Как найти расстояние между точками пересечения окружностей

Пересечение двух окружностей

Этот онлайн калькулятор находит точки пересечения двух окружностей, если они существуют

Чтобы использовать калькулятор, введите координаты x и y центра и радиус каждой окружности.

Формулы для расчета приведены под калькулятором.

Как найти расстояние между точками пересечения окружностей

Точки пересечения двух окружностей

Первая окружность

Вторая окружность

Видео:Алгоритмы. Пересечение окружностейСкачать

Алгоритмы. Пересечение окружностей

Пересечение окружностей

Сама по себе задача нахождения точек пересечения двух окружностей достаточно проста, однако предварительно надо проанализировать если ли вообще точки пересения у данных двух окружностей. Поэтому начать надо с вычисления расстояния d в декартовых координатах между центрами окружностей и сравнения его с радиусами окружностей r1 и r2.

При этом возможно следующие случаи (расстояние между центрами показано красным отрезком):

Как найти расстояние между точками пересечения окружностей

Как найти расстояние между точками пересечения окружностей

Как найти расстояние между точками пересечения окружностей

Как найти расстояние между точками пересечения окружностей

Как найти расстояние между точками пересечения окружностей

Как найти расстояние между точками пересечения окружностей

СлучайОписаниеУсловие
Тривиальный случай — окружности совпадают (это одна и та же окружность)
Окружности не касаются друг другаr1 + r2″ />
Одна окружность содержится внутри другой и не касается ее
Окружности пересекаются в двух точкахНе выполнено ни одно из условий выше
Окружности соприкасаются в одной точкеЧастный случай предыдущего

Если окружности действительно пересекаются, калькулятор использует следующие формулы (в-основном выведенные из теоремы Пифагора), проиллюстрированные рисунком ниже:

Сначала калькулятор находит отрезок a

Чтобы найти точку P3, калькулятор использует следующую формулу (в векторном виде):

И наконец, чтобы найти точки пересечения, калькулятор использует следующие уравнения:
Первая точка:

Обратите внимание на разные знаки перед вторым слагаемым

По теме также можно посмотреть следующие ссылки (на английском языке): Circle-Circle Intersection и Circles and spheres

Видео:"Парадоксальное" среднее расстояние между точками на окружностиСкачать

"Парадоксальное" среднее расстояние между точками на окружности

Всё про окружность и круг

Окружность — это геометрическое место точек плоскости, равноудаленных от некоторой заданной точки (центра окружности). Расстояние между любой точкой окружности и ее центром называется радиусом окружности (радиус обозначают буквой R).
Значит, окружность — это линия на плоскости, каждая точка которой расположена на одинаковом расстоянии от центра окружности.

Кругом называется часть плоскости, ограниченная окружностью и включающая ее центр.

Отрезок, соединяющий две точки окружности, называется хордой. Хорда, проходящая через центр окружности, представляет собой диаметр. Диаметр окружности равен ее удвоенному радиусу: D = 2R.

Как найти расстояние между точками пересечения окружностей

Как найти расстояние между точками пересечения окружностей

Точка пересечения двух хорд делит каждую хорду на отрезки, произведение которых одинаково: a1a2 = b1b2

Как найти расстояние между точками пересечения окружностей

Касательная к окружности всегда перпендикулярна радиусу, проведенному в точку касания.

Как найти расстояние между точками пересечения окружностей

Отрезки касательных к окружности, проведенные из одной точки, равны: AB = AC, центр окружности лежит на биссектрисе угла BAC.

Как найти расстояние между точками пересечения окружностей

Квадрат касательной равен произведению секущей на ее внешнюю часть

Как найти расстояние между точками пересечения окружностей

Центральный угол — это угол, вершина которого совпадает с центром окружности.

Дугой называется часть окружности, заключенная между двумя точками.

Мерой дуги (в градусах или радианах) является центральный угол, опирающийся на данную дугу.

Как найти расстояние между точками пересечения окружностей

Вписанный угол это угол, вершина которого лежит на окружности, а cтороны угла пересекают ее.

Как найти расстояние между точками пересечения окружностей

Вписанный угол равен половине центрального, если оба угла опираются на одну и ту же дугу окружности.
Внутренние углы, опирающиеся на одну и ту же дугу, равны.

Как найти расстояние между точками пересечения окружностей

Сектором круга называется геометрическая фигура, ограниченная двумя радиусами и дугой, на которую опираются данные радиусы.

Как найти расстояние между точками пересечения окружностей

Периметр сектора: P = s + 2R.

Площадь сектора: S = Rs/2 = ПR 2 а/360°.

Сегментом круга называется геометрическая фигура, ограниченная хордой и стягиваемой ею дугой.

Видео:Уравнение окружности и формула расстояния между точками на плоскостиСкачать

Уравнение окружности и формула расстояния между точками на плоскости

Расстояние между двумя точками онлайн

С помощю этого онлайн калькулятора можно найти расстояние между точками по известным координатам этих точек. Дается решение с пояснениями. Для нахождения расстояния между точками задайте размерность (2-если задача рассматривается в двухмерном пространстве, 3- если задача рассматривается в трехмерном пространстве), введите координаты точек в ячейки и нажмите на кнопку «Решить». Теоретическую часть смотрите ниже.

Предупреждение

Инструкция ввода данных. Числа вводятся в виде целых чисел (примеры: 487, 5, -7623 и т.д.), десятичных чисел (напр. 67., 102.54 и т.д.) или дробей. Дробь нужно набирать в виде a/b, где a и b (b>0) целые или десятичные числа. Примеры 45/5, 6.6/76.4, -7/6.7 и т.д.

Видео:Взаимное расположение окружностей. Точки пересечения окружностейСкачать

Взаимное расположение окружностей. Точки пересечения окружностей

Расстояние между двумя точками на прямой

Пусть заданы на оси OX точки A с координатой xa и B с координатой xb (Рис.1). Найдем расстояние между точками A и B.

Как найти расстояние между точками пересечения окружностей

Расстояние между точками A и В равно:

( small AB=OB-OA. )(1)

Поскольку расстояние от O до В равна xb, а расстояние от O до A равна xa, получим:

( small AB=x_b-x_a . )(2)
Как найти расстояние между точками пересечения окружностей

На рисунке 2 точки A и В находятся по разные стороны начала координат O. B этом случае рассояние между точками A и B равно:

( small AB=OB+OA. )(3)

Поскольку координата точки A отрицательна а координата точки B положительна, то (2) можно записать так:

( small AB=x_b+|x_a|=x_b-x_a . )(4)

На рисунке 3 точки A и В находятся c левой стороны начала координат O.

Как найти расстояние между точками пересечения окружностей

B этом случае рассояние между точками A и B равно:

( small AB=OA-OB. )(5)

Координаты точек A и B отрицательны. Тогда , то (5) можно записать так:

( small AB=|x_a|-|x_b|=x_b-x_a . )(6)

Из формул (2),(4),(6) следует, что независимо от расположения точек отностительно начала координат рассояние этих точек равна разности координат этих точек, причем от большего значения вычитается меньшее (так как расстояние не может быть отрицательным числом).

Формулы (2),(4),(6) можно записать и так:

( small AB=|x_b-x_a|= |x_a-x_b| . )(7)

Пример 1. на оси Ox заданы точки ( small A(x_a)=A(-4) ) и ( small B(x_b)=B(7) ) . Найти рассояние между этими точками.

Решение. Для нахождения расстояния между точками A и B воспользуемся формулой (7):

( small AB=|x_b-x_a|= |7-(-4)|=11 . )(7)

Видео:Планиметрия 11 |mathus.ru|  расстояние между центрами пересекающихся окружностейСкачать

Планиметрия 11 |mathus.ru|  расстояние между центрами пересекающихся окружностей

Расстояние между двумя точками на плоскости

Пусть на плоскости задана декартова прямоугольная система координат XOY и пусть на плоскости заданы точки A и B, где A имеет координаты (xa,ya), а B имеет координаты (xb,yb) (Рис.4).

Как найти расстояние между точками пересечения окружностей

Учитывая результаты предыдующего параграфа, можем найти расстояние между точками A и M, а также расстояние между точками B и M:

( small AM=x_b-x_a,;; BM=y_b-y_a. )(8)

ABM является прямоугольным треугольником, где AB гипотенуза, а AM и BM катеты. Тогда, исходя из теоремы Пифагора, имеем:

( small AB^2=AM^2+BM^2. )

Тогда, учитывая (8), получим:

( small AB^2=AM^2+BM^2=(x_b-x_a)^2+(y_b-y_a)^2. )
( small AB=sqrt . )(9)

Пример 2. На плоскости, в декартовой прямоугольной системе координат XOY заданы точки ( small A(x_a; y_a)=A(-6;3) ) и ( small B(x_b, y_b)=B(11,-4). ) . Найти рассояние между этими точками.

Решение. Для нахождения расстояния между точками A и B воспользуемся формулой (9). Подставляя координаты точек A и B в формулу (9), получим:

Как найти расстояние между точками пересечения окружностейКак найти расстояние между точками пересечения окружностейКак найти расстояние между точками пересечения окружностей,
Как найти расстояние между точками пересечения окружностей.

Ответ: Как найти расстояние между точками пересечения окружностей.

Видео:Точки пересечения графика линейной функции с координатными осями. 7 класс.Скачать

Точки пересечения графика линейной функции с координатными осями. 7 класс.

Расстояние между двумя точками в пространстве

Рассмотрим в пространстве, в декартовой прямоугольной системе координат точки A и B, где A имеет координаты (xa,ya,za), а B имеет координаты (xb,yb,zb) (Рис.5).

Как найти расстояние между точками пересечения окружностей

AB является диагональю параллелепипеда, грани которго параллельны координатным плоскостьям и проходят через точки A и B. Но AB является гипотенузой прямоугольного треугольника AMB, а AM и BM являются катетами этого прямоугольного треугольника. Тогда, по теореме Пифагора, имеем:

( small AB^2=AM^2+BM^2. )(10)

Учитывая, что BM равно разности третьих координат точек B и A, получим:

( small BM=z_b-z_a. )

Из предыдующего параграфа следует, что:

( small A’B’^2=(x_b-x_a)^2+(y_b-y_a)^2. )(11)

Но AM=A’B’. Тогда из (10) и (11) следует:

( small AB^2=AM^2+BM^2=A’B’^2+BM^2 ) ( small =(x_b-x_a)^2+(y_b-y_a)^2+(z_b-z_a)^2. )
( small AB= sqrt. )(12)

Пример 3. В пространстве задана декартова прямоугольная система координат XOY и точки ( small A(x_a; y_a ; z_a)=A(5;1;0) ) и ( small B(x_b, y_b, z_b)=B(-8,-4;21). ) Найти рассояние между этими точками.

Решение. Для нахождения расстояния между точками A и B воспользуемся формулой (12). Подставляя координаты точек A и B в формулу (12), получим:

Как найти расстояние между точками пересечения окружностейКак найти расстояние между точками пересечения окружностейКак найти расстояние между точками пересечения окружностей,
Как найти расстояние между точками пересечения окружностей.

Ответ: Как найти расстояние между точками пересечения окружностей.

📸 Видео

Сможешь найти расстояние между центрами пересекающихся окружностей?Скачать

Сможешь найти расстояние между центрами пересекающихся окружностей?

Расстояние между точкамиСкачать

Расстояние между точками

Расстояние между центрами вписанной и описанной окружностей треугольника и их радиусами #ShortsСкачать

Расстояние между центрами вписанной и описанной окружностей треугольника и их радиусами #Shorts

Как найти расстояние между центрами | Олимпиадная математикаСкачать

Как найти расстояние между центрами | Олимпиадная математика

Планиметрия 12 | mathus.ru | расстояние между центрами пересекающихся окружностейСкачать

Планиметрия 12 | mathus.ru | расстояние между центрами пересекающихся окружностей

Уравнение окружности (1)Скачать

Уравнение окружности (1)

Расстояние между точками по координатам.Скачать

Расстояние между точками по координатам.

Длина отрезкаСкачать

Длина отрезка

Определение точки пересечения окружности с прямойСкачать

Определение точки пересечения окружности с прямой

Расстояние между центрами. Окружность. Математика 10-11 классы.Скачать

Расстояние между центрами. Окружность. Математика 10-11 классы.

Найти расстояние между центрами описанной и вписанной окружностей в прямоугольном треугольникеСкачать

Найти расстояние между центрами описанной и вписанной окружностей в прямоугольном треугольнике

1 2 4 сопряжение окружностейСкачать

1 2 4  сопряжение окружностей

Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачиСкачать

Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачи
Поделиться или сохранить к себе: