Как найти стороны трапеции со вписанной окружностью

Трапеция. Формулы, признаки и свойства трапеции

Параллельные стороны называются основами трапеции, а две другие боковыми сторонами

Так же, трапецией называется четырехугольник, у которого одна пара противоположных сторон параллельна, и стороны не равны между собой.

  • Основы трапеции — параллельные стороны
  • Боковые стороны — две другие стороны
  • Средняя линия — отрезок, соединяющий середины боковых сторон.
  • Равнобедренная трапеция — трапеция, у которой боковые стороны равны
  • Прямоугольная трапеция — трапеция, у которой одна из боковых сторон перпендикулярна основам
Как найти стороны трапеции со вписанной окружностьюКак найти стороны трапеции со вписанной окружностью
Рис.1Рис.2

Содержание
  1. Основные свойства трапеции
  2. Сторона трапеции
  3. Формулы определения длин сторон трапеции:
  4. Средняя линия трапеции
  5. Формулы определения длины средней линии трапеции:
  6. Высота трапеции
  7. Формулы определения длины высоты трапеции:
  8. Диагонали трапеции
  9. Формулы определения длины диагоналей трапеции:
  10. Площадь трапеции
  11. Формулы определения площади трапеции:
  12. Периметр трапеции
  13. Формула определения периметра трапеции:
  14. Окружность описанная вокруг трапеции
  15. Формула определения радиуса описанной вокруг трапеции окружности:
  16. Окружность вписанная в трапецию
  17. Формула определения радиуса вписанной в трапецию окружности
  18. Другие отрезки разносторонней трапеции
  19. Формулы определения длин отрезков проходящих через трапецию:
  20. Трапеция. Свойства трапеции
  21. Свойства трапеции
  22. Свойства и признаки равнобедренной трапеции
  23. Вписанная окружность
  24. Площадь
  25. Вписанная в трапецию окружность
  26. 🔥 Видео

Видео:Задача про трапецию, описанную около окружностиСкачать

Задача про трапецию, описанную около окружности

Основные свойства трапеции

AK = KB, AM = MC, BN = ND, CL = LD

3. Средняя линия трапеции параллельна основаниям и равна их полусумме:

m =a + b
2

BC : AD = OC : AO = OB : DO

d 1 2 + d 2 2 = 2 a b + c 2 + d 2

Видео:Геометрия Задача № 26 Найти радиус вписанной в трапецию окружностиСкачать

Геометрия Задача № 26  Найти радиус вписанной в трапецию окружности

Сторона трапеции

Формулы определения длин сторон трапеции:

a = b + h · ( ctg α + ctg β )

b = a — h · ( ctg α + ctg β )

a = b + c· cos α + d· cos β

b = a — c· cos α — d· cos β

4. Формулы боковых сторон через высоту и углы при нижнем основании:

с =hd =h
sin αsin β

Видео:Боковые стороны трапеции, описанной около окружности, равны 13 и 1. Найдите среднюю линию трапеции.Скачать

Боковые стороны трапеции, описанной около окружности, равны 13 и 1. Найдите среднюю линию трапеции.

Средняя линия трапеции

Формулы определения длины средней линии трапеции:

1. Формула определения длины средней линии через длины оснований:

m =a + b
2

2. Формула определения длины средней линии через площадь и высоту:

m =S
h

Видео:Геометрия Под каким углом видна боковая сторона трапеции из центра вписанной окружностиСкачать

Геометрия Под каким углом видна боковая сторона трапеции из центра вписанной окружности

Высота трапеции

Формулы определения длины высоты трапеции:

h = c· sin α = d· sin β

2. Формула высоты через диагонали и углы между ними:

h =sin γ ·d 1 d 2=sin δ ·d 1 d 2
a + ba + b

3. Формула высоты через диагонали, углы между ними и среднюю линию:

h =sin γ ·d 1 d 2=sin δ ·d 1 d 2
2 m2 m

4. Формула высоты трапеции через площадь и длины оснований:

h =2S
a + b

5. Формула высоты трапеции через площадь и длину средней линии:

h =S
m

Видео:Как найти стороны равнобокой трапеции, описанной около трёх попарно касающихся равных окружностей?Скачать

Как найти стороны равнобокой трапеции, описанной около трёх попарно касающихся равных окружностей?

Диагонали трапеции

Формулы определения длины диагоналей трапеции:

d 1 = √ a 2 + d 2 — 2 ad· cos β

d 2 = √ a 2 + c 2 — 2 ac· cos β

2. Формулы диагоналей через четыре стороны:

d 1 =d 2 + ab —a ( d 2 — c 2 )
a — b
d 2 =c 2 + ab —a ( c 2 — d 2 )
a — b

d 1 = √ h 2 + ( a — h · ctg β ) 2 = √ h 2 + ( b + h · ctg α ) 2

d 2 = √ h 2 + ( a — h · ctg α ) 2 = √ h 2 + ( b + h · ctg β ) 2

d 1 = √ c 2 + d 2 + 2 ab — d 2 2

d 2 = √ c 2 + d 2 + 2 ab — d 1 2

Видео:Трапеция, вписанная в окружностьСкачать

Трапеция, вписанная в окружность

Площадь трапеции

Формулы определения площади трапеции:

1. Формула площади через основания и высоту:

S =( a + b )· h
2

3. Формула площади через диагонали и угол между ними:

S =d 1 d 2· sin γ=d 1 d 2· sin δ
22

4. Формула площади через четыре стороны:

S =a + bc 2 —(( a — b ) 2 + c 2 — d 2)2
22( a — b )

5. Формула Герона для трапеции

S =a + b√ ( p — a )( p — b )( p — a — c )( p — a — d )
| a — b |

где

p =a + b + c + d— полупериметр трапеции.
2

Видео:Трапеция и вписанная окружностьСкачать

Трапеция и вписанная окружность

Периметр трапеции

Формула определения периметра трапеции:

1. Формула периметра через основания:

Видео:Радиус описанной окружности трапецииСкачать

Радиус описанной окружности трапеции

Окружность описанная вокруг трапеции

Формула определения радиуса описанной вокруг трапеции окружности:

1. Формула радиуса через стороны и диагональ:

R =a·c·d 1
4√ p ( p — a )( p — c )( p — d 1)

где

p =a + c + d 1
2

a — большее основание

Видео:Вписанные и описанные четырехугольники. Практическая часть. 9 класс.Скачать

Вписанные  и описанные четырехугольники. Практическая часть. 9 класс.

Окружность вписанная в трапецию

Формула определения радиуса вписанной в трапецию окружности

1. Формула радиуса вписанной окружности через высоту:

r =h
2

Видео:Задание 24 ОГЭ по математике #4Скачать

Задание 24 ОГЭ по математике #4

Другие отрезки разносторонней трапеции

Формулы определения длин отрезков проходящих через трапецию:

1. Формула определения длин отрезков проходящих через трапецию:

KM = NL =bKN = ML =aTO = OQ =a · b
22a + b

Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!

Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.

Видео:№793. Боковые стороны трапеции равны 13 см и 15 см, а периметр равен 48 см. Найдите среднюю линиюСкачать

№793. Боковые стороны трапеции равны 13 см и 15 см, а периметр равен 48 см. Найдите среднюю линию

Трапеция. Свойства трапеции

Трапеция – четырехугольник, у которого только одна пара сторон параллельна (а другая пара сторон не параллельна).

Как найти стороны трапеции со вписанной окружностью

Параллельные стороны трапеции называются основаниями. Другие две — боковые стороны .
Если боковые стороны равны, трапеция называется равнобедренной .

Как найти стороны трапеции со вписанной окружностью

Трапеция, у которой есть прямые углы при боковой стороне, называется прямоугольной .

Как найти стороны трапеции со вписанной окружностью

Отрезок, соединяющий середины боковых сторон, называется средней линией трапеции .

Как найти стороны трапеции со вписанной окружностью

Видео:Окружность, вписанная в трапециюСкачать

Окружность, вписанная в трапецию

Свойства трапеции

1. Средняя линия трапеции параллельна основаниям и равна их полусумме.

Как найти стороны трапеции со вписанной окружностью

2. Биссектриса любого угла трапеции отсекает на её основании (или продолжении) отрезок, равный боковой стороне.

Как найти стороны трапеции со вписанной окружностью

3. Треугольники Как найти стороны трапеции со вписанной окружностьюи Как найти стороны трапеции со вписанной окружностью, образованные отрезками диагоналей и основаниями трапеции, подобны.

Коэффициент подобия – Как найти стороны трапеции со вписанной окружностью

Отношение площадей этих треугольников есть Как найти стороны трапеции со вписанной окружностью.

Как найти стороны трапеции со вписанной окружностью

4. Треугольники Как найти стороны трапеции со вписанной окружностьюи Как найти стороны трапеции со вписанной окружностью, образованные отрезками диагоналей и боковыми сторонами трапеции, имеют одинаковую площадь.

Как найти стороны трапеции со вписанной окружностью

5. В трапецию можно вписать окружность, если сумма оснований трапеции равна сумме её боковых сторон.

Как найти стороны трапеции со вписанной окружностью

6. Отрезок, соединяющий середины диагоналей, равен полуразности оснований и лежит на средней линии.

Как найти стороны трапеции со вписанной окружностью

7. Точка пересечения диагоналей трапеции, точка пересечения продолжений её боковых сторон и середины оснований лежат на одной прямой.

Как найти стороны трапеции со вписанной окружностью

8. Если сумма углов при любом основании трапеции равна 90°, то отрезок, соединяющий середины оснований, равен их полуразности.

Как найти стороны трапеции со вписанной окружностью

Видео:Трапеция в окружности. Задача Шаталова.Скачать

Трапеция в окружности. Задача Шаталова.

Свойства и признаки равнобедренной трапеции

1. В равнобедренной трапеции углы при любом основании равны.

Как найти стороны трапеции со вписанной окружностью

2. В равнобедренной трапеции длины диагоналей равны.

3. Если трапецию можно вписать в окружность, то трапеция – равнобедренная.

Как найти стороны трапеции со вписанной окружностью

4. Около равнобедренной трапеции можно описать окружность.

5. Если в равнобедренной трапеции диагонали перпендикулярны, то высота равна полусумме оснований.

Как найти стороны трапеции со вписанной окружностью

Видео:Трапеция. Практическая часть - решение задачи. 8 класс.Скачать

Трапеция. Практическая часть - решение задачи. 8 класс.

Вписанная окружность

Если в трапецию вписана окружность с радиусом Как найти стороны трапеции со вписанной окружностьюи она делит боковую сторону точкой касания на два отрезка — Как найти стороны трапеции со вписанной окружностьюи Как найти стороны трапеции со вписанной окружностью, то Как найти стороны трапеции со вписанной окружностью

Как найти стороны трапеции со вписанной окружностью

Видео:2113 Боковые стороны трапеции описанной около окружности равны 16 и 3 Найдите среднюю линию трапецииСкачать

2113 Боковые стороны трапеции описанной около окружности равны 16 и 3 Найдите среднюю линию трапеции

Площадь

Как найти стороны трапеции со вписанной окружностьюили Как найти стороны трапеции со вписанной окружностьюгде Как найти стороны трапеции со вписанной окружностью– средняя линия

Как найти стороны трапеции со вписанной окружностью

Смотрите хорошую подборку задач с трапецией (входят в ГИА и часть В ЕГЭ) здесь и здесь.

Чтобы не потерять страничку, вы можете сохранить ее у себя:

Видео:8 класс, 6 урок, ТрапецияСкачать

8 класс, 6 урок, Трапеция

Вписанная в трапецию окружность

Когда в трапецию можно вписать окружность? Какими свойствами обладает вписанная в трапецию окружность? Где находится центр этой окружности? Чему равен ее радиус?

1. В трапецию можно вписать окружность тогда и только тогда когда суммы ее противоположных сторон равны.

Как найти стороны трапеции со вписанной окружностью1) В трапецию ABCD можно вписать окружность, если AD+BC=AB+CD.

2) Обратно, если AD+BC=AB+CD, то в трапецию ABCD можно вписать окружность.

Как найти стороны трапеции со вписанной окружностью

2. Центр вписанной в трапецию окружности — точка пересечения её биссектрис.

O — точка пересечения

биссектрис трапеции ABCD.

Как найти стороны трапеции со вписанной окружностью3. По свойству биссектрис трапеции, прилежащие к её боковой стороне,

Как найти стороны трапеции со вписанной окружностью

Как найти стороны трапеции со вписанной окружностью

и точка O лежит на средней линии трапеции.

Как найти стороны трапеции со вписанной окружностью4. Точки касания, лежащие на сторонах, выходящих из одной вершины, равноудалены от этой вершины:

Как найти стороны трапеции со вписанной окружностью5.

Как найти стороны трапеции со вписанной окружностью

Как найти стороны трапеции со вписанной окружностью

Как найти стороны трапеции со вписанной окружностью

Как найти стороны трапеции со вписанной окружностью

Как найти стороны трапеции со вписанной окружностью6. Диаметр вписанной в трапецию окружности равен высоте трапеции, радиус — половине высоты:

🔥 Видео

Вписанные и описанные окружности. Вебинар | МатематикаСкачать

Вписанные и описанные окружности. Вебинар | Математика

Планиметрия 27 | mathus.ru | окружность, касающаяся основания трапеции и вписанной в нее окружностиСкачать

Планиметрия 27 | mathus.ru | окружность, касающаяся основания трапеции и вписанной в нее окружности

Геометрия Равнобокая трапеция вписана в окружность, центр которой принадлежит одному из основанияСкачать

Геометрия Равнобокая трапеция вписана в окружность, центр которой принадлежит одному из основания

Вписанная и описанная окружность - от bezbotvyСкачать

Вписанная и описанная окружность - от bezbotvy
Поделиться или сохранить к себе: