Как найти расстояние между параллельными прямыми начертательная

Расстояние между двумя параллельными прямыми

Расстояние между двумя параллельными прямыми, определяется величиной перпендикуляра, опущенного из точки, взятой на одной прямой, на другую прямую.

Как найти расстояние между параллельными прямыми начертательная

На основе данного определения составляем алгоритм решения задачи в общем виде: — берем произвольную точку N на одной прямой; — из точки N опускаем перпендикуляр на на другую прямую: — через точку N проводим плоскость α перпендикулярную параллельным прямым n и m. — находим точку встречи M прямой m с плоскостью α; — соединяем точки N и M отрезком прямой; — определяем действительную величину отрезка [NM> способом прямоугольного треугольника. Расстояние между двумя параллельными прямыми определяется путем реализации данного алгоритма графических построений.

Решение задачи на расстояние между двумя параллельными прямыми значительно упрощается, если прямые будут параллельны плоскости проекции

Как найти расстояние между параллельными прямыми начертательная

Ход решения: — на прямой n отмечаем произвольную точку N; — вращаем прямые m и n вокруг оси iH (iN) до положения ║ V. Проекции прямых (n`1 ║ оси x) и (m`1 ║ оси x) — переведены в частное положение способом вращения вокруг оси перпендикулярной плоскости проекций H; — из точки опускаем перпендикуляр (N»M») на прямую 1. Определяем действительную величину [MN] способом прямоугольного треугольника.

Решение задачи на расстояние между двумя параллельными прямыми способом плоскопараллельного перемещения:

Как найти расстояние между параллельными прямыми начертательная

— первым шагом прямые переводятся в частное положение — положение фронтальных прямых, при этом перемещении d1 = const, (m` ║ n`) ║ оси x; — вторым шагом прямые переводятся в частное положение — положение горизонтально-проецирующих прямых, при этом перемещении d2 = const, (m» ║ n») ⊥ оси x; — проекциями горизонтально-проецирующих прямых 2 и 2 будут точки N`2 и M`2, соединив которые прямой линией получим отрезок [N`2M`2] — соответствующий действительной величине расстояния между двумя параллельными прямыми m и n. Обратным проецированием точки N и M могут быть построены на исходных проекциях.

Содержание
  1. Решение метрических задач в начертательной геометрии с примерами
  2. Решение метрических задач методами преобразовании проекций
  3. Четыре основных задачи преобразовании проекций
  4. Способ вращения
  5. Способ плоскопараллельного перемещения
  6. Способ замены плоскостей проекций
  7. Способ плоскопараллельного перемещения
  8. Способ замены плоскостей проекций
  9. Метрические задачи
  10. Определение расстояний между геометрическими объектами
  11. Перпендикулярность плоскостей
  12. Определение углов между прямой и плоскостью и между двумя плоскостями
  13. Примеры метрических задач
  14. Теорема о проекциях прямого угла
  15. Линии наибольшего наклона плоскости
  16. Перпендикулярность прямой и плоскости
  17. Взаимная перпендикулярность плоскостей
  18. Определение метрических задач
  19. Определение длины отрезка
  20. Определение площади треугольника
  21. Проецирование прямого угла
  22. Перпендикулярность прямых и плоскостей
  23. Перпендикулярность прямой и плоскости
  24. Расстояние от точки до плоскости
  25. Перпендикулярность плоскостей
  26. Определение натуральных величин геометрических элементов
  27. Определение расстояния между геометрическими элементами (образами)
  28. Определение углов наклона геометрических элементов к плоскостям проекций H и V
  29. Расстояние между двумя параллельными прямыми: определение и примеры нахождения
  30. Расстояние между двумя параллельными прямыми: определение
  31. Нахождение расстояния между параллельными прямыми
  32. 🎦 Видео

Видео:Определение кратчайшего расстояние между скрещивающимися прямыми методом замены плоскостей проекцииСкачать

Определение кратчайшего расстояние между скрещивающимися прямыми методом замены плоскостей проекции

Решение метрических задач в начертательной геометрии с примерами

Содержание:

К метрическим задачам относятся задачи на определение натуральной величины отрезков, расстояний углов, площадей плоских фигур.

Определение натуральной величины отрезка и углов наклона к плоскостям проекций методом прямоугольною треугольника Натуральная величина отрезка равна гипотенузе прямоугольного треугольника, одним катетом которого является проекция отрезка, а вторым — разность расстояний концов отрезка от той плоскости, на которой ведется построение. При этом угол между гипотенузой и катетом проекций является углом наклона отрезка к той плоскости, ряльной величины выполнено на горизонтальной проекции. Поэтому одним катетом прямоугольного треугольника, является горизонтальная проекцияКак найти расстояние между параллельными прямыми начертательная

Как найти расстояние между параллельными прямыми начертательная

Если необходимо определить угол наклона отрезка АВ к плоскости Как найти расстояние между параллельными прямыми начертательнаято построение прямоугольного треугольника ведется на фронтальной проекции.

Видео:Определение расстояние между параллельными прямыми (Способ замены плоскостей проекции).Скачать

Определение расстояние между параллельными прямыми (Способ замены плоскостей проекции).

Решение метрических задач методами преобразовании проекций

Положении геометрических образов, при которых расстоянии и углы не искажаются на плоскостях проекций

Метрические характеристики объектов на чертежах не искажаются, если геометрические образы занимают частное положение относительно плоскостей проекций.

Приведем некоторые из них.

1. Прямая проецируется в натуральную величину, если она параллельна плоскости проекций (рисунок 3.2).

Как найти расстояние между параллельными прямыми начертательная

Как найти расстояние между параллельными прямыми начертательная— угол наклона к плоскостиКак найти расстояние между параллельными прямыми начертательная

2. Расстояние от точки до прямой проецируется в натуральную величину, если прямая проецирующая (рисунок 3.3).

Как найти расстояние между параллельными прямыми начертательная

3. Расстояние между параллельными прямыми проецируется в натуральную величину, если прямые проецирующие (рисунок 3.4).

Как найти расстояние между параллельными прямыми начертательная

4. Расстояние между скрещивающимися прямыми проецируется в натуральную величину, если одна из прямых проецирующая (рисунок 3.5).

Как найти расстояние между параллельными прямыми начертательная

5. Угол между плоскостями (двугранный угол) проецируется в натуральную величину, если ребро угла проецирующее (рисунок 3.6).

Как найти расстояние между параллельными прямыми начертательная

6. Угол наклона плоскости к плоскости проекций проецируется в натуральную величину, если плоскость проецирующая (рисунок 3.7) Как найти расстояние между параллельными прямыми начертательная

7. Расстояние от точки до плоскости проецируется в натуральную величину, если плоскость проецирующая (рисунок 3.8)

Как найти расстояние между параллельными прямыми начертательная

8. Любая плоская фигура проецируется в натуральную величину, если она параллельна плоскости проекций (рисунок 3.9а,б)

Как найти расстояние между параллельными прямыми начертательная

Таким образом, для решения метрических задач целесообразно данный объект привести в частное положение с тем, чтобы на одной из новых проекций получить более простое решение задачи.

Для такого перехода и служат способы преобразования проекций.

Существует несколько способов преобразовании проекций: способ вращения вокруг осей перпендикулярных плоскостям проекций, способ плоскопараллельного перемещения, способ замены плоскостей проекций и др.

Четыре основных задачи преобразовании проекций

Этими способами решаются четыре основные задачи:

  • Задача 1. Прямую общего положения преобразуем в линию уровня (одно преобразование).
  • Задача 2. Прямую общего положения преобразуем в проецирующую (два преобразования)
  • Задача 3. Плоскость общего положения преобразуем в проецирующую (одно преобразование)
  • Задача 4. Плоскость общего положения преобразуем в плоскость уровня (два преобразования)

Решение 1-ой и 2-ой задачи преобразовании проекций методом вращении, плоскопараллельного перемещении и замены плоскостей проекций

Способ вращения

Способ вращения заключается в том, что геометрические образы вращаются вокруг осей перпендикулярных плоскостям проекций до занятия ими какого-либо частного положения относительно плоскостей проекций. При этом одна проекция точки перемещается по окружности, вторая — но прямой параллельной оси проекций.

На рисунке 3.10 вокруг осиКак найти расстояние между параллельными прямыми начертательнаявращаем отрезок ЛВ до положения параллельного плоскостиКак найти расстояние между параллельными прямыми начертательная(1 задача). Далее вращением вокруг осиКак найти расстояние между параллельными прямыми начертательнаяполученный отрезок до положения перпендикулярного плоскости Как найти расстояние между параллельными прямыми начертательнаяНа Как найти расстояние между параллельными прямыми начертательнаяотрезок с проецируется в точку Как найти расстояние между параллельными прямыми начертательная

Как найти расстояние между параллельными прямыми начертательная

Способ плоскопараллельного перемещения

Способ плоскопараллельного перемещения является разновидностью способа вращения (вращение без закрепленных осей), т.е. положение объекта можно преобразовывать путем перемещения его параллельно одной плоскости проекций, одновременно изменяя его положение относительно другой плоскости проекций до занятия им какого-либо частного положения.

На рисунке 3.11 сначала АВ переводим из общего положения в положение горизонтальное. При этом Как найти расстояние между параллельными прямыми начертательнаядолжно быть равно по величина Как найти расстояние между параллельными прямыми начертательнаянаходим в пересечении вертикальных линий связи и линий Как найти расстояние между параллельными прямыми начертательнаяпараллельных оси Как найти расстояние между параллельными прямыми начертательная(1 задача). Далее отрезок Как найти расстояние между параллельными прямыми начертательнаяперемещаем до положения перпендикулярного оси Как найти расстояние между параллельными прямыми начертательнаяПри этом Как найти расстояние между параллельными прямыми начертательнаяНа фронтальной проекции отрезок с проецируется в точку Как найти расстояние между параллельными прямыми начертательная(2 задача).

Как найти расстояние между параллельными прямыми начертательная

Как найти расстояние между параллельными прямыми начертательная

Способ замены плоскостей проекций

Сущность способа замены плоскостей проекций заключается в том, что старая система плоскостей проекций заменяется на новую, с таким расчетом, чтобы относительно новой системы плоскостей, геометрический образ занял какое-то частное положение. При этом нужно помнить, что линии связи будут перпендикулярны относительно новой оси проекций и расстояния от новой оси проекций до новой проекции точки равно расстоянию от старой проекции точки до старой оси.

На рисунке 3.12 произведена первая замена плоскость Как найти расстояние между параллельными прямыми начертательнаязаменена на новую фронтальную плоскость Как найти расстояние между параллельными прямыми начертательнаяпараллельную прямой АВ. При этом новая ось Как найти расстояние между параллельными прямыми начертательнаяпроводится параллельно проекции Как найти расстояние между параллельными прямыми начертательнаяЛинии связи проводятся перпендикулярно оси Как найти расстояние между параллельными прямыми начертательнаяи на них от Как найти расстояние между параллельными прямыми начертательнаяоткладываются координаты z точек А и В (1 задача).

Как найти расстояние между параллельными прямыми начертательная

Далее прямую АВ преобразуем в проецирующую. Для этого проводим новую ось Как найти расстояние между параллельными прямыми начертательнаяперпендикулярно проекцииКак найти расстояние между параллельными прямыми начертательная. Т.к. Как найти расстояние между параллельными прямыми начертательнаяпараллельна оси Как найти расстояние между параллельными прямыми начертательная, расстояние до проекций Как найти расстояние между параллельными прямыми начертательнаябудет одинаковое и прямая спроецируется в точку Как найти расстояние между параллельными прямыми начертательная(2 задача)

Решение 3-ой и 4-ой задачи преобразовании проекций методом плоскопараллельного перемещения и замены плоскостей проекций

Так как метод вращения является более громоздким, рассмотрим решение 3-ей и 4-ой задачи преобразования методом плоскопараллельного перемещения и методом замены плоскостей проекций.

Способ плоскопараллельного перемещения

Как найти расстояние между параллельными прямыми начертательная

Для того чтобы плоскость из общего положения перевести в проецирующее, нужно иметь ввиду, что при этом ее горизонталь или фронталь должна быть перпендикулярна плоскости проекций. Поэтому на рисунке 3.13 проведена горизонталь Как найти расстояние между параллельными прямыми начертательнаяДалее Как найти расстояние между параллельными прямыми начертательнаярасполагаем перпендикулярно оси Как найти расстояние между параллельными прямыми начертательнаяОткладываем на ней отрезок Как найти расстояние между параллельными прямыми начертательнаяи циркулем строим треугольник Как найти расстояние между параллельными прямыми начертательнаяравный по величине Как найти расстояние между параллельными прямыми начертательнаяНа фронтальной проекции треугольник проецируется в линию (3 задача).

Чтобы плоскость треугольника перевести в положение плоскости уровня, достаточно полученную фронтальную проекцию Как найти расстояние между параллельными прямыми начертательнаярасположить параллельно оси Как найти расстояние между параллельными прямыми начертательнаяпри этом на горизонтальной проекции треугольник проецируется в натуральную величину (4-я задача)

Способ замены плоскостей проекций

При решении задачи методом замены (рисунок 3.14) новую ось Как найти расстояние между параллельными прямыми начертательнаяпроводим перпендикулярно горизонтали Как найти расстояние между параллельными прямыми начертательнаятогда на новую фронтальную плоскость Как найти расстояние между параллельными прямыми начертательнаятреугольник спроецируется в линию, т.е. станет перпендикулярным (3-я задача). Чтобы плоскость перевести в положение плоскости уровня, необходимо новую ось Как найти расстояние между параллельными прямыми начертательнаяпровести параллельно плоскости Как найти расстояние между параллельными прямыми начертательнаяНа новую плоскость Как найти расстояние между параллельными прямыми начертательнаятреугольник спроецируется в натуральную величину.

Как найти расстояние между параллельными прямыми начертательная

Для того, чтобы методами преобразования решить любую метрическую задачу, необходимо определить какую из четырех основных задач преобразования необходимо решать в каждом конкретном случае.

Видео:Расстояние между скрещивающимися прямыми. Способ перемены плоскостей проекцийСкачать

Расстояние между скрещивающимися прямыми. Способ перемены плоскостей проекций

Метрические задачи

Метрические задачи — это задачи на определение линейных или угловых размеров геометрических объектов, а также расстояний и углов между ними.

Главным вопросом метрических задач является вопрос о построении перпендикуляра к прямой или плоскости. Построение взаимно перпендикулярных прямых было рассмотрено ранее.

Из элементарной геометрии известно, что прямая перпендикулярна к плоскости, если она перпендикулярна двум пересекающимся прямым, принадлежащим этой плоскости. В качестве этих пересекающихся прямых наиболее целесообразно использовать горизонталь и фронталь плоскости. Это объясняется тем, что только в этом случае прямой угол будет проецироваться в натуральную величину на соответствующие плоскости проекций. На рисунке 5.1 приведен пространственный чертеж, на котором из плоскости а (из точки А) восстановлен перпендикуляр АВ. Из приведенного изображения можно выяснить методику построения проекций перпендикуляра к плоскости: горизонтальная проекция перпендикуляра к плоскости проводится перпендикулярно горизонтальной проекции горизонтали или горизонтальному следу плоскости, а фронтальная проекция перпендикуляра проводится перпендикулярно фронтальной проекции фронтали или фронтальному следу плоскости. Таким образом, необходимо выполнить следующий алгоритм проведения проекций перпендикуляра к плоскости:

Как найти расстояние между параллельными прямыми начертательная

Как найти расстояние между параллельными прямыми начертательная

Построение перпендикуляра к плоскость и восстановление перпендикуляра из плоскости называется прямой задачей, а построение плоскости, перпендикулярной к прямой — обратной задачей. Обе задачи решаются по одному и тому же вышеописанному алгоритму. При этом плоскость, перпендикулярную заданной прямой, можно задать следами или пересекающимися горизонталью и фронталью.

На рисунке 5.2 показано решение прямой (а) и обратной (б) задач. В прямой задаче из точки A треугольника AВС восстановлен перпендикуляр, в обратной задаче через точку К проведена плоскость, перпендикулярная прямой АВ. Плоскость задана пересекающимися горизонталью и фронталью.

Здесь же приведены примеры прямой и обратной задач, если плоскость задана следами. В прямой задаче (в) из точки Л построен перпендикуляр на плоскость, в обратной (г) — через точку К проведена плоскость перпендикулярно прямой АВ. Как найти расстояние между параллельными прямыми начертательная

Определение расстояний между геометрическими объектами

Среди этих задач можно выделить следующие задачи: расстояние от точки до плоскости, расстояние от точки до прямой, расстояние между двумя параллельными прямыми, расстояние между двумя скрещивающимися прямыми, расстояние между двумя параллельными плоскостями и другие. В общем случае все задачи сводятся к определению расстояний между двумя точками.

Чтобы определить расстояние от точки до плоскости, необходимо выполнить ряд логических действий:

  1. Из точки опустить перпендикуляр на заданную плоскость;
  2. Найти точку встречи перпендикуляра с плоскостью;
  3. Определить НВ расстояния между заданной и найденной точками.

Задача на определение расстояния от точки до прямой решается по следующему плану:

  1. Через точку к провести плоскость, перпендикулярную заданной прямой;
  2. Найти точку встречи М заданной прямой с проведенной плоскостью;
  3. Соединить полученные точки (это будет перпендикуляр из точки на прямую);
  4. Определить НВ перпендикуляра.

Пространственная модель решения второй задачи представлена на рисунке 5.3. Рассмотренная задача относится также к задачам на перпендикулярность двух прямых.

Как найти расстояние между параллельными прямыми начертательная

Другие упомянутые задачи на определение расстояний легче решаются методами преобразования эпюра, которые будут рассмотрены в последующих разделах.

Перпендикулярность плоскостей

Плоскость перпендикулярна другой плоскости, если она содержит прямую, перпендикулярную другой плоскости (рисунок 5.4а). Таким образом, для того, чтобы провести плоскость, перпендикулярную другой, необходимо сначала провести перпендикуляр к заданной плоскости, а затем через него провести искомую плоскость. На рисунке 5.46 представлена задача: через точку К провести плоскость, перпендикулярную плоскости треугольника AВС. Искомая плоскость задана двумя пересекающимися прямыми, одна из которых перпендикулярна заданной плоскости.

Как найти расстояние между параллельными прямыми начертательная

Если две плоскости являются одноименными плоскостями частного положения (например, горизонтально- или фронтально-проецирующими), то при перпендикулярности плоскостей их собирательные следы будут перпендикулярны друг другу (рисунок 5.4в,г).

Если плоскости являются плоскостями общего положения, то при их перпендикулярности одноименные следы не будут взаимно перпендикулярны. Другими словами, перпендикулярность одноименных следов плоскостей общего положения не является достаточным условием для перпендикулярности самих плоскостей.

Определение углов между прямой и плоскостью и между двумя плоскостями

Определение углов между геометрическими объектами является трудоемкой задачей, если её решать традиционными геометрическими способами. Так, например, задачу на определение угла между прямой и плоскостью (рисунок 5.5) можно решить способом, алгоритм которого содержит следующие операции:

  1. Определить точку встречи прямой АВ с плоскостью а;
  2. Из точки В построить перпендикуляр на плоскость;
  3. Найти точку встречи перпендикуляра с плоскостью;
  4. Точки К и N соединить и определить НВ угла BKN.

Как найти расстояние между параллельными прямыми начертательная

Однако задача может быть значительно упрощена, если использовать способ решения задачи с помощью дополнительного угла. Дополнительным углом назовем угол между заданной прямой АВ и перпендикуляром BN, обозначенный через Как найти расстояние между параллельными прямыми начертательнаяИз приведенного рисунка видно, что, если из точки В прямой построить на плоскость перпендикуляр, определить НВ дополнительного угла Как найти расстояние между параллельными прямыми начертательнаято искомый угол определится по формуле:

Как найти расстояние между параллельными прямыми начертательная

которую можно решить графически, достроив угол Как найти расстояние между параллельными прямыми начертательнаядо 90°.

То же самое можно сказать о задаче на определение двугранного угла, то есть угла между двумя плоскостями (рисунок 5.66). Первый способ (геометрический) достаточно трудоемок. Он заключается в пересечении угла вспомогательной плоскостью а, перпендикулярной ребру АВ, построении линий пересечения KN и KL и определении натуральной величины угла NKL.

Как найти расстояние между параллельными прямыми начертательная

С помощью дополнительного угла задача решается следующим образом. В растворе двугранного угла (рисунок 5.6в) берут любую точку К и строят из неё перпендикуляры на обе плоскости двугранного угла, которые образуют дополнительный угол Как найти расстояние между параллельными прямыми начертательнаяДалее определяют НВ дополнительного угла и дополняют его (графически) до 180 градусов, исходя из формулы:

Как найти расстояние между параллельными прямыми начертательная

Дополненный угол будет искомым.

Натуральную величину дополнительного угла Как найти расстояние между параллельными прямыми начертательнаяв обеих задачах наиболее целесообразно определять методом вращения вокруг горизонтали или фронтали, который будет изложен в последующих темах.

Пример: Из любой вершины треугольника АВС восстановить перпендикуляр длиной 40 мм.

Как найти расстояние между параллельными прямыми начертательная

Решение: Сначала необходимо в плоскости треугольника АВС провести горизонталь и фронталь для того, чтобы построить проекции восстановленного перпендикуляра. Далее из точки С проводим проекции перпендикуляра согласно рассмотренному выше алгоритму о перпендикуляре к плоскости. Для того, чтобы отложить 40 мм, необходимо определить НВ ограниченного отрезка перпендикуляра CF (точку F берем произвольно). НВ отрезка CF определяем методом прямоугольного треугольника на горизонтальной проекции CF. Полученную точку К возвращаем на проекции по теореме Фалеса. Получаем проекции перпендикуляра длиной 40 мм (рисунок. 5.7).

Пример: Найти расстояние от точки А до плоскости, заданной следами

Как найти расстояние между параллельными прямыми начертательная

Решение: Из точки А строим перпендикуляр на заданную плоскость. Проекции перпендикуляра проводим перпендикулярно следам. Далее находим точку встречи перпендикуляра с заданной плоскостью с помощью вспомогательной фронтально-проецирующей плоскости Как найти расстояние между параллельными прямыми начертательнаяНаходим линию пересечения плоскостей Как найти расстояние между параллельными прямыми начертательная(линия 1-2) и точку встречи Как найти расстояние между параллельными прямыми начертательнаяв месте пересечения горизонтальной проекции перпендикуляра с линией 1-2. Методом прямоугольного треугольника определяем НВ расстояния АК (рисунок 5.8).

Пример: Определить расстояние от точки К до прямой AВ.

Как найти расстояние между параллельными прямыми начертательная

Решение: Через точку К проводим плоскость, перпендикулярную заданной прямой. Плоскость задаем пересекающимися горизонталью и фронталью. Их проекции проводим согласно алгоритму о перпендикуляре к плоскости (обратная задача). Далее находим точку встречи прямой с проведенной плоскостью (точка М). Определяем натуральную величину КМ методом прямоугольного треугольника (рисунок 5.9).

Видео:57. Определение расстояния между двумя параллельными прямымиСкачать

57. Определение расстояния между двумя параллельными прямыми

Примеры метрических задач

Задачи, в которых определяются различные геометрические величины -расстояния между объектами, длины отрезков, углы, площади и т.д. называются метрическими. Решение многих метрических задач, например задач на определение кратчайших расстояний, требует построения перпендикулярных прямых и плоскостей.

Перпендикулярность является частным случаем пересечения прямых, прямой и плоскости или двух плоскостей. Необходимо установить соотношения, по которым строятся проекции перпендикулярных прямых и плоскостей.

Теорема о проекциях прямого угла

Прямой угол проецируется на плоскость без искажения, если одна из его сторон параллельна этой плоскости (рис. 10.1).

Как найти расстояние между параллельными прямыми начертательная

Рис. 10.1. Теорема о проекциях прямого угла

Дано :Как найти расстояние между параллельными прямыми начертательнаяBAC = 90°; AB || П’

Доказать, что C’A’Как найти расстояние между параллельными прямыми начертательнаяA’B’

Доказательство: если AB||П’, то A’B’||AB, но AA’Как найти расстояние между параллельными прямыми начертательнаяП’^AA’Как найти расстояние между параллельными прямыми начертательнаяA’B’ значит ABКак найти расстояние между параллельными прямыми начертательнаяAA,AB Как найти расстояние между параллельными прямыми начертательнаяплоскости CAA’C’, тогда и A’B’ Как найти расстояние между параллельными прямыми начертательнаяCAA’C’. Следовательно,CA’Как найти расстояние между параллельными прямыми начертательнаяA’B’.

На основании этой теоремы две взаимно перпендикулярные прямые (пересекающиеся или скрещивающиеся) проецируются на П1 в виде взаимно перпендикулярных прямых, если одна из них горизонталь, на П2 — если одна из них фронталь (рис. 10.2,а).

Условие перпендикулярности скрещивающихся прямых (рис. 10.2,б) сводятся к условиям перпендикулярности пересекающихся прямых, поведенных через произвольную точку и соответственно параллельных скрещивающимся прямым. Таким образом, понятие перпендикулярности можно отнести как к пересекающимся, так и к скрещивающимся прямым.

Как найти расстояние между параллельными прямыми начертательная

Рис. 10.2. Перпендикулярные прямые:
а -пересекающиеся a1 Как найти расстояние между параллельными прямыми начертательнаяh1 Как найти расстояние между параллельными прямыми начертательнаяa Как найти расстояние между параллельными прямыми начертательнаяh ;
б -скрещивающиеся b2 Как найти расстояние между параллельными прямыми начертательнаяКак найти расстояние между параллельными прямыми начертательная2 Как найти расстояние между параллельными прямыми начертательнаяb Как найти расстояние между параллельными прямыми начертательнаяКак найти расстояние между параллельными прямыми начертательная

Линии наибольшего наклона плоскости

Прямые, лежащие в плоскости и перпендикулярные линиям уровня этой плоскости, называются линиями наибольшего наклона к соответствующей плоскости проекций (рис. 10.3). Так, прямая, лежащая в плоскости и перпендикулярная горизонтали плоскости, называется линией наибольшего наклона к горизонтальной плоскости проекций, а прямая, перпендикулярная фронтали — линией наибольшего наклона к фронтальной плоскости проекций.

Угол между линией наибольшего наклона и ее проекцией на соответствующую плоскость равен углу наклона плоскости к плоскости проекций (см. рис. 9.15).
Как найти расстояние между параллельными прямыми начертательная

Рис. 10.3. Линия наибольшего наклона плоскости а к П1:
а — плоскость общего положения; h ∈α — горизонталь плоскости а; AB Как найти расстояние между параллельными прямыми начертательнаяh — линия наибольшего наклона;
φ = Как найти расстояние между параллельными прямыми начертательнаяAB, AB 1 — угол наклона плоскости а к П1

Перпендикулярность прямой и плоскости

Прямая перпендикулярна плоскости, если она перпендикулярна двум пересекающимся прямым этой плоскости. На основании теоремы о проекциях прямого угла можно получить условие перпендикулярности прямой общего положения и плоскости общего положения:
Если прямая а перпендикулярна плоскости α(ABC), то ее горизонтальная проекция перпендикулярна горизонтальной проекции горизонтали плоскости, а фронтальная проекция — фронтальной проекции фронтали плоскости.

Например, при построении прямой а, перпендикулярной плоскости α(ABC) (рис. 10.4,а), в плоскости строятся линии уровня — горизонталь и фронталь, затем через произвольную точку в плоскости, в данном случае точку K(h×Как найти расстояние между параллельными прямыми начертательная), строится прямая, горизонтальная проекция которой перпендикулярна горизонтальной проекции горизонтали плоскости α(ABC), а фронтальная проекция — фронтальной проекции фронтали плоскости.

Как найти расстояние между параллельными прямыми начертательная

Рис. 10.4. Перпендикулярность прямой и плоскости:

а -построение прямой, перпендикулярной плоскости: Как найти расстояние между параллельными прямыми начертательная

б -построение плоскости, перпендикулярной прямой: Как найти расстояние между параллельными прямыми начертательная

Аналогично решается задача о построении плоскости, перпендикулярной прямой общего положения (рис. 10.4,б)

Если плоскость проецирующая, проекции линий уровня совпадают со следом плоскости, перпендикулярность устанавливается по отношению к следу плоскости. Горизонтальная проекция перпендикуляра к горизонтально-проецирующей плоскости строится перпендикулярно горизонтальному следу плоскости (рис. 10.5,а). Прямая, перпендикулярная горизонтально-проецирующей плоскости, занимает положение горизонтальной линии уровня.
Аналогично, фронтальная проекция перпендикуляра к фронтально-проецирующей плоскости строится перпендикулярно фронтальному следу плоскости (рис. 10.5,б). Прямая, перпендикулярная фронтально-проецирующей плоскости, занимает положение фронтали.

Как найти расстояние между параллельными прямыми начертательная

Рис. 10.5. Перпендикулярность прямой и проецирующей плоскости:
а -построение прямой, перпендикулярной плоскости;
б -построение плоскости, перпендикулярной прямой

Взаимная перпендикулярность плоскостей

Две плоскости взаимно перпендикулярны, если одна из них проходит через перпендикуляр к другой. Таким образом, построение взаимно перпендикулярных плоскостей сводится к построению перпендикулярных прямой и плоскости. Например, чтобы через произвольную точку А провести плоскость, перпендикулярную плоскости a(Как найти расстояние между параллельными прямыми начертательная× h) (рис. 10.6), достаточно построить прямую n,перпендикулярную плоскости α(Как найти расстояние между параллельными прямыми начертательная×h): n1Как найти расстояние между параллельными прямыми начертательнаяh1; n2Как найти расстояние между параллельными прямыми начертательнаяКак найти расстояние между параллельными прямыми начертательная2. Вторая прямая m, определяющая искомую плоскость, может быть задана произвольно — как пересекающая прямую n или параллельная ей.

Как найти расстояние между параллельными прямыми начертательная

Рис. 10.6. Перпендикулярность двух плоскостей

Дано: α(h × Как найти расстояние между параллельными прямыми начертательная ) ; A (A1, A2).

Построить: A ∈ β Как найти расстояние между параллельными прямыми начертательнаяα .

Как найти расстояние между параллельными прямыми начертательная

Видео:19. Расстояние между параллельными прямыми Расстояние между скрещивающимися прямымиСкачать

19. Расстояние между параллельными прямыми Расстояние между скрещивающимися прямыми

Определение метрических задач

Традиционно задачи, связанные с измерением длин, углов, площадей и объемов относят к метрическим. В основе решения этих задач лежит определение длины отрезка и, как производной от этого, площади плоской фигуры.

Определение длины отрезка

Одним из наиболее распространенных методов (рисунок 5.1) является метод прямоугольного треугольника (так его называют в начертательной геометрии) или метод ортогональных дополнений (название, принятое в линейной алгебре).
Как найти расстояние между параллельными прямыми начертательная

Идея метода базируется на следующем. Истинная величина отрезка AВ является гипотенузой прямоугольного треугольника, один из катетов которого, является проекцией отрезка AВ на плоскость проекции Как найти расстояние между параллельными прямыми начертательнаяа второй катет -разница координат Как найти расстояние между параллельными прямыми начертательнаяконцов отрезка для оси, отсутствующей в рассматриваемой плоскости проекции (ортогональное дополнение). Угол между проекцией и гипотенузой этого треугольника (а) определяет наклон прямой к соответствующей плоскости проекции.

На комплексном чертеже возможно решение как на плоскости Как найти расстояние между параллельными прямыми начертательнаятак и на плоскости Как найти расстояние между параллельными прямыми начертательнаяПри правильных построениях Как найти расстояние между параллельными прямыми начертательная. Углы а и Как найти расстояние между параллельными прямыми начертательная-углы наклона отрезка прямой АВ к плоскости Как найти расстояние между параллельными прямыми начертательнаясоответственно.

Определение площади треугольника

Определение площади треугольника и величины плоского угла можно свести к известной задаче построения треугольника по трем сторонам.

Для этого достаточно, используя рассмотренный выше способ прямоугольного треугольника, найти по порядку истинные величины сторон Как найти расстояние между параллельными прямыми начертательная(в соответствии с рисунком 5.2), а затем на свободном месте построить треугольник по трем сторонам.

Как найти расстояние между параллельными прямыми начертательная
Величина плоского угла между двумя любыми сторонами этой фигуры может быть измерена на истинной величине треугольника.

Проецирование прямого угла

Решение многих задач Начертательной геометрии связано с необходимостью построения на чертеже взаимно перпендикулярных прямых и плоскостей. Базой для этого служит умение строить прямые углы на комплексном чертеже.

Как найти расстояние между параллельными прямыми начертательная
Известная в теории чертежа теорема (приведем ее без доказательства) утверждает, что прямой угол (в соответствии с рисунком 5.3) проецируется на

соответствующую плоскость проекций вез искажения, если одна из его сторон параллельна этой плоскости проекций, а вторая — ей не перпендикулярна.

Перпендикулярность прямых и плоскостей

Выше уже отмечалось, что в трехмерном Евклидовом пространстве отсутствует полная параллельность, то же самое можно сказать и о перпендикулярности. Понятие перпендикулярности так же, как и параллельности, вводится через определение.

Перпендикулярность прямой и плоскости

Считают, что прямая перпендикулярна плоскости, если она перпендикулярна двум пересекающимся (любым) прямым этой плоскости.

При решении задачи возможны два варианта: проведение перпендикулярной прямой к плоскости из внешней точки и из точки, лежащей в плоскости.
Рассмотрим возможность проведения перпендикуляра из точки К, лежащей в плоскости общего положения Р, заданной следами (рисунок 5.4).

Как найти расстояние между параллельными прямыми начертательная
Рисунок 5.4 — Перпендикулярность прямой и плоскости

В плоскости Р (через точку К) проводятся горизонталь h и фронталь f. Прямые, перпендикулярные соответствующим проекциям линий уровня Как найти расстояние между параллельными прямыми начертательнаяв соответствии с теоремой о проецировании прямого угла и данным выше определением, могут быть приняты за проекции прямой Как найти расстояние между параллельными прямыми начертательная.

В том случае, когда точка К не лежит в плоскости Р, решение задачи аналогично (рисунок 5.5).

Поскольку положение точки пересечения искомого перпендикуляра не определено, решение соответствует следующей схеме:

а) в плоскости проводятся горизонталь h (через точку В) и фронталь f (через точку A), в случае задания плоскости следами за фронталь и горизонталь принимаются соответствующие следы плоскости Как найти расстояние между параллельными прямыми начертательная

Как найти расстояние между параллельными прямыми начертательная

Рисунок 5.5 — Перпендикуляр к плоскости

б) из внешней точки К к соответствующим проекциям линий уровня (следам) проводятся перпендикулярные прямыеКак найти расстояние между параллельными прямыми начертательная— Линия t принимается за перпендикуляр, опущенный из точки К к плоскости Р;

в) определяется точка S пересечения этого перпендикуляра t и плоскости.

Расстояние от точки до плоскости

Как найти расстояние между параллельными прямыми начертательная
Рисунок 5.6 — Расстояние от точки до плоскости

Задачу на определение расстояние от точки до плоскости (рисунок 5.6) можно свести к решению уже известных задач на построение перпендикуляра к плоскости (рисунок 5.5) и определения натуральной величины отрезка прямой (рисунок 5.1)

Перпендикулярность плоскостей

Считают, что две плоскости взаимно перпендикулярны, если одна из них проходит через прямую, перпендикулярную другой плоскости.

Задача может ставиться, как проведение плоскости, перпендикулярной заданной, проходящей через точку или прямую.

При проведении искомой плоскости через точку, как и в предыдущем случае, возможны два варианта проведения плоскости перпендикулярной заданной: через точку, лежащую в плоскости и через точку вне ее (рисунок 5.7).

Точно такой же вариант возникает и при проведении перпендикулярной плоскости через прямую (лежащую в исходной плоскости или не лежащую).

Рассмотрим вариант построения плоскости, проходящей через точку. Пусть точка А лежит в плоскости Р. Линии Как найти расстояние между параллельными прямыми начертательнаяперпендикулярные соответствующим проекциям линий уровня (следам), определят перпендикуляр t к плоскости Р.

Как найти расстояние между параллельными прямыми начертательная
Рисунок 5.7 — Перпендикулярность плоскостей
Проведение через точку А произвольной прямой s позволяет определить плоскость Q, которая будет перпендикулярна плоскости Р.

Если точка А лежит вне плоскости Р, то решение аналогично. Проведение через точку А перпендикуляра t и произвольной прямой s определит плоскость Q, которая также, по определению, будет перпендикулярна плоскости Р.

Решение задачи на проведение плоскости через прямую аналогично решению задачи по проведению плоскости через точку. Достаточно вместо произвольной прямой s использовать заданную прямую АВ. И тогда, в соответствии с рисунком 5.8, задача сведется к проведению перпендикуляра t к плоскости Р (из точки, лежащей в плоскости или лежащей вне ее).
Как найти расстояние между параллельными прямыми начертательная

Рисунок 5.8 — Перпендикулярность плоскостей

Определение натуральных величин геометрических элементов

1. Определить натуральную величину отрезка общего положения:

  • способом прямоугольного треугольника;
  • способом замены плоскостей проекций преобразовать в прямую уровня;
  • способом вращения вокруг проецирующей оси преобразовать в прямую уровня.

2. Определить натуральную величину плоскости общего положения (замкнутого отсека):

  • способом замены плоскостей проекций преобразовать в плоскость уровня;
  • способом вращения вокруг линии уровня преобразовать в плоскость уровня;
  • способом плоскопараллельного перемещения преобразовать в плоскость уровня.

Определение расстояния между геометрическими элементами (образами)

1. Определить расстояние от точки до прямой общего положения:

  • способом замены плоскостей проекций преобразовать плоскость, заданную прямой и точкой, в плоскость уровня (задачи 3 и 4 преобразования; прямую и точку рассматривать как плоскость);
  • способом замены плоскостей проекций преобразовать прямую общего положения в проецирующую прямую (задачи 1 и 2 преобразования);
  • способом вращения вокруг линии уровня преобразовать плоскость, заданную прямой и точкой, в плоскость уровня;
  • способом плоскопараллельного перемещения преобразовать плоскость, заданную прямой и точкой, в плоскость уровня;
  • способом задания плоскости, перпендикулярной к прямой (3-й тип задач), построить через заданную точку плоскость, перпендикулярную к прямой, и определить точку пересечения последней с плоскостью.

2. Определить расстояние между параллельными прямыми:

  • способом замены плоскостей проекций преобразовать плоскость, заданную параллельными прямыми, в плоскость уровня (задачи 3 и 4 преобразования);
  • способом замены плоскостей проекций преобразовать две параллельные общего положения в проецирующие прямые (задачи 1 и 2 преобразования);
  • способом вращения вокруг линии уровня преобразовать плоскость, заданную параллельными прямыми, в плоскость уровня, ограничив ее замкнутым отсеком;
  • способом плоскопараллельного перемещения преобразовать плоскость, заданную параллельными прямыми, в плоскость уровня;
  • способом задания плоскости, перпендикулярной к прямой (3-й тип задач), построить плоскость через любую точку, принадлежащую одной из прямых, перпендикулярную ко второй прямой, и определить точку пересечения этой плоскости со второй прямой.

3. Определить расстояние между скрещивающимися прямыми, преобразовав одну из прямых в проецирующую (задачи 1 и 2 преобразования).

4. Определить расстояние от точки до плоскости:

  • по теме «Перпендикулярность» – провести перпендикуляр к плоскости, построить точку пересечения этого перпендикуляра с заданной плоскостью и найти любым способом натуральную величину построенного отрезка (см. пункт 1);
  • способом замены плоскостей проекций преобразовать плоскость общего положения в плоскость проецирующую.

5. Определить расстояние от точки до поверхности вращения:

  • способом замены плоскостей проекций преобразовать плоскость, проведенную через точку и ось вращения поверхности, в плоскость уровня (задача 4 преобразования);
  • способом вращения вокруг проецирующей оси повернуть плоскость, проведенную через точку и ось вращения поверхности, в плоскость уровня.

Определение углов наклона геометрических элементов к плоскостям проекций H и V

1. Определить углы наклона прямой общего положения к плоскостям проекций H и V:

  • способом прямоугольного треугольника построить на двух проекциях натуральные величины отрезка и определить углы наклона прямой;
  • способом замены плоскостей проекций преобразовать прямую общего положения в горизонтальную, а затем во фронтальную прямую (задача 1 преобразования);
  • способом вращения вокруг соответствующей проецирующей оси преобразовать прямую общего положения в горизонтальную и во фронтальную прямые.

2. Определить угол наклона прямой к заданной плоскости общего положения:

  • из любой точки прямой опустить перпендикуляр к плоскости;
  • способом вращения вокруг линии уровня преобразовать построенную плоскость, заданную прямой и перпендикуляром, в плоскость уровня;
  • искомый угол будет дополнять построенный угол до 90°.

3. Определить величину двухгранного угла, если на чертеже есть линии пересечения плоскостей, образующих двухгранный угол (ребро):

  • способом замены плоскостей проекций преобразовать ребро двухгранного угла в проецирующую прямую (задачи 1 и 2 преобразования).

4. Определить угол между двумя плоскостями общего положения, если на чертеже нет линии пересечения заданных плоскостей (ребра):

  • задача решается косвенным путем, для чего из любой точки пространства следует опустить перпендикуляры к заданным плоскостям, которые, в свою очередь, задают вспомогательную плоскость, перпендикулярную к этим плоскостям;
  • эту вспомогательную плоскость способом вращения вокруг линии уровня следует преобразовать в плоскость уровня, определив угол между перпендикулярами (преобразование вспомогательной плоскости в плоскость уровня возможно и другими способами – ее плоскопараллельным перемещением или заменой плоскостей проекций);
  • искомый угол будет дополнять построенный угол до 180° (углом между плоскостями считают угол острый).

Структуризация материала тринадцатой лекции в рассмотренном объеме схематически представлена на рис. 13.1 (лист 1). На последующих листах 2–7 компактно приведены иллюстрации к этой схеме для визуального повторения изученного материала при его повторении (рис. 13.2–13.7).

Метрические задачи:

Как найти расстояние между параллельными прямыми начертательная

Определение натуральной величины геометрических элементов:

1. Определение длины отрезка

Способ прямоугольного треугольника

Как найти расстояние между параллельными прямыми начертательная

Способ замены плоскостей проекций (задача 1)

Как найти расстояние между параллельными прямыми начертательная

Способ вращения вокруг проецирующей оси

Как найти расстояние между параллельными прямыми начертательная

2. Определение площади замкнутого отсека

Способ замены плоскостей проекций (задачи 3 и 4)

Как найти расстояние между параллельными прямыми начертательная

Способ вращения вокруг прямой уровня (горизонтали)

Как найти расстояние между параллельными прямыми начертательная

Способ вращения вокруг проецирующей оси i(i Как найти расстояние между параллельными прямыми начертательнаяV)

Как найти расстояние между параллельными прямыми начертательная

Способ плоско-параллельного перемещения (переноса)

Как найти расстояние между параллельными прямыми начертательная

Определение расстояний:

1. Расстояние между точками — определяется величиной отрезка, соединяющего эти точки

2. Расстояние от точки до прямой — определяется величиной перпендикуляра, опущенного из точки к прямой

а. Прямой путь (перпендикулярность)

б. Способ замены плоскостей проекций: определить натуральную величину плоскости, которую определяют точка и прямая (см.рис. 13.2, г)

в. Способ вращения вокруг прямой уровня: определить натуральную величину плоскости, которую определяют точка и прямая (см.рис.13.2, д)

г. Способ плоскопараллельного переноса: определить натуральную величину плоскости, которую определяют точка и прямая (см.рис.13.2, ж)

Как найти расстояние между параллельными прямыми начертательная

3. Расстояние между параллельными прямыми — определяется величиной перпендикуляра, проведённого из произвольной точки одной прямой к другой прямой

а. Способ замены плоскостей проекции (рассматриваем две прямые) — задачи 1 и 2 (преобразовать прямые общего положения AB и CD в проецирующие)

б. Способ замены плоскостей проекции (рассматриваем плоскость, которую определяют параллельные прямые) — задачи 3 и 4 (определить натуральную величину плоскости ? (AB//СВ))

Как найти расстояние между параллельными прямыми начертательная

Как найти расстояние между параллельными прямыми начертательная

4. Расстояние между скрещивающимися прямыми — определяется величиной перпендикуляра, проведённого от одной из прямых, преобразованной в точку, к другой прямой (задачи 1 и 2 замены плоскостей проекции).

Способ замены плоскостей проекций — задачи 1 и 2

Как найти расстояние между параллельными прямыми начертательная

5. Расстояние от точки до плоскости — определяется величиной перпендикуляра, проведённого из точки на плоскость до точки его пересечения с этой плоскостью.

а. Прямой путь (перпендикулярность)

Как найти расстояние между параллельными прямыми начертательная

б. Способ замены плоскостей проекций (плоскость преобразовать в проецирующую — задача 3)

Как найти расстояние между параллельными прямыми начертательная

6. Расстояние между прямой и параллельной ей плоскостью — определяется величиной перпендикуляра, проведённого из произвольной точки на прямой к плоскости.

7. Расстояние между параллельными плоскостями — определяется величиной отрезка перпендикуляра, опущенного из точки одной плоскости на другую плоскость (до точки пересечения с другой плоскостью).

8. Расстояние от точки до поверхности

a. Cпособ вращения вокруг проецирующей оси

Как найти расстояние между параллельными прямыми начертательная

Как найти расстояние между параллельными прямыми начертательная

Как найти расстояние между параллельными прямыми начертательная

б. Способ замены плоскостей проекции

Как найти расстояние между параллельными прямыми начертательная

Как найти расстояние между параллельными прямыми начертательная

Определение величин углов:

1. Угол φ между скрещивающимися прямыми — определяется плоским углом, образованным двумя пересекающимися прямыми, проведёнными из произвольной точки пространства параллельно скрещивающимся прямым (рис. 13.6, а)

Способ вращения вокруг линии уровня

Дано:
а и b — скрещивающиеся прямые
Требуется:

φ — ?

Решение:
1.
Как найти расстояние между параллельными прямыми начертательная
2.φ — вращением вокруг фронтали, проведённой в построенной плоскости α(dс)

Как найти расстояние между параллельными прямыми начертательная

2. Угол φ между прямой и плоскостью — определяется углом между прямой и её проекцией на эту плоскость.

Дано:
α(h ∩ f);
AB — прямая общего положения
Требуется:
φ — ?

Как найти расстояние между параллельными прямыми начертательная

Решение:
1. l Как найти расстояние между параллельными прямыми начертательная α(h ∩ f);
lКак найти расстояние между параллельными прямыми начертательная» Как найти расстояние между параллельными прямыми начертательнаяf»;
lКак найти расстояние между параллельными прямыми начертательная Как найти расстояние между параллельными прямыми начертательнаяh’;
2. ∠φ — вращением вокруг фронтали, проведённой в построенной плоскости β(AB∩l)

3. Угол φ между плоскостями α и β — определяется линейным углом, образованным двумя прямыми, по которым некоторая плоскость γ, перпендикулярная плоскостям (или их ребру), пересекает эти плоскости (углом между плоскостями считают острый угол).

а. Если на чертеже нет ребра (линии пересечения заданных плоскостей) — угол φ определяется способом вращения вокруг линии уровня (рис. а)

Как найти расстояние между параллельными прямыми начертательная

Дано:
(m // h); (а
b).
Требуется:
φ — ?
Решение:
1. провести в заданной плоскости фронтали и горизонтали;

2. из произвольной точки пространства D (D’, D») провести перпендикуляры l1 и l2 к заданными плоскостям, которые определяют плоскость γ(l1 l2);
3.
φ — вращением вокруг горизонтали h3, проведённой в построенной плоскости γ(l1 l2).

Как найти расстояние между параллельными прямыми начертательная

б. Если на чертеже есть ребро (линия пересечения заданных плоскостей) — угол φ определяется способом замены плоскостей проекций (задачи 1 и 2, рис. б)

Как найти расстояние между параллельными прямыми начертательная

ребро АВ двугранного угла преобразовать двумя заменами в проецирующую прямую.

Рекомендую подробно изучить предметы:
  1. Инженерная графика
  2. Начертательная геометрия
  3. Компас
  4. Автокад
  5. Черчение
  6. Проекционное черчение
  7. Аксонометрическое черчение
  8. Строительное черчение
  9. Техническое черчение
  10. Геометрическое черчение
Ещё лекции с примерами решения и объяснением:
  • Тени в ортогональных проекциях
  • Кривые поверхности
  • Пересечения криволинейных поверхностей
  • Пересечения поверхностей с прямой и плоскостью
  • Пересечение поверхности плоскостью и прямой
  • Развертки поверхностей
  • Способы преобразования проекций
  • Взаимное положение прямой и плоскости

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Видео:Метод замены плоскостей. Нахождение расстояния между прямыми общего положенияСкачать

Метод замены плоскостей. Нахождение расстояния между прямыми общего положения

Расстояние между двумя параллельными прямыми: определение и примеры нахождения

В материале этой статьи разберем вопрос нахождения расстояния между двумя параллельными прямыми, в частности, при помощи метода координат. Разбор типовых примеров поможет закрепить полученные теоретические знания.

Видео:Расстояние между параллельными прямымиСкачать

Расстояние между параллельными прямыми

Расстояние между двумя параллельными прямыми: определение

Расстояние между двумя параллельными прямыми – это расстояние от некоторой произвольной точки одной из параллельных прямых до другой прямой.

Приведем иллюстрацию для наглядности: Как найти расстояние между параллельными прямыми начертательная

На чертеже изображены две параллельные прямые a и b . Точка М 1 принадлежит прямой a , из нее опущен перпендикуляр на прямую b . Полученный отрезок М 1 Н 1 и есть расстояние между двумя параллельными прямыми a и b .

Указанное определение расстояния между двумя параллельными прямыми справедливо как на плоскости, так и для прямых в трехмерном пространстве. Кроме того, данное определение взаимосвязано со следующей теоремой.

Когда две прямые параллельны, все точки одной из них равноудалены от другой прямой.

Пусть нам заданы две параллельные прямые a и b . Зададим на прямой а точки М 1 и М 2 , опустим из них перпендикуляры на прямую b , обозначив их основания соответственно как Н 1 и Н 2 . М 1 Н 1 – это расстояние между двумя параллельными прямыми по определению, и нам необходимо доказать, что | М 1 Н 1 | = | М 2 Н 2 | .

Как найти расстояние между параллельными прямыми начертательная

Пусть будет также существовать некоторая секущая, которая пересекает две заданные параллельные прямые. Условие параллельности прямых, рассмотренное в соответствующей статье, дает нам право утверждать, что в данном случае внутренние накрест лежащие углы, образованные при пересечении секущей заданных прямых, являются равными: ∠ M 2 M 1 H 2 = ∠ H 1 H 2 M 1 . Прямая М 2 Н 2 перпендикулярна прямой b по построению, и, конечно, перпендикулярна прямой a . Получившиеся треугольники М 1 Н 1 Н 2 и М 2 М 1 Н 2 являются прямоугольными и равными друг другу по гипотенузе и острому углу: М 1 Н 2 – общая гипотенуза, ∠ M 2 M 1 H 2 = ∠ H 1 H 2 M 1 . Опираясь на равенство треугольников, мы можем говорить о равенстве их сторон, т.е.: | М 1 Н 1 | = | М 2 Н 2 | . Теорема доказана.

Отметим, что расстояние между двумя параллельными прямыми – наименьшее из расстояний от точек одной прямой до точек другой.

Видео:Определение расстояния между скрещивающимися прямыми. Способ параллельного перемещенияСкачать

Определение расстояния между скрещивающимися прямыми. Способ параллельного перемещения

Нахождение расстояния между параллельными прямыми

Мы уже выяснили, что, по сути, чтобы найти расстояние между двумя параллельными прямыми, необходимо определить длину перпендикуляра, опущенного из некой точки одной прямой на другую. Способов, как это сделать, несколько. В каких-то задачах удобно воспользоваться теоремой Пифагора; другие предполагают использование признаков равенства или подобия треугольников и т.п. В случаях, когда прямые заданы в прямоугольной системе координат, возможно вычислить расстояние между двумя параллельными прямыми, используя метод координат. Рассмотрим его подробнее.

Зададим условия. Допустим, зафиксирована прямоугольная система координат, в которой заданы две параллельные прямые a и b . Необходимо определить расстояние между заданными прямыми.

Решение задачи построим на определении расстояния между параллельными прямыми: для нахождения расстояния между двумя заданными параллельными прямыми необходимо:

— найти координаты некоторой точки М 1 , принадлежащей одной из заданных прямых;

— произвести вычисление расстояния от точки М 1 до заданной прямой, которой эта точка не принадлежит.

Опираясь на навыки работы с уравнениями прямой на плоскости или в пространстве, определить координаты точки М 1 просто. При нахождении расстояния от точки М 1 до прямой пригодится материал статьи о нахождении расстояния от точки до прямой.

Вернемся к примеру. Пусть прямая a описывается общим уравнением A x + B y + C 1 = 0 , а прямая b – уравнением A x + B y + C 2 = 0 . Тогда расстояние между двумя заданными параллельными прямыми возможно вычислить, используя формулу:

M 1 H 1 = C 2 — C 1 A 2 + B 2

Выведем эту формулу.

Используем некоторую точку М 1 ( x 1 , y 1 ) , принадлежащую прямой a . В таком случае координаты точки М 1 будут удовлетворять уравнению A x 1 + B y 1 + C 1 = 0 . Таким образом, справедливым является равенство: A x 1 + B y 1 + C 1 = 0 ; из него получим: A x 1 + B y 1 = — C 1 .

Когда С 2 0 , нормальное уравнение прямой b будет иметь вид:

A A 2 + B 2 x + B A 2 + B 2 y + C 2 A 2 + B 2 = 0

При С 2 ≥ 0 нормальное уравнение прямой b будет выглядеть так:

A A 2 + B 2 x + B A 2 + B 2 y — C 2 A 2 + B 2 = 0

И тогда для случаев, когда С 2 0 , применима формула: M 1 H 1 = A A 2 + B 2 x 1 + B A 2 + B 2 y 1 + C 2 A 2 + B 2 .

А для С 2 ≥ 0 искомое расстояние определяется по формуле M 1 H 1 = — A A 2 + B 2 x 1 — B A 2 + B 2 y 1 — C 2 A 2 + B 2 = = A A 2 + B 2 x 1 + B A 2 + B 2 y 1 + C 2 A 2 + B 2

Таким образом, при любом значении числа С 2 длина отрезка | М 1 Н 1 | (от точки М 1 до прямой b ) вычисляется по формуле: M 1 H 1 = A A 2 + B 2 x 1 + B A 2 + B 2 y 1 + C 2 A 2 + B 2

Выше мы получили: A x 1 + B y 1 = — C 1 , тогда можем преобразовать формулу: M 1 H 1 = — C 1 A 2 + B 2 + C 2 A 2 + B 2 = C 2 — C 1 A 2 + B 2 . Так мы, собственно, получили формулу, указанную в алгоритме метода координат.

Разберем теорию на примерах.

Заданы две параллельные прямые y = 2 3 x — 1 и x = 4 + 3 · λ y = — 5 + 2 · λ . Необходимо определить расстояние между ними.

Решение

Исходные параметрические уравнения дают возможность задать координаты точки, через которую проходит прямая, описываемая параметрическими уравнениями. Таким образом, получаем точку М 1 ( 4 , — 5 ) . Требуемое расстояние – это расстояние между точкой М 1 ( 4 , — 5 ) до прямой y = 2 3 x — 1 , произведем его вычисление.

Заданное уравнение прямой с угловым коэффициентом y = 2 3 x — 1 преобразуем в нормальное уравнение прямой. С этой целью сначала осуществим переход к общему уравнению прямой:

y = 2 3 x — 1 ⇔ 2 3 x — y — 1 = 0 ⇔ 2 x — 3 y — 3 = 0

Вычислим нормирующий множитель: 1 2 2 + ( — 3 ) 2 = 1 13 . Умножим на него обе части последнего уравнения и, наконец, получим возможность записать нормальное уравнение прямой: 1 13 · 2 x — 3 y — 3 = 1 13 · 0 ⇔ 2 13 x — 3 13 y — 3 13 = 0 .

При x = 4 , а y = — 5 вычислим искомое расстояние как модуль значения крайнего равенства:

2 13 · 4 — 3 13 · — 5 — 3 13 = 20 13

Ответ: 20 13 .

В фиксированной прямоугольной системе координат O x y заданы две параллельные прямые, определяемые уравнениями x — 3 = 0 и x + 5 0 = y — 1 1 . Необходимо найти расстояние между заданными параллельными прямыми.

Решение

Условиями задачи определено одно общее уравнение, задаваемое одну из исходных прямых: x-3=0. Преобразуем исходное каноническое уравнение в общее: x + 5 0 = y — 1 1 ⇔ x + 5 = 0 . При переменной x коэффициенты в обоих уравнениях равны (также равны и при y – нулю), а потому имеем возможность применить формулу для нахождения расстояния между параллельными прямыми:

M 1 H 1 = C 2 — C 1 A 2 + B 2 = 5 — ( — 3 ) 1 2 + 0 2 = 8

Ответ: 8 .

Напоследок рассмотрим задачу на нахождение расстояния между двумя параллельными прямыми в трехмерном пространстве.

В прямоугольной системе координат O x y z заданы две параллельные прямые, описываемые каноническими уравнениями прямой в пространстве: x — 3 1 = y — 1 = z + 2 4 и x + 5 1 = y — 1 — 1 = z — 2 4 . Необходимо найти расстояние между этими прямыми.

Решение

Из уравнения x — 3 1 = y — 1 = z + 2 4 легко определются координаты точки, через которую проходит прямая, описываемая этим уравнением: М 1 ( 3 , 0 , — 2 ) . Произведем вычисление расстояния | М 1 Н 1 | от точки М 1 до прямой x + 5 1 = y — 1 — 1 = z — 2 4 .

Прямая x + 5 1 = y — 1 — 1 = z — 2 4 проходит через точку М 2 ( — 5 , 1 , 2 ) . Запишем направляющий вектор прямой x + 5 1 = y — 1 — 1 = z — 2 4 как b → с координатами ( 1 , — 1 , 4 ) . Определим координаты вектора M 2 M → :

M 2 M 1 → = 3 — ( — 5 , 0 — 1 , — 2 — 2 ) ⇔ M 2 M 1 → = 8 , — 1 , — 4

Вычислим векторное произведение векторов :

b → × M 2 M 1 → = i → j → k → 1 — 1 4 8 — 1 — 4 = 8 · i → + 36 · j → + 7 · k → ⇒ b → × M 2 M 1 → = ( 8 , 36 , 7 )

Применим формулу расчета расстояния от точки до прямой в пространстве:

M 1 H 1 = b → × M 2 M 1 → b → = 8 2 + 36 2 + 7 2 1 2 + ( — 1 ) 2 + 4 2 = 1409 3 2

🎦 Видео

Параллельные прямые | Математика | TutorOnlineСкачать

Параллельные прямые | Математика | TutorOnline

Видеоурок "Расстояние между прямыми в пространстве"Скачать

Видеоурок "Расстояние между прямыми в пространстве"

Определение кратчайшей расстояние от точки до плоскости способом замены плоскостей проекцииСкачать

Определение кратчайшей расстояние от точки до плоскости способом замены плоскостей проекции

Геометрия 7 класс (Урок№26 - Расстояние от точки до прямой. Расстояние между параллельными прямыми.)Скачать

Геометрия 7 класс (Урок№26 - Расстояние от точки до прямой. Расстояние между параллельными прямыми.)

Определение кратчайшей расстоянии от точки до плоскостиСкачать

Определение кратчайшей расстоянии от точки до плоскости

Расстояние между параллельными плоскостямиСкачать

Расстояние между параллельными плоскостями

Взаимно перпендикулярные плоскости. Определение кратчайшей расстоянии от точки до прямойСкачать

Взаимно перпендикулярные плоскости. Определение кратчайшей расстоянии от точки до прямой

7 класс, 38 урок, Расстояние от точки до прямой. Расстояние между параллельными прямымиСкачать

7 класс, 38 урок, Расстояние от точки до прямой. Расстояние между параллельными прямыми

Построение параллельной плоскости на расстояние 30 мм.Скачать

Построение параллельной плоскости на расстояние 30 мм.

Замена плоскостей проекции(Расстояние от точки до прямой)Скачать

Замена плоскостей проекции(Расстояние от точки до прямой)

Расстояние между прямымиСкачать

Расстояние между прямыми

Определить расстояние от точки С до прямой АВ. Метод прямоугольного треугольника.Скачать

Определить расстояние от точки С до прямой АВ. Метод прямоугольного треугольника.
Поделиться или сохранить к себе: