Как найти угол треугольника через описанную окружность

Теорема синусов

Как найти угол треугольника через описанную окружность

О чем эта статья:

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Содержание
  1. Доказательство теоремы синусов
  2. Доказательство следствия из теоремы синусов
  3. Теорема о вписанном в окружность угле
  4. Примеры решения задач
  5. Запоминаем
  6. Треугольник вписанный в окружность
  7. Определение
  8. Формулы
  9. Радиус вписанной окружности в треугольник
  10. Радиус описанной окружности около треугольника
  11. Площадь треугольника
  12. Периметр треугольника
  13. Сторона треугольника
  14. Средняя линия треугольника
  15. Высота треугольника
  16. Свойства
  17. Доказательство
  18. Треугольник. Формулы и свойства треугольников.
  19. Типы треугольников
  20. По величине углов
  21. По числу равных сторон
  22. Вершины углы и стороны треугольника
  23. Свойства углов и сторон треугольника
  24. Теорема синусов
  25. Теорема косинусов
  26. Теорема о проекциях
  27. Формулы для вычисления длин сторон треугольника
  28. Медианы треугольника
  29. Свойства медиан треугольника:
  30. Формулы медиан треугольника
  31. Биссектрисы треугольника
  32. Свойства биссектрис треугольника:
  33. Формулы биссектрис треугольника
  34. Высоты треугольника
  35. Свойства высот треугольника
  36. Формулы высот треугольника
  37. Окружность вписанная в треугольник
  38. Свойства окружности вписанной в треугольник
  39. Формулы радиуса окружности вписанной в треугольник
  40. Окружность описанная вокруг треугольника
  41. Свойства окружности описанной вокруг треугольника
  42. Формулы радиуса окружности описанной вокруг треугольника
  43. Связь между вписанной и описанной окружностями треугольника
  44. Средняя линия треугольника
  45. Свойства средней линии треугольника
  46. Периметр треугольника
  47. Формулы площади треугольника
  48. Формула Герона
  49. Равенство треугольников
  50. Признаки равенства треугольников
  51. Первый признак равенства треугольников — по двум сторонам и углу между ними
  52. Второй признак равенства треугольников — по стороне и двум прилежащим углам
  53. Третий признак равенства треугольников — по трем сторонам
  54. Подобие треугольников
  55. Признаки подобия треугольников
  56. Первый признак подобия треугольников
  57. Второй признак подобия треугольников
  58. Третий признак подобия треугольников

Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

Доказательство теоремы синусов

Теорема синусов звучит так: стороны треугольника пропорциональны синусам противолежащих углов.

Нарисуем стандартный треугольник и запишем теорему формулой:

Как найти угол треугольника через описанную окружность

Формула теоремы синусов:

Как найти угол треугольника через описанную окружность

Докажем теорему с помощью формулы площади треугольника через синус его угла.

Как найти угол треугольника через описанную окружность

Из этой формулы мы получаем два соотношения:


    Как найти угол треугольника через описанную окружность

Как найти угол треугольника через описанную окружность
На b сокращаем, синусы переносим в знаменатели:
Как найти угол треугольника через описанную окружность

  • Как найти угол треугольника через описанную окружность
    bc sinα = ca sinβ
    Как найти угол треугольника через описанную окружность
  • Из этих двух соотношений получаем:

    Как найти угол треугольника через описанную окружность

    Теорема синусов для треугольника доказана.

    Эта теорема пригодится, чтобы найти:

    • Стороны треугольника, если даны два угла и одна сторона.
    • Углы треугольника, если даны две стороны и один прилежащий угол.

    Видео:Найти угол треугольника, вписанного во вписанную окружностьСкачать

    Найти угол треугольника, вписанного во вписанную окружность

    Доказательство следствия из теоремы синусов

    У теоремы синусов есть важное следствие. Нарисуем треугольник, опишем вокруг него окружность и рассмотрим следствие через радиус.

    Как найти угол треугольника через описанную окружность

    Как найти угол треугольника через описанную окружность

    где R — радиус описанной около треугольника окружности.

    Так образовались три формулы радиуса описанной окружности:

    Как найти угол треугольника через описанную окружность

    Основной смысл следствия из теоремы синусов заключен в этой формуле:

    Как найти угол треугольника через описанную окружность

    Радиус описанной окружности не зависит от углов α, β, γ. Удвоенный радиус описанной окружности равен отношению стороны треугольника к синусу противолежащего угла.

    Для доказательства следствия теоремы синусов рассмотрим три случая.

    1. Угол ∠А = α — острый в треугольнике АВС.

    Как найти угол треугольника через описанную окружность

    Проведем диаметр BA1. В этом случае точка А и точка А1 лежат в одной полуплоскости от прямой ВС.

    Используем теорему о вписанном угле и видим, что ∠А = ∠А1 = α. Треугольник BA1C — прямоугольный, в нём ∠ BCA1 = 90°, так как он опирается на диаметр BA1.

    Чтобы найти катет a в треугольнике BA1C, нужно умножить гипотенузу BA1 на синус противолежащего угла.

    BA1 = 2R, где R — радиус окружности

    Следовательно: R = α/2 sinα

    Для острого треугольника с описанной окружностью теорема доказана.

    2. Угол ∠А = α — тупой в треугольнике АВС.

    Проведем диаметр окружности BA1. Точки А и A1 по разные стороны от прямой ВС. Четырёхугольник ACA1B вписан в окружность, и его основное свойство в том, что сумма противолежащих углов равна 180°.

    Следовательно, ∠А1 = 180° — α.

    Как найти угол треугольника через описанную окружность

    Вспомним свойство вписанного в окружность четырёхугольника:

    Как найти угол треугольника через описанную окружность

    Также известно, что sin(180° — α) = sinα.

    В треугольнике BCA1 угол при вершине С равен 90°, потому что он опирается на диаметр. Следовательно, катет а мы находим таким образом:

    α = 2R sin (180° — α) = 2R sinα

    Следовательно: R = α/2 sinα

    Для тупого треугольника с описанной окружностью теорема доказана.

    Часто используемые тупые углы:

    • sin120° = sin(180° — 60°) = sin60° = 3/√2;
    • sin150° = sin(180° — 30°) = sin30° = 1/2;
    • sin135° = sin(180° — 45°) = sin45° = 2/√2.

    3. Угол ∠А = 90°.

    Как найти угол треугольника через описанную окружность

    В прямоугольнике АВС угол А прямой, а противоположная сторона BC = α = 2R, где R — это радиус описанной окружности.

    Как найти угол треугольника через описанную окружность

    Для прямоугольного треугольника с описанной окружностью теорема доказана.

    Для тех, кто хочет связать свою жизнь с точными науками, Skysmart предлагает курсы по профильной математике.

    Видео:Окружность вписанная в треугольник и описанная около треугольника.Скачать

    Окружность вписанная в треугольник и описанная около треугольника.

    Теорема о вписанном в окружность угле

    Из теоремы синусов и ее следствия можно сделать любопытный вывод: если известна одна сторона треугольника и синус противолежащего угла — можно найти и радиус описанной окружности. Но треугольник не задаётся только этими величинами. Это значит, что если треугольник еще не задан, найти радиус описанной окружности возможно.

    Раскроем эту тему на примере теоремы о вписанном в окружность угле и следствиях из нее.

    Теорема о вписанном угле: вписанный в окружность угол измеряется половиной дуги, на которую он опирается.

    Как найти угол треугольника через описанную окружность

    ∠А = α опирается на дугу ВС. Дуга ВС содержит столько же градусов, сколько ее центральный угол ∠BOC.

    Формула теоремы о вписанном угле:

    Как найти угол треугольника через описанную окружность

    Следствие 1 из теоремы о вписанном в окружность угле

    Вписанные углы, опирающиеся на одну дугу, равны.

    Как найти угол треугольника через описанную окружность

    ∠А = ∠BAC опирается на дугу ВС. Поэтому ∠A = 1/2(∠COB).

    Если мы возьмём точки A1, А2. Аn и проведём от них лучи, которые опираются на одну и ту же дугу, то получим:

    Как найти угол треугольника через описанную окружность

    На рисунке изображено множество треугольников, у которых есть общая сторона СВ и одинаковый противолежащий угол. Треугольники являются подобными, и их объединяет одинаковый радиус описанной окружности.

    Следствие 2 из теоремы о вписанном в окружность угле

    Вписанные углы, которые опираются на диаметр, равны 90°, то есть прямые.

    Как найти угол треугольника через описанную окружность

    ВС — диаметр описанной окружности, следовательно ∠COB = 180°.

    Как найти угол треугольника через описанную окружность

    Следствие 3 из теоремы о вписанном в окружность угле

    Сумма противоположных углов вписанного в окружность четырёхугольника равна 180°. Это значит, что:

    Как найти угол треугольника через описанную окружность

    Угол ∠А = α опирается на дугу DCB. Поэтому DCB = 2α по теореме о вписанном угле.

    Угол ∠С = γ опирается на дугу DAB. Поэтому DAB = 2γ.

    Но так как 2α и 2γ — это вся окружность, то 2α + 2γ = 360°.

    Следовательно: α + γ = 180°.

    Поэтому: ∠A + ∠C = 180°.

    Следствие 4 из теоремы о вписанном в окружность угле

    Синусы противоположных углов вписанного четырехугольника равны. То есть:

    sinγ = sin(180° — α)

    Так как sin(180° — α) = sinα, то sinγ = sin(180° — α) = sinα

    Видео:найти радиус окружности, описанной вокруг треугольникаСкачать

    найти радиус окружности, описанной вокруг треугольника

    Примеры решения задач

    Теорема синусов и следствия из неё активно используются при решении задач. Рассмотрим несколько примеров, чтобы закрепить материал.

    Пример 1. В треугольнике ABC ∠A = 45°,∠C = 15°, BC = 4√6. Найти AC.

      Согласно теореме о сумме углов треугольника:

    ∠B = 180° — 45° — 15° = 120°

  • Сторону AC найдем по теореме синусов:
    Как найти угол треугольника через описанную окружность
  • Пример 2. Гипотенуза и один из катетов прямоугольного треугольника равны 10 и 8 см. Найти угол, который расположен напротив данного катета.

    В этой статье мы узнали, что в прямоугольном треугольнике напротив гипотенузы располагается угол, равный 90°. Примем неизвестный угол за x. Тогда соотношение сторон выглядит так:

    Как найти угол треугольника через описанную окружность

    Как найти угол треугольника через описанную окружность

    Значит x = sin (4/5) ≈ 53,1°.

    Ответ: угол составляет примерно 53,1°.

    Видео:Вписанная и описанная окружность - от bezbotvyСкачать

    Вписанная и описанная окружность - от bezbotvy

    Запоминаем

    Обычная теорема: стороны треугольника пропорциональны синусам противолежащих углов.

    >
    Как найти угол треугольника через описанную окружность

    Расширенная теорема: в произвольном треугольнике справедливо следующее соотношение:

    Видео:Вписанные и описанные окружности. Вебинар | МатематикаСкачать

    Вписанные и описанные окружности. Вебинар | Математика

    Треугольник вписанный в окружность

    Как найти угол треугольника через описанную окружность

    Видео:Вписанная и описанная окружности | Лайфхак для запоминанияСкачать

    Вписанная и описанная окружности | Лайфхак для запоминания

    Определение

    Треугольник, вписанный в окружность — это треугольник, который
    находится внутри окружности и соприкасается с ней всеми тремя вершинами.

    На рисунке 1 изображена окружность, описанная около
    треугольника
    и окружность, вписанная в треугольник.

    ВD = FC = AE — диаметры описанной около треугольника окружности.

    O — центр вписанной в треугольник окружности.

    Как найти угол треугольника через описанную окружность

    Видео:Построить описанную окружность (Задача 1)Скачать

    Построить описанную окружность (Задача 1)

    Формулы

    Радиус вписанной окружности в треугольник

    r — радиус вписанной окружности.

    1. Радиус вписанной окружности в треугольник,
      если известна площадь и все стороны:

    Радиус вписанной окружности в треугольник,
    если известны площадь и периметр:

    Радиус вписанной окружности в треугольник,
    если известны полупериметр и все стороны:

    Радиус описанной окружности около треугольника

    R — радиус описанной окружности.

    1. Радиус описанной окружности около треугольника,
      если известна одна из сторон и синус противолежащего стороне угла:

    Радиус описанной окружности около треугольника,
    если известны все стороны и площадь:

    Радиус описанной окружности около треугольника,
    если известны все стороны и полупериметр:

    Площадь треугольника

    S — площадь треугольника.

    1. Площадь треугольника вписанного в окружность,
      если известен полупериметр и радиус вписанной окружности:

    Площадь треугольника вписанного в окружность,
    если известен полупериметр:

    Площадь треугольника вписанного в окружность,
    если известен высота и основание:

    Площадь треугольника вписанного в окружность,
    если известна сторона и два прилежащих к ней угла:

    Площадь треугольника вписанного в окружность,
    если известны две стороны и синус угла между ними:

    [ S = fracab cdot sin angle C ]

    Периметр треугольника

    P — периметр треугольника.

    1. Периметр треугольника вписанного в окружность,
      если известны все стороны:

    Периметр треугольника вписанного в окружность,
    если известна площадь и радиус вписанной окружности:

    Периметр треугольника вписанного в окружность,
    если известны две стороны и угол между ними:

    Сторона треугольника

    a — сторона треугольника.

    1. Сторона треугольника вписанного в окружность,
      если известны две стороны и косинус угла между ними:

    Сторона треугольника вписанного в
    окружность, если известна сторона и два угла:

    Средняя линия треугольника

    l — средняя линия треугольника.

    1. Средняя линия треугольника вписанного
      в окружность, если известно основание:

    Средняя линия треугольника вписанного в окружность,
    если известныдве стороны, ни одна из них не является
    основанием, и косинус угламежду ними:

    Высота треугольника

    h — высота треугольника.

    1. Высота треугольника вписанного в окружность,
      если известна площадь и основание:

    Высота треугольника вписанного в окружность,
    если известен сторона и синус угла прилежащего
    к этой стороне, и находящегося напротив высоты:

    [ h = b cdot sin alpha ]

    Высота треугольника вписанного в окружность,
    если известен радиус описанной окружности и
    две стороны, ни одна из которых не является основанием:

    Видео:Свойство окружности, описанной около равнобедренного треугольникаСкачать

    Свойство окружности, описанной около равнобедренного треугольника

    Свойства

    • Центр вписанной в треугольник окружности
      находится на пересечении биссектрис.
    • В треугольник, вписанный в окружность,
      можно вписать окружность, причем только одну.
    • Для треугольника, вписанного в окружность,
      справедлива Теорема Синусов, Теорема Косинусов
      и Теорема Пифагора.
    • Центр описанной около треугольника окружности
      находится на пересечении серединных перпендикуляров.
    • Все вершины треугольника, вписанного
      в окружность, лежат на окружности.
    • Сумма всех углов треугольника — 180 градусов.
    • Площадь треугольника вокруг которого описана окружность, и
      треугольника, в который вписана окружность, можно найти по
      формуле Герона.

    Видео:Задание 24 ОГЭ по математике #7Скачать

    Задание 24 ОГЭ по математике #7

    Доказательство

    Около любого треугольника, можно
    описать окружность притом только одну.

    Как найти угол треугольника через описанную окружность

    окружность и треугольник,
    которые изображены на рисунке 2.

    окружность описана
    около треугольника.

    1. Проведем серединные
      перпендикуляры — HO, FO, EO.
    2. O — точка пересечения серединных
      перпендикуляров равноудалена от
      всех вершин треугольника.
    3. Центр окружности — точка пересечения
      серединных перпендикуляров — около
      треугольника описана окружность — O,
      от центра окружности к вершинам можно
      провести равные отрезки — радиусы — OB, OA, OC.

    окружность описана около треугольника,
    что и требовалось доказать.

    Подводя итог, можно сказать, что треугольник,
    вписанный в окружность
    — это треугольник,
    в котором все серединные перпендикуляры
    пересекаются в одной точке, и эта точка
    равноудалена от всех вершин треугольника.

    Видео:Задача 6 №27921 ЕГЭ по математике. Урок 138Скачать

    Задача 6 №27921 ЕГЭ по математике. Урок 138

    Треугольник. Формулы и свойства треугольников.

    Видео:Вписанные и описанные четырехугольники. Практическая часть. 9 класс.Скачать

    Вписанные  и описанные четырехугольники. Практическая часть. 9 класс.

    Типы треугольников

    По величине углов

    Как найти угол треугольника через описанную окружность

    Как найти угол треугольника через описанную окружность

    Как найти угол треугольника через описанную окружность

    По числу равных сторон

    Как найти угол треугольника через описанную окружность

    Как найти угол треугольника через описанную окружность

    Как найти угол треугольника через описанную окружность

    Видео:Углы, вписанные в окружность. 9 класс.Скачать

    Углы, вписанные в окружность. 9 класс.

    Вершины углы и стороны треугольника

    Свойства углов и сторон треугольника

    Как найти угол треугольника через описанную окружность

    Сумма углов треугольника равна 180°:

    В треугольнике против большей стороны лежит больший угол, и обратно. Против равных сторон лежат равные углы:

    если α > β , тогда a > b

    если α = β , тогда a = b

    Сумма длин двух любых сторон треугольника больше длины оставшейся стороны:

    a + b > c
    b + c > a
    c + a > b

    Теорема синусов

    Стороны треугольника пропорциональны синусам противолежащих углов.

    a=b=c= 2R
    sin αsin βsin γ

    Теорема косинусов

    Квадрат любой стороны треугольника равен сумме квадратов двух других сторон треугольника минус удвоенное произведение этих сторон на косинус угла между ними.

    a 2 = b 2 + c 2 — 2 bc · cos α

    b 2 = a 2 + c 2 — 2 ac · cos β

    c 2 = a 2 + b 2 — 2 ab · cos γ

    Теорема о проекциях

    Для остроугольного треугольника:

    a = b cos γ + c cos β

    b = a cos γ + c cos α

    c = a cos β + b cos α

    Формулы для вычисления длин сторон треугольника

    Видео:Правильные многоугольники. Геометрия 9 класс | Математика | TutorOnlineСкачать

    Правильные многоугольники. Геометрия 9 класс  | Математика | TutorOnline

    Медианы треугольника

    Как найти угол треугольника через описанную окружность

    Свойства медиан треугольника:

    В точке пересечения медианы треугольника делятся в отношении два к одному (2:1)

    Медиана треугольника делит треугольник на две равновеликие части

    Треугольник делится тремя медианами на шесть равновеликих треугольников.

    Формулы медиан треугольника

    Формулы медиан треугольника через стороны

    ma = 1 2 √ 2 b 2 +2 c 2 — a 2

    mb = 1 2 √ 2 a 2 +2 c 2 — b 2

    mc = 1 2 √ 2 a 2 +2 b 2 — c 2

    Видео:№706. Найдите сторону равностороннего треугольника, если радиус описанной около него окружностиСкачать

    №706. Найдите сторону равностороннего треугольника, если радиус описанной около него окружности

    Биссектрисы треугольника

    Как найти угол треугольника через описанную окружность

    Свойства биссектрис треугольника:

    Биссектриса треугольника делит противолежащую сторону на отрезки, пропорциональные прилежащим сторонам треугольника

    Угол между биссектрисами внутреннего и внешнего углов треугольника при одной вершине равен 90°.

    Формулы биссектрис треугольника

    Формулы биссектрис треугольника через стороны:

    la = 2√ bcp ( p — a ) b + c

    lb = 2√ acp ( p — b ) a + c

    lc = 2√ abp ( p — c ) a + b

    где p = a + b + c 2 — полупериметр треугольника

    Формулы биссектрис треугольника через две стороны и угол:

    la = 2 bc cos α 2 b + c

    lb = 2 ac cos β 2 a + c

    lc = 2 ab cos γ 2 a + b

    Видео:найти угол треугольника вписанного в окружность с центром на сторонеСкачать

    найти угол треугольника вписанного в окружность с центром на стороне

    Высоты треугольника

    Как найти угол треугольника через описанную окружность

    Свойства высот треугольника

    Формулы высот треугольника

    ha = b sin γ = c sin β

    hb = c sin α = a sin γ

    hc = a sin β = b sin α

    Видео:Как найти диаметр окружности, описанной около равнобедренного треугольникаСкачать

    Как найти диаметр окружности, описанной около равнобедренного треугольника

    Окружность вписанная в треугольник

    Как найти угол треугольника через описанную окружность

    Свойства окружности вписанной в треугольник

    Формулы радиуса окружности вписанной в треугольник

    r = ( a + b — c )( b + c — a )( c + a — b ) 4( a + b + c )

    Видео:Задача 6 №27919 ЕГЭ по математике. Урок 136Скачать

    Задача 6 №27919 ЕГЭ по математике. Урок 136

    Окружность описанная вокруг треугольника

    Как найти угол треугольника через описанную окружность

    Свойства окружности описанной вокруг треугольника

    Формулы радиуса окружности описанной вокруг треугольника

    R = S 2 sin α sin β sin γ

    R = a 2 sin α = b 2 sin β = c 2 sin γ

    Видео:Урок по теме ЦЕНТРАЛЬНЫЕ И ВПИСАННЫЕ УГЛЫ 8 КЛАСССкачать

    Урок по теме ЦЕНТРАЛЬНЫЕ И ВПИСАННЫЕ УГЛЫ 8 КЛАСС

    Связь между вписанной и описанной окружностями треугольника

    Видео:2038 центр окружности описанной около треугольника ABC лежит на стороне ABСкачать

    2038 центр окружности описанной около треугольника ABC лежит на стороне AB

    Средняя линия треугольника

    Свойства средней линии треугольника

    Как найти угол треугольника через описанную окружность

    MN = 1 2 AC KN = 1 2 AB KM = 1 2 BC

    MN || AC KN || AB KM || BC

    Периметр треугольника

    Как найти угол треугольника через описанную окружность

    Периметр треугольника ∆ ABC равен сумме длин его сторон

    Формулы площади треугольника

    Как найти угол треугольника через описанную окружность

    Формула Герона

    S =a · b · с
    4R

    Равенство треугольников

    Признаки равенства треугольников

    Первый признак равенства треугольников — по двум сторонам и углу между ними

    Второй признак равенства треугольников — по стороне и двум прилежащим углам

    Третий признак равенства треугольников — по трем сторонам

    Подобие треугольников

    Как найти угол треугольника через описанную окружность

    ∆MNK => α = α 1, β = β 1, γ = γ 1 и AB MN = BC NK = AC MK = k ,

    где k — коэффициент подобия

    Признаки подобия треугольников

    Первый признак подобия треугольников

    Второй признак подобия треугольников

    Третий признак подобия треугольников

    Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!

    Добро пожаловать на OnlineMSchool.
    Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.

    Поделиться или сохранить к себе: