторами →BA и →BC, иными словами: ∠ABC = ∠(→BA; →BC).

    Как найти векторы зная их длину и угол между ними

    Вычислим скалярное произведение:

    Как найти векторы зная их длину и угол между ними

    Вычислим длины векторов:

    Как найти векторы зная их длину и угол между ними

    Найдем косинус угла:

    Как найти векторы зная их длину и угол между ними

    Когда такие примеры не будут вызывать трудностей, можно начать записывать вычисления в одну строчку:

    Как найти векторы зная их длину и угол между ними

    Полученное значение не является окончательным, поэтому нет особого смысла избавляться от иррациональности в знаменателе.

    Найдём сам угол:

    Как найти векторы зная их длину и угол между ними

    Если посмотреть на чертеж, то результат действительно похож на правду. Для проверки угол также можно измерить и транспортиром.

    Ответ: ∠ABC = arccos(1/5√2) ≈1,43 рад. ≈ 82°

    Важно не перепутать, что в задаче спрашивалось про угол треугольника, а не про угол между векторами. Поэтому указываем точный ответ: arccos(1/5√2) и приближенное значение угла: ≈1,43 рад. ≈ 82°, которое легко найти с помощью калькулятора.

    А те, кому мало и хочется еще порешать, могут вычислить углы ∠A, ∠C, и убедиться в справедливости канонического равенства ∠A + ∠B + ∠C = 180°.

    Видео:найти угол между единичными векторамиСкачать

    найти угол между единичными векторами

    Нахождение угла между векторами

    Длина вектора, угол между векторами – эти понятия являются естественно-применимыми и интуитивно понятными при определении вектора как отрезка определенного направления. Ниже научимся определять угол между векторами в трехмерном пространстве, его косинус и рассмотрим теорию на примерах.

    Для рассмотрения понятия угла между векторами обратимся к графической иллюстрации: зададим на плоскости или в трехмерном пространстве два вектора a → и b → , являющиеся ненулевыми. Зададим также произвольную точку O и отложим от нее векторы O A → = b → и O B → = b →

    Углом между векторами a → и b → называется угол между лучами О А и О В .

    Полученный угол будем обозначать следующим образом: a → , b → ^

    Как найти векторы зная их длину и угол между ними

    Очевидно, что угол имеет возможность принимать значения от 0 до π или от 0 до 180 градусов.

    a → , b → ^ = 0 , когда векторы являются сонаправленными и a → , b → ^ = π , когда векторы противоположнонаправлены.

    Векторы называются перпендикулярными, если угол между ними равен 90 градусов или π 2 радиан.

    Если хотя бы один из векторов является нулевым, то угол a → , b → ^ не определен.

    Видео:Математика без Ху!ни. Смешанное произведение векторовСкачать

    Математика без Ху!ни. Смешанное произведение векторов

    Нахождение угла между векторами

    Косинус угла между двумя векторами, а значит и собственно угол, обычно может быть определен или при помощи скалярного произведения векторов, или посредством теоремы косинусов для треугольника, построенного на основе двух данных векторов.

    Согласно определению скалярное произведение есть a → , b → = a → · b → · cos a → , b → ^ .

    Если заданные векторы a → и b → ненулевые, то можем разделить правую и левую части равенства на произведение длин этих векторов, получая, таким образом, формулу для нахождения косинуса угла между ненулевыми векторами:

    cos a → , b → ^ = a → , b → a → · b →

    Данная формула используется, когда в числе исходных данных есть длины векторов и их скалярное произведение.

    Исходные данные: векторы a → и b → . Длины их равны 3 и 6 соответственно, а их скалярное произведение равно — 9 . Необходимо вычислить косинус угла между векторами и найти сам угол.

    Решение

    Исходных данных достаточно, чтобы применить полученную выше формулу, тогда cos a → , b → ^ = — 9 3 · 6 = — 1 2 ,

    Теперь определим угол между векторами: a → , b → ^ = a r c cos ( — 1 2 ) = 3 π 4

    Ответ: cos a → , b → ^ = — 1 2 , a → , b → ^ = 3 π 4

    Чаще встречаются задачи, где векторы задаются координатами в прямоугольной системе координат. Для таких случаев необходимо вывести ту же формулу, но в координатной форме.

    Длина вектора определяется как корень квадратный из суммы квадратов его координат, а скалярное произведение векторов равно сумме произведений соответствующих координат. Тогда формула для нахождения косинуса угла между векторами на плоскости a → = ( a x , a y ) , b → = ( b x , b y ) выглядит так:

    cos a → , b → ^ = a x · b x + a y · b y a x 2 + a y 2 · b x 2 + b y 2

    А формула для нахождения косинуса угла между векторами в трехмерном пространстве a → = ( a x , a y , a z ) , b → = ( b x , b y , b z ) будет иметь вид: cos a → , b → ^ = a x · b x + a y · b y + a z · b z a x 2 + a y 2 + a z 2 · b x 2 + b y 2 + b z 2

    Исходные данные: векторы a → = ( 2 , 0 , — 1 ) , b → = ( 1 , 2 , 3 ) в прямоугольной системе координат. Необходимо определить угол между ними.

    Решение

    1. Для решения задачи можем сразу применить формулу:

    cos a → , b → ^ = 2 · 1 + 0 · 2 + ( — 1 ) · 3 2 2 + 0 2 + ( — 1 ) 2 · 1 2 + 2 2 + 3 2 = — 1 70 ⇒ a → , b → ^ = a r c cos ( — 1 70 ) = — a r c cos 1 70

    1. Также можно определить угол по формуле:

    cos a → , b → ^ = ( a → , b → ) a → · b → ,

    но предварительно рассчитать длины векторов и скалярное произведение по координатам: a → = 2 2 + 0 2 + ( — 1 ) 2 = 5 b → = 1 2 + 2 2 + 3 2 = 14 a → , b → ^ = 2 · 1 + 0 · 2 + ( — 1 ) · 3 = — 1 cos a → , b → ^ = a → , b → ^ a → · b → = — 1 5 · 14 = — 1 70 ⇒ a → , b → ^ = — a r c cos 1 70

    Ответ: a → , b → ^ = — a r c cos 1 70

    Также распространены задачи, когда заданы координаты трех точек в прямоугольной системе координат и необходимо определить какой-нибудь угол. И тогда, для того, чтобы определить угол между векторами с заданными координатами точек, необходимо вычислить координаты векторов в виде разности соответствующих точек начала и конца вектора.

    Исходные данные: на плоскости в прямоугольной системе координат заданы точки A ( 2 , — 1 ) , B ( 3 , 2 ) , C ( 7 , — 2 ) . Необходимо определить косинус угла между векторами A C → и B C → .

    Решение

    Найдем координаты векторов по координатам заданных точек A C → = ( 7 — 2 , — 2 — ( — 1 ) ) = ( 5 , — 1 ) B C → = ( 7 — 3 , — 2 — 2 ) = ( 4 , — 4 )

    Теперь используем формулу для определения косинуса угла между векторами на плоскости в координатах: cos A C → , B C → ^ = ( A C → , B C → ) A C → · B C → = 5 · 4 + ( — 1 ) · ( — 4 ) 5 2 + ( — 1 ) 2 · 4 2 + ( — 4 ) 2 = 24 26 · 32 = 3 13

    Ответ: cos A C → , B C → ^ = 3 13

    Угол между векторами можно определить по теореме косинусов. Отложим от точки O векторы O A → = a → и O B → = b → , тогда, согласно теореме косинусов в треугольнике О А В , будет верным равенство:

    A B 2 = O A 2 + O B 2 — 2 · O A · O B · cos ( ∠ A O B ) ,

    b → — a → 2 = a → + b → — 2 · a → · b → · cos ( a → , b → ) ^

    и отсюда выведем формулу косинуса угла:

    cos ( a → , b → ) ^ = 1 2 · a → 2 + b → 2 — b → — a → 2 a → · b →

    Для применения полученной формулы нам нужны длины векторов, которые несложно определяются по их координатам.

    Хотя указанный способ имеет место быть, все же чаще применяют формулу:

    🎦 Видео

    100 тренировочных задач #135 Угол между векторамиСкачать

    100 тренировочных задач #135 Угол между векторами

    СКАЛЯРНОЕ УМНОЖЕНИЕ ВЕКТОРОВ ЧАСТЬ I #математика #егэ #огэ #формулы #профильныйегэ #векторыСкачать

    СКАЛЯРНОЕ УМНОЖЕНИЕ ВЕКТОРОВ ЧАСТЬ I #математика #егэ #огэ #формулы #профильныйегэ #векторы

    Нахождение координат вектора. Практическая часть. 9 класс.Скачать

    Нахождение координат вектора. Практическая часть. 9 класс.

    Нахождение длины вектора. Практическая часть. 9 класс.Скачать

    Нахождение длины вектора. Практическая часть. 9 класс.

    11 класс, 5 урок, Угол между векторамиСкачать

    11 класс, 5 урок, Угол между векторами

    Косинус угла между векторами. Коллинеарность векторовСкачать

    Косинус угла между векторами.  Коллинеарность векторов

    Длина вектора через координаты. 9 класс.Скачать

    Длина вектора через координаты. 9 класс.
    Поделиться или сохранить к себе: