Этот онлайн калькулятор находит точки пересечения двух окружностей, если они существуют
Чтобы использовать калькулятор, введите координаты x и y центра и радиус каждой окружности.
Формулы для расчета приведены под калькулятором.
- Точки пересечения двух окружностей
- Первая окружность
- Вторая окружность
- Пересечение окружностей
- Всё про окружность и круг
- Расстояние между двумя точками онлайн
- Предупреждение
- Расстояние между двумя точками на прямой
- Расстояние между двумя точками на плоскости
- Расстояние между двумя точками в пространстве
- 📸 Видео
Точки пересечения двух окружностей
Первая окружность
Вторая окружность
Видео:Алгоритмы. Пересечение окружностейСкачать
Пересечение окружностей
Сама по себе задача нахождения точек пересечения двух окружностей достаточно проста, однако предварительно надо проанализировать если ли вообще точки пересения у данных двух окружностей. Поэтому начать надо с вычисления расстояния d в декартовых координатах между центрами окружностей и сравнения его с радиусами окружностей r1 и r2.
При этом возможно следующие случаи (расстояние между центрами показано красным отрезком):
Случай | Описание | Условие |
---|---|---|
Тривиальный случай — окружности совпадают (это одна и та же окружность) | ||
Окружности не касаются друг друга | r1 + r2″ /> | |
Одна окружность содержится внутри другой и не касается ее | ||
Окружности пересекаются в двух точках | Не выполнено ни одно из условий выше | |
Окружности соприкасаются в одной точке | Частный случай предыдущего |
Если окружности действительно пересекаются, калькулятор использует следующие формулы (в-основном выведенные из теоремы Пифагора), проиллюстрированные рисунком ниже:
Сначала калькулятор находит отрезок a
Чтобы найти точку P3, калькулятор использует следующую формулу (в векторном виде):
И наконец, чтобы найти точки пересечения, калькулятор использует следующие уравнения:
Первая точка:
Обратите внимание на разные знаки перед вторым слагаемым
По теме также можно посмотреть следующие ссылки (на английском языке): Circle-Circle Intersection и Circles and spheres
Видео:"Парадоксальное" среднее расстояние между точками на окружностиСкачать
Всё про окружность и круг
Окружность — это геометрическое место точек плоскости, равноудаленных от некоторой заданной точки (центра окружности). Расстояние между любой точкой окружности и ее центром называется радиусом окружности (радиус обозначают буквой R).
Значит, окружность — это линия на плоскости, каждая точка которой расположена на одинаковом расстоянии от центра окружности.
Кругом называется часть плоскости, ограниченная окружностью и включающая ее центр.
Отрезок, соединяющий две точки окружности, называется хордой. Хорда, проходящая через центр окружности, представляет собой диаметр. Диаметр окружности равен ее удвоенному радиусу: D = 2R.
Точка пересечения двух хорд делит каждую хорду на отрезки, произведение которых одинаково: a1a2 = b1b2
Касательная к окружности всегда перпендикулярна радиусу, проведенному в точку касания.
Отрезки касательных к окружности, проведенные из одной точки, равны: AB = AC, центр окружности лежит на биссектрисе угла BAC.
Квадрат касательной равен произведению секущей на ее внешнюю часть
Центральный угол — это угол, вершина которого совпадает с центром окружности.
Дугой называется часть окружности, заключенная между двумя точками.
Мерой дуги (в градусах или радианах) является центральный угол, опирающийся на данную дугу.
Вписанный угол это угол, вершина которого лежит на окружности, а cтороны угла пересекают ее.
Вписанный угол равен половине центрального, если оба угла опираются на одну и ту же дугу окружности.
Внутренние углы, опирающиеся на одну и ту же дугу, равны.
Сектором круга называется геометрическая фигура, ограниченная двумя радиусами и дугой, на которую опираются данные радиусы.
Периметр сектора: P = s + 2R.
Площадь сектора: S = Rs/2 = ПR 2 а/360°.
Сегментом круга называется геометрическая фигура, ограниченная хордой и стягиваемой ею дугой.
Видео:Уравнение окружности и формула расстояния между точками на плоскостиСкачать
Расстояние между двумя точками онлайн
С помощю этого онлайн калькулятора можно найти расстояние между точками по известным координатам этих точек. Дается решение с пояснениями. Для нахождения расстояния между точками задайте размерность (2-если задача рассматривается в двухмерном пространстве, 3- если задача рассматривается в трехмерном пространстве), введите координаты точек в ячейки и нажмите на кнопку «Решить». Теоретическую часть смотрите ниже.
Предупреждение
Инструкция ввода данных. Числа вводятся в виде целых чисел (примеры: 487, 5, -7623 и т.д.), десятичных чисел (напр. 67., 102.54 и т.д.) или дробей. Дробь нужно набирать в виде a/b, где a и b (b>0) целые или десятичные числа. Примеры 45/5, 6.6/76.4, -7/6.7 и т.д.
Видео:Взаимное расположение окружностей. Точки пересечения окружностейСкачать
Расстояние между двумя точками на прямой
Пусть заданы на оси OX точки A с координатой xa и B с координатой xb (Рис.1). Найдем расстояние между точками A и B.
Расстояние между точками A и В равно:
( small AB=OB-OA. ) | (1) |
Поскольку расстояние от O до В равна xb, а расстояние от O до A равна xa, получим:
( small AB=x_b-x_a . ) | (2) |
На рисунке 2 точки A и В находятся по разные стороны начала координат O. B этом случае рассояние между точками A и B равно:
( small AB=OB+OA. ) | (3) |
Поскольку координата точки A отрицательна а координата точки B положительна, то (2) можно записать так:
( small AB=x_b+|x_a|=x_b-x_a . ) | (4) |
На рисунке 3 точки A и В находятся c левой стороны начала координат O.
B этом случае рассояние между точками A и B равно:
( small AB=OA-OB. ) | (5) |
Координаты точек A и B отрицательны. Тогда , то (5) можно записать так:
( small AB=|x_a|-|x_b|=x_b-x_a . ) | (6) |
Из формул (2),(4),(6) следует, что независимо от расположения точек отностительно начала координат рассояние этих точек равна разности координат этих точек, причем от большего значения вычитается меньшее (так как расстояние не может быть отрицательным числом).
Формулы (2),(4),(6) можно записать и так:
( small AB=|x_b-x_a|= |x_a-x_b| . ) | (7) |
Пример 1. на оси Ox заданы точки ( small A(x_a)=A(-4) ) и ( small B(x_b)=B(7) ) . Найти рассояние между этими точками.
Решение. Для нахождения расстояния между точками A и B воспользуемся формулой (7):
( small AB=|x_b-x_a|= |7-(-4)|=11 . ) | (7) |
Видео:Планиметрия 11 |mathus.ru| расстояние между центрами пересекающихся окружностейСкачать
Расстояние между двумя точками на плоскости
Пусть на плоскости задана декартова прямоугольная система координат XOY и пусть на плоскости заданы точки A и B, где A имеет координаты (xa,ya), а B имеет координаты (xb,yb) (Рис.4).
Учитывая результаты предыдующего параграфа, можем найти расстояние между точками A и M, а также расстояние между точками B и M:
( small AM=x_b-x_a,;; BM=y_b-y_a. ) | (8) |
ABM является прямоугольным треугольником, где AB гипотенуза, а AM и BM катеты. Тогда, исходя из теоремы Пифагора, имеем:
( small AB^2=AM^2+BM^2. ) |
Тогда, учитывая (8), получим:
( small AB^2=AM^2+BM^2=(x_b-x_a)^2+(y_b-y_a)^2. ) |
( small AB=sqrt . ) | (9) |
Пример 2. На плоскости, в декартовой прямоугольной системе координат XOY заданы точки ( small A(x_a; y_a)=A(-6;3) ) и ( small B(x_b, y_b)=B(11,-4). ) . Найти рассояние между этими точками.
Решение. Для нахождения расстояния между точками A и B воспользуемся формулой (9). Подставляя координаты точек A и B в формулу (9), получим:
, |
. |
Ответ: .
Видео:Точки пересечения графика линейной функции с координатными осями. 7 класс.Скачать
Расстояние между двумя точками в пространстве
Рассмотрим в пространстве, в декартовой прямоугольной системе координат точки A и B, где A имеет координаты (xa,ya,za), а B имеет координаты (xb,yb,zb) (Рис.5).
AB является диагональю параллелепипеда, грани которго параллельны координатным плоскостьям и проходят через точки A и B. Но AB является гипотенузой прямоугольного треугольника AMB, а AM и BM являются катетами этого прямоугольного треугольника. Тогда, по теореме Пифагора, имеем:
( small AB^2=AM^2+BM^2. ) | (10) |
Учитывая, что BM равно разности третьих координат точек B и A, получим:
( small BM=z_b-z_a. ) |
Из предыдующего параграфа следует, что:
( small A’B’^2=(x_b-x_a)^2+(y_b-y_a)^2. ) | (11) |
Но AM=A’B’. Тогда из (10) и (11) следует:
( small AB^2=AM^2+BM^2=A’B’^2+BM^2 ) ( small =(x_b-x_a)^2+(y_b-y_a)^2+(z_b-z_a)^2. ) |
( small AB= sqrt. ) | (12) |
Пример 3. В пространстве задана декартова прямоугольная система координат XOY и точки ( small A(x_a; y_a ; z_a)=A(5;1;0) ) и ( small B(x_b, y_b, z_b)=B(-8,-4;21). ) Найти рассояние между этими точками.
Решение. Для нахождения расстояния между точками A и B воспользуемся формулой (12). Подставляя координаты точек A и B в формулу (12), получим:
, |
. |
Ответ: .
📸 Видео
Сможешь найти расстояние между центрами пересекающихся окружностей?Скачать
Расстояние между точкамиСкачать
Расстояние между центрами вписанной и описанной окружностей треугольника и их радиусами #ShortsСкачать
Как найти расстояние между центрами | Олимпиадная математикаСкачать
Планиметрия 12 | mathus.ru | расстояние между центрами пересекающихся окружностейСкачать
Уравнение окружности (1)Скачать
Расстояние между точками по координатам.Скачать
Длина отрезкаСкачать
Определение точки пересечения окружности с прямойСкачать
Расстояние между центрами. Окружность. Математика 10-11 классы.Скачать
Найти расстояние между центрами описанной и вписанной окружностей в прямоугольном треугольникеСкачать
1 2 4 сопряжение окружностейСкачать
Всё про углы в окружности. Геометрия | МатематикаСкачать
Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачиСкачать