Как найти расстояние от начала координат до центра окружности

Расстояние от точки до начала координат

Расстояние от точки (xM;yM) до начала координат можно найти по формуле расстояние между точками.

Подставив в формулу

Как найти расстояние от начала координат до центра окружности

Как найти расстояние от начала координат до центра окружности

получаем формулу для нахождения расстояния от точки M до начала отсчёта — точки O:

Как найти расстояние от начала координат до центра окружности

Найти расстояние от точки F(-5; 12) до начала координат.

Как найти расстояние от начала координат до центра окружности

Как найти расстояние от начала координат до центра окружности

Как найти расстояние от начала координат до центра окружностиЭту же формулу можно получить, руководствуясь непосредственно геометрическими соображениями.

Из прямоугольного треугольника OMM1 по теореме Пифагора

Как найти расстояние от начала координат до центра окружности

Как найти расстояние от начала координат до центра окружности

Как найти расстояние от начала координат до центра окружности

На координатной плоскости отмечена точка A. Найти расстояние от точки A до начала координат.

Координаты точки C — xC =4, yC=3.

Видео:Уравнение окружности (1)Скачать

Уравнение окружности (1)

Как найти координаты окружности формула

Видео:10 класс, 11 урок, Числовая окружностьСкачать

10 класс, 11 урок, Числовая окружность

Как найти координаты центр окружности??

Инструкция
1
Аналитически окружность задается уравнением вида (x-x0)²+(y-y0)²=R², где x0 и y0 − координаты центра окружности, R − ее радиус. Итак, центр окружности (x0;y0) здесь задан в явном виде.
2
Пример. Установите центр фигуры, заданной в декартовой системе координат уравнением (x-2)²+(y-5)²=25.
Решение. Данное уравнение является уравнением окружности. Ее центр имеет координаты (2;5). Радиус такой окружности равен 5.
3
Уравнение x²+y²=R² соответствует окружности с центром в начале координат, то есть, в точке (0;0). Уравнение (x-x0)²+y²=R² означает, что центр окружности имеет координаты (x0;0) и лежит на оси абсцисс. Вид уравнения x²+(y-y0)²=R² говорит о расположении центра с координатами (0;y0) на оси ординат.
4
Общее уравнение окружности в аналитической геометрии запишется как: x²+y²+Ax+By+C=0. Чтобы привести такое уравнение к выше обозначенному виду, надо сгруппировать члены и выделить полные квадраты: [x²+2(A/2)x+(A/2)²]+[y²+2(B/2)y+(B/2)²]+C-(A/2)²-(B/2)²=0. Для выделения полных квадратов, как можно заметить, требуется добавлять дополнительные величины: (A/2)² и (B/2)². Чтобы знак равенства сохранялся, эти же величины надо вычесть. Прибавление и вычитание одного и того же числа не меняет уравнения.
5
Таким образом, получается: [x+(A/2)]²+[y+(B/2)]²=(A/2)²+(B/2)²-C. Из этого уравнения уже видно, что x0=-A/2, y0=-B/2, R=√[(A/2)²+(B/2)²-C]. Кстати, выражение для радиуса можно упростить. Домножьте обе части равенства R=√[(A/2)²+(B/2)²-C] на 2. Тогда: 2R=√[A²+B²-4C]. Отсюда R=1/2·√[A²+B²-4C].
6
Окружность не может быть графиком функции в декартовой системе координат, так как, по определению, в функции каждому x соответствует единственное значение y, а для окружности таких «игреков» будет два. Чтобы убедиться в этом, проведите перпендикуляр к оси Ox, пересекающий окружность. Вы увидите, что точек пересечения две.
7
Но окружность можно представить как объединение двух функций: y=y0±√[R²-(x-x0)²]. Здесь x0 и y0, соответственно, представляют собой искомые координаты центра окружности. При совпадении центра окружности с началом координат объединение функций принимает вид: y=√[R²-x²].

Видео:№632. Расстояние от точки А до центра окружности меньше радиуса окружности. Докажите, что любаяСкачать

№632. Расстояние от точки А до центра окружности меньше радиуса окружности. Докажите, что любая

Формула окружности в системе координат

Окружностью называется множество точек плоскости, равноудаленных от данной точки, называемой центром.

Если точка С — центр окружности, R — ее радиус, а М — произвольная точка окружности, то по определению окружности

Равенство (1) есть уравнение окружности радиуса R с центром в точке С.

Пусть на плоскости задана прямоугольная декартова система координат (рис. 104) и точка С(а; b) — центр окружности радиуса R. Пусть М(х; у) — произвольная точка этой окружности.

Как найти расстояние от начала координат до центра окружности

Так как |СМ| = ( sqrt ), то уравнение (1) можно записать так:

(x — a) 2 + (у — b) 2 = R 2 (2)

Уравнение (2) называют общим уравнением окружности или уравнением окружности радиуса R с центром в точке (а; b). Например, уравнение

есть уравнение окружности радиуса R = 5 с центром в точке (1; —3).

Если центр окружности совпадает с началом координат, то уравнение (2) принимает вид

Уравнение (3) называют каноническим уравнением окружности.

Задача 1. Написать уравнение окружности радиуса R = 7 с центром в начале координат.

Непосредственной подстановкой значения радиуса в уравнение (3) получим

Задача 2. Написать уравнение окружности радиуса R = 9 с центром в точке С(3; —6).

Подставив значение координат точки С и значение радиуса в формулу (2), получим

(х — 3) 2 + (у — (—6)) 2 = 81 или (х — 3) 2 + (у + 6) 2 = 81.

Задача 3. Найти центр и радиус окружности

Сравнивая данное уравнение с общим уравнением окружности (2), видим, что а = —3, b = 5, R = 10. Следовательно, С(—3; 5), R = 10.

Задача 4. Доказать, что уравнение

является уравнением окружности. Найти ее центр и радиус.

Преобразуем левую часть данного уравнения:

Это уравнение представляет собой уравнение окружности с центром в точке (—2; 1); радиус окружности равен 3.

Задача 5. Написать уравнение окружности с центром в точке С(—1; —1), касающейся прямой АВ, если A (2; —1), B(— 1; 3).

Напишем уравнение прямой АВ:

Как найти расстояние от начала координат до центра окружностиили 4х + 3y —5 = 0.

Так как окружность касается данной прямой, то радиус, проведенный в точку касания, перпендикулярен этой прямой. Для отыскания радиуса необходимо найти расстояние от точки С(—1; —1) — центра окружности до прямой 4х + 3y —5 = 0:

Как найти расстояние от начала координат до центра окружности

Напишем уравнение искомой окружности

Пусть в прямоугольной системе координат дана окружность x 2 + у 2 = R 2 . Рассмотрим ее произвольную точку М(х; у) (рис. 105).

Как найти расстояние от начала координат до центра окружности

Пусть радиус-вектор OM > точки М образует угол величины t с положительным направлением оси Ох, тогда абсцисса и ордината точки М изменяются в зависимости от t

(0 2 = 3 cos 2 t, у 2 = 3 sin 2 t. Складывая эти равенства почленно, получаем

Как найти расстояние от начала координат до центра окружностиЧисловая ось
Как найти расстояние от начала координат до центра окружностиПрямоугольная декартова система координат на плоскости
Как найти расстояние от начала координат до центра окружностиФормула для расстояния между двумя точками координатной плоскости
Как найти расстояние от начала координат до центра окружностиУравнение окружности на координатной плоскости

Как найти расстояние от начала координат до центра окружности

Видео:Расстояние от точки до плоскости / Вывод формулыСкачать

Расстояние от точки до плоскости / Вывод формулы

Числовая ось

Определение 1 . Числовой осью ( числовой прямой, координатной прямой ) Ox называют прямую линию, на которой точка O выбрана началом отсчёта (началом координат) (рис.1), направление

указано в качестве положительного направления и отмечен отрезок, длина которого принята за единицу длины.

Как найти расстояние от начала координат до центра окружности

Как найти расстояние от начала координат до центра окружности

Определение 2 . Отрезок, длина которого принята за единицу длины, называют масштабом .

Каждая точка числовой оси имеет координату , являющуюся вещественным числом. Координата точки O равна нулю. Координата произвольной точки A , лежащей на луче Ox , равна длине отрезка OA . Координата произвольной точки A числовой оси, не лежащей на луче Ox , отрицательна, а по абсолютной величине равна длине отрезка OA .

Видео:начертить окружность. Привести уравнение окружности к стандартному виду. Координаты центра и радиус.Скачать

начертить окружность. Привести уравнение окружности к стандартному виду. Координаты центра и радиус.

Прямоугольная декартова система координат на плоскости

Определение 3 . Прямоугольной декартовой системой координат Oxy на плоскости называют две взаимно перпендикулярных числовых оси Ox и Oy с одинаковыми масштабами и общим началом отсчёта в точке O , причём таких, что поворот от луча Ox на угол 90° до луча Oy осуществляется в направлении против хода часовой стрелки (рис.2).

Как найти расстояние от начала координат до центра окружности

Как найти расстояние от начала координат до центра окружности

Замечание . Прямоугольную декартову систему координат Oxy , изображённую на рисунке 2, называют правой системой координат , в отличие от левых систем координат , в которых поворот луча Ox на угол 90° до луча Oy осуществляется в направлении по ходу часовой стрелки. В данном справочнике мы рассматриваем только правые системы координат, не оговаривая этого особо.

Если на плоскости ввести какую-нибудь систему прямоугольных декартовых координат Oxy , то каждая точка плоскости приобретёт две координатыабсциссу и ординату, которые вычисляются следующим образом. Пусть A – произвольная точка плоскости. Опустим из точки A перпендикуляры AA1 и AA2 на прямые Ox и Oy соответственно (рис.3).

Как найти расстояние от начала координат до центра окружности

Как найти расстояние от начала координат до центра окружности

Определение 4 . Абсциссой точки A называют координату точки A1 на числовой оси Ox , ординатой точки A называют координату точки A2 на числовой оси Oy .

Обозначение . Координаты (абсциссу и ординату) точки A в прямоугольной декартовой системе координат Oxy (рис.4) принято обозначать A (x ; y) или A = (x ; y).

Как найти расстояние от начала координат до центра окружности

Как найти расстояние от начала координат до центра окружности

Замечание . Точка O , называемая началом координат , имеет координаты O (0 ; 0) .

Определение 5 . В прямоугольной декартовой системе координат Oxy числовую ось Ox называют осью абсцисс , а числовую ось Oy называют осью ординат (рис. 5).

Определение 6 . Каждая прямоугольная декартова система координат делит плоскость на 4 четверти ( квадранта ), нумерация которых показана на рисунке 5.

Как найти расстояние от начала координат до центра окружности

Как найти расстояние от начала координат до центра окружности

Определение 7 . Плоскость, на которой задана прямоугольная декартова система координат, называют координатной плоскостью .

Замечание . Ось абсцисс задаётся на координатной плоскости уравнением y = 0 , ось ординат задаётся на координатной плоскости уравнением x = 0.

Видео:Лекция 48. Как найти расстояние между прямой и началом координат?Скачать

Лекция 48. Как найти расстояние между прямой и началом координат?

Формула для расстояния между двумя точками координатной плоскости

Утверждение 1 . Расстояние между двумя точками координатной плоскости

вычисляется по формуле

Как найти расстояние от начала координат до центра окружности

Доказательство . Рассмотрим рисунок 6.

Как найти расстояние от начала координат до центра окружности

Как найти расстояние от начала координат до центра окружности

| A1A2| 2 =
= ( x2x1) 2 + ( y2y1) 2 .
(1)

Как найти расстояние от начала координат до центра окружности

что и требовалось доказать.

Видео:ТРИГОНОМЕТРИЯ С НУЛЯ - Единичная Окружность // Подготовка к ЕГЭ по МатематикеСкачать

ТРИГОНОМЕТРИЯ С НУЛЯ - Единичная Окружность // Подготовка к ЕГЭ по Математике

Уравнение окружности на координатной плоскости

Как найти расстояние от начала координат до центра окружности

Как найти расстояние от начала координат до центра окружности

Поскольку расстояние от любой точки окружности до центра равно радиусу, то, в соответствии с формулой (1), получаем:

Уравнение (2) и есть искомое уравнение окружности радиуса R с центром в точке A (x ; y ) .

Следствие . Уравнение окружности радиуса R с центром в начале координат имеет вид

Как найти расстояние от начала координат до центра окружностиОпределение: замкнутая плоская кривая, все точки которой одинаково удалены от данной точки (центра О), лежащей в той же плоскости, что и кривая.

Определения связанные с окружностью

Хорда: отрезок, соединяющий две точки окружности.

Диаметр: хорда, проходящая через центр окружности. Диаметром окружности также называют длину этой хорды.

Пи ( Как найти расстояние от начала координат до центра окружности): Число 3, 141 592 653 589 793 . , равное отношению длины окружности к диаметру.

Радиус: отрезок, соединяющий центр окружности с какой-либо ее точкой (а так же длина этого отрезка).

Сектор круга: фигура, ограниченная двумя радиусами и дугой, на которую они опираются.

Касательная к окружности: прямая, перпендикулярная радиусу окружности, проведенная в точку касания.

Диаметр = 2 x радиус окружности

Длина окружности = Как найти расстояние от начала координат до центра окружностиx диаметр = 2 Как найти расстояние от начала координат до центра окружностиx радиус

Площадь круга :
площадь = Как найти расстояние от начала координат до центра окружностиr 2 Как найти расстояние от начала координат до центра окружности

Длина дуги окружности: (с центральным углом Как найти расстояние от начала координат до центра окружности )
если Как найти расстояние от начала координат до центра окружности выражен в градусах, то длина = Как найти расстояние от начала координат до центра окружности x ( Как найти расстояние от начала координат до центра окружности/180) x r
если Как найти расстояние от начала координат до центра окружности выражен в радианах, то длина = r x Как найти расстояние от начала координат до центра окружности

Площадь сектора окружности: (с центральным углом q )
если Как найти расстояние от начала координат до центра окружности выражен в градусах, то площадь = ( Как найти расстояние от начала координат до центра окружности /360) x Как найти расстояние от начала координат до центра окружностиr 2
если Как найти расстояние от начала координат до центра окружности выражен в радианах, то площадь = ( Как найти расстояние от начала координат до центра окружности /2) x Как найти расстояние от начала координат до центра окружностиr 2

Уравнение окружности: (в декартовых координатах)
Как найти расстояние от начала координат до центра окружности
для окружности с центром в точке (x , y ) и радиусом ( r ):

Как найти расстояние от начала координат до центра окружности

Уравнение окружности: (в полярных координатах)
для окружности с центром в точке (0, 0): r ( Как найти расстояние от начала координат до центра окружности ) = радиус

для окружности с центром с полярными координатами: ( c , a ) и радиусом a :
r 2 – 2 cr cos ( Как найти расстояние от начала координат до центра окружности a ) + c 2 = a 2

Видео:Как искать точки на тригонометрической окружности.Скачать

Как искать точки на тригонометрической окружности.

Окружность на координатной плоскости

Окружность на плоскости — это множество точек на плоскости равноудаленных от точки центра. На рисунке данная точка обозначена C.

Видео:Найти центр и радиус окружностиСкачать

Найти центр и радиус окружности

Окружность радиуса R с центром в начале координат представляется уравнением:

Как найти расстояние от начала координат до центра окружности
Окружность радиуса R с центром в точке C(a;b) представляется уравнением:

Как найти расстояние от начала координат до центра окружности
Как найти расстояние от начала координат до центра окружности
Расстояние от центра окружности С(a;b) до точки M(x;y) называется радиусом окружности R (на рисунке красная линия ).
Это уравнение можно записать в виде:
Как найти расстояние от начала координат до центра окружности
Если уравнение помножить на любое число A, то получим

Как найти расстояние от начала координат до центра окружности

Примечание
Окружность относится к линии второго порядка, так как представляется уравнением второй степени.

Необходимые условия для этого:
1. Отсутствие в уравнение второй степени члена с произведением xy;
2. Коэффициенты при x 2 и y 2 были равны в уравнение вида:
Как найти расстояние от начала координат до центра окружности
3. Если выполняется неравенство
Как найти расстояние от начала координат до центра окружности

Видео:Расстояние от точки до прямой (метод координат)Скачать

Расстояние от точки до прямой (метод координат)

Как найти радиус и центр окружности

Уравнение Ax 2 +Bx+Ay 2 +Cy+D=0 если оно удовлетворяет примечаниям (1, 2 и 3), то тогда (a;b) и радиус R окружности можно найти по формулам:

Как найти расстояние от начала координат до центра окружности

Пример 1
Уравнение 5x 2 -10x+5y 2 +20y-20=0
Здесь
A=5, B=-10, C=20, D=-20
Оно удовлетворяет примечаниям 1, 2 и выполняется неравенство

Как найти расстояние от начала координат до центра окружности
Решая, получаем что центр есть (1;-2), а радиус R=3

Анимационный график окружности

Пример 2
Уравнение второй степени x 2 +4xy+y 2 =1 не является окружностью, так как в нём есть член 4xy.

Пример 3
Уравнение второй степени 4x 2 +9y 2 =36 не представляет окружность, так как в нём коэффициенты при x 2 и y 2 не равны.

Насколько публикация полезна?

Нажмите на звезду, чтобы оценить!

Средняя оценка 4.3 / 5. Количество оценок: 4

Видео:№967. Напишите уравнение окружности с центром в начале координат, проходящей через точку В (-1; 3).Скачать

№967. Напишите уравнение окружности с центром в начале координат, проходящей через точку В (-1; 3).

Декартовы координаты точек плоскости. Уравнение окружности

Как найти расстояние от начала координат до центра окружностиЧисловая ось
Как найти расстояние от начала координат до центра окружностиПрямоугольная декартова система координат на плоскости
Как найти расстояние от начала координат до центра окружностиФормула для расстояния между двумя точками координатной плоскости
Как найти расстояние от начала координат до центра окружностиУравнение окружности на координатной плоскости

Как найти расстояние от начала координат до центра окружности

Видео:Как найти координаты точек на тригонометрической окружностиСкачать

Как найти координаты точек на тригонометрической окружности

Числовая ось

Определение 1 . Числовой осью ( числовой прямой, координатной прямой ) Ox называют прямую линию, на которой точка O выбрана началом отсчёта (началом координат) (рис.1), направление

указано в качестве положительного направления и отмечен отрезок, длина которого принята за единицу длины.

Как найти расстояние от начала координат до центра окружности

Как найти расстояние от начала координат до центра окружности

Определение 2 . Отрезок, длина которого принята за единицу длины, называют масштабом .

Каждая точка числовой оси имеет координату , являющуюся вещественным числом. Координата точки O равна нулю. Координата произвольной точки A , лежащей на луче Ox , равна длине отрезка OA . Координата произвольной точки A числовой оси, не лежащей на луче Ox , отрицательна, а по абсолютной величине равна длине отрезка OA .

Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

Прямоугольная декартова система координат на плоскости

Определение 3 . Прямоугольной декартовой системой координат Oxy на плоскости называют две взаимно перпендикулярных числовых оси Ox и Oy с одинаковыми масштабами и общим началом отсчёта в точке O , причём таких, что поворот от луча Ox на угол 90° до луча Oy осуществляется в направлении против хода часовой стрелки (рис.2).

Как найти расстояние от начала координат до центра окружности

Как найти расстояние от начала координат до центра окружности

Замечание . Прямоугольную декартову систему координат Oxy , изображённую на рисунке 2, называют правой системой координат , в отличие от левых систем координат , в которых поворот луча Ox на угол 90° до луча Oy осуществляется в направлении по ходу часовой стрелки. В данном справочнике мы рассматриваем только правые системы координат, не оговаривая этого особо.

Если на плоскости ввести какую-нибудь систему прямоугольных декартовых координат Oxy , то каждая точка плоскости приобретёт две координатыабсциссу и ординату, которые вычисляются следующим образом. Пусть A – произвольная точка плоскости. Опустим из точки A перпендикуляры AA1 и AA2 на прямые Ox и Oy соответственно (рис.3).

Как найти расстояние от начала координат до центра окружности

Как найти расстояние от начала координат до центра окружности

Определение 4 . Абсциссой точки A называют координату точки A1 на числовой оси Ox , ординатой точки A называют координату точки A2 на числовой оси Oy .

Обозначение . Координаты (абсциссу и ординату) точки A в прямоугольной декартовой системе координат Oxy (рис.4) принято обозначать A (x ; y) или A = (x ; y).

Как найти расстояние от начала координат до центра окружности

Как найти расстояние от начала координат до центра окружности

Замечание . Точка O , называемая началом координат , имеет координаты O (0 ; 0) .

Определение 5 . В прямоугольной декартовой системе координат Oxy числовую ось Ox называют осью абсцисс , а числовую ось Oy называют осью ординат (рис. 5).

Определение 6 . Каждая прямоугольная декартова система координат делит плоскость на 4 четверти ( квадранта ), нумерация которых показана на рисунке 5.

Как найти расстояние от начала координат до центра окружности

Как найти расстояние от начала координат до центра окружности

Определение 7 . Плоскость, на которой задана прямоугольная декартова система координат, называют координатной плоскостью .

Замечание . Ось абсцисс задаётся на координатной плоскости уравнением y = 0 , ось ординат задаётся на координатной плоскости уравнением x = 0.

Видео:Уравнение окружности с центром на оси абсцисс, ординат или в начале координат. Урок 3. Геометрия 8.Скачать

Уравнение окружности с центром на оси абсцисс, ординат или в начале координат. Урок 3. Геометрия 8.

Формула для расстояния между двумя точками координатной плоскости

Утверждение 1 . Расстояние между двумя точками координатной плоскости

вычисляется по формуле

Как найти расстояние от начала координат до центра окружности

Доказательство . Рассмотрим рисунок 6.

Как найти расстояние от начала координат до центра окружности

Как найти расстояние от начала координат до центра окружности

| A1A2| 2 =
= ( x2x1) 2 + ( y2y1) 2 .
(1)

Как найти расстояние от начала координат до центра окружности

что и требовалось доказать.

Видео:Уравнение окружности и формула расстояния между точками на плоскостиСкачать

Уравнение окружности и формула расстояния между точками на плоскости

Уравнение окружности на координатной плоскости

Как найти расстояние от начала координат до центра окружности

Как найти расстояние от начала координат до центра окружности

Поскольку расстояние от любой точки окружности до центра равно радиусу, то, в соответствии с формулой (1), получаем:

Уравнение (2) и есть искомое уравнение окружности радиуса R с центром в точке A0 (x0 ; y0) .

Следствие . Уравнение окружности радиуса R с центром в начале координат имеет вид

📽️ Видео

Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачиСкачать

Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачи

№631. Пусть d — расстояние от центра окружности радиуса r до прямой р. Каково взаимное расположениеСкачать

№631. Пусть d — расстояние от центра окружности радиуса r до прямой р. Каково взаимное расположение

Координаты середины отрезкаСкачать

Координаты середины отрезка

10 класс, 12 урок, Числовая окружность на координатной плоскостиСкачать

10 класс, 12 урок, Числовая окружность на координатной плоскости

Радианная мера угла. 9 класс.Скачать

Радианная мера угла. 9 класс.
Поделиться или сохранить к себе: