Диаметр окружности и угол 90 градусов

Центральные и вписанные углы

Диаметр окружности и угол 90 градусов

О чем эта статья:

Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

Центральный угол и вписанный угол

Окружность — замкнутая линия, все точки которой равноудалены от ее центра.

Определение центрального угла:

Центральный угол — это угол, вершина которого лежит в центре окружности.
Центральный угол равен градусной мере дуги, на которую он опирается.

Диаметр окружности и угол 90 градусов

На рисунке: центральный угол окружности EOF и дуга, на которую он опирается EF

Определение вписанного угла:

Вписанный угол — это угол, вершина которого лежит на окружности.

Вписанный угол равен половине дуги, на которую опирается.

Диаметр окружности и угол 90 градусов

На рисунке: вписанный в окружность угол ABC и дуга, на которую он опирается AC

Видео:Радиус и диаметрСкачать

Радиус и диаметр

Свойства центральных и вписанных углов

Углы просты только на первый взгляд. Свойства центрального угла и свойства вписанного угла помогут решать задачки легко и быстро.

  • Вписанный угол в два раза меньше, чем центральный угол, если они опираются на одну и ту же дугу:

Диаметр окружности и угол 90 градусов

Угол AOC — центральный, угол ABC — вписанный. Оба угла опираются на дугу AC, в этом случае центральный угол равен дуге AC, а угол ABC равен половине угла AOC.

  • Теорема о центральном угле: центральный угол равен градусной мере дуги, на которую он опирается:

Диаметр окружности и угол 90 градусов

  • Вписанные углы окружности равны друг другу, если опираются на одну дугу:

Диаметр окружности и угол 90 градусов

ㄥADC = ㄥABC = ㄥAEC, поскольку все три угла, вписанные в окружность, опираются на одну дугу AC.

  • Вписанный в окружность угол, опирающийся на диаметр, — всегда прямой:

Диаметр окружности и угол 90 градусов

ㄥACB опирается на диаметр и на дугу AB, диаметр делит окружность на две равные части. Значит дуга AB = 180 ํ, ㄥCAB равен половине дуги, на которую он опирается, значит ㄥCAB = 90 ํ.

Если есть вписанный, обязательно найдется и описанный угол. Описанный угол — это угол, образованный двумя касательными к окружности. Вот так:

Диаметр окружности и угол 90 градусов

На рисунке: ㄥCAB, образованный двумя касательными к окружности. AO — биссектриса ㄥCAB, значит центр окружности лежит на биссектрисе описанного угла.

Для решения задачек мало знать, какой угол называется вписанным, а какой — описанным. Нужно знать, что такое хорда и ее свойство.

Нужно быстро привести знания в порядок перед экзаменом? Записывайтесь на курсы ЕГЭ по математике в Skysmart!

Хорда — отрезок, соединяющий две точки на окружности.

Диаметр окружности и угол 90 градусов

  • Если две хорды в окружности пересекаются, то произведения отрезков одной равно произведению отрезков другой.

Диаметр окружности и угол 90 градусов

AB * AC = AE * AD
Получается, что стороны вписанного в окружность угла — это хорды.

  • Если вписанные углы опираются на одну и ту же хорду — они равны, если их вершины находятся по одну сторону от хорды.

Диаметр окружности и угол 90 градусов

ㄥBAC = ㄥCAB, поскольку лежат на хорде BC.

  • Если два вписанных угла опираются на одну и ту же хорду, то их суммарная градусная мера равна 180°, если их вершины находятся по разные стороны от хорды.

Диаметр окружности и угол 90 градусов

ㄥBAC + ㄥBDC = 180°

Видео:Строим прямой уголСкачать

Строим прямой угол

Примеры решения задач

Центральный, вписанные и описанные углы, как и любые другие, требуют тренировок в решении. Рассмотрите примеры решения задач и потренируйтесь самостоятельно.

Задачка 1. Дана окружность, дуга AC = 200°, дуга BC = 80°. Найдите, чему равен вписанный угол, опирающийся на дугу AB. ㄥACB = ?

Диаметр окружности и угол 90 градусов

Как решаем: окружность 360° − AC − CB = 360° − 200° − 80° = 80°
По теореме: вписанный угол равен дуге ½.
ㄥACB = ½ AB = 40°

Задачка 2. Дана окружность, ㄥAOC = 140°, найдите, чему равна величина вписанного угла.

Диаметр окружности и угол 90 градусов

Мы уже потренировались и знаем, как найти вписанный угол.
На рисунке в окружности центральный угол и дуга AC = 140°
Мы знаем, что вписанный угол равен половине центрального, то ㄥABC = ½ AC = 140/2 = 70°

Задачка 3. Чему равен вписанный в окружность угол, опирающийся на дугу, если эта дуга = ⅕ окружности?

Диаметр окружности и угол 90 градусов

СB = ⅕ от 360° = 72°
Вписанный угол равен половине дуги, поэтому ㄥCAB = ½ от CB = 72° / 2 = 36°

Видео:8 класс. ОГЭ. Найти диаметр окружностиСкачать

8 класс. ОГЭ. Найти диаметр окружности

Вписанный угол, опирающийся на диаметр

Вписанный угол, опирающийся на диаметр, обладает полезным свойством, вытекающим из теоремы о вписанном угле.

Свойство вписанного угла, опирающегося на диаметр

(следствие из теоремы о вписанном угле)

Вписанный угол, опирающийся на диаметр, прямой.

Диаметр окружности и угол 90 градусовДано:

Так как AC- диаметр, то ∠AOC=180º.

∠AOC — центральный, ∠ABC — соответствующий ему вписанный угол.

Диаметр окружности и угол 90 градусовСледовательно, по теореме о вписанном угле,

Диаметр окружности и угол 90 градусов

Диаметр окружности и угол 90 градусов

Что и требовалось доказать.

Из этого следует, например, что если центр описанной окружности лежит на стороне треугольника, то угол напротив этой стороны — прямой.

Если центр описанной окружности лежит на диагонали четырехугольника, то угол напротив этой диагонали — прямой.

Другой вариант формулировки следствия:

Диаметр виден из любой точки окружности под углом 90º.

Если вписанный угол связать с дугой, то следствие из теоремы о вписанном угле звучит так:

Диаметр окружности и угол 90 градусов

Вписанный угол, опирающийся на полуокружность — прямой.

Видео:Длина окружности. Математика 6 класс.Скачать

Длина окружности. Математика 6 класс.

Диаметр окружности и угол 90

Видео:Длина окружности. Площадь круга - математика 6 классСкачать

Длина окружности. Площадь круга - математика 6 класс

Как посчитать диаметр окружности

Видео:Угол, опирающийся на диаметр окружности, прямой. | ОГЭ 2017 | ЗАДАНИЕ 13 | ШКОЛА ПИФАГОРАСкачать

Угол, опирающийся на диаметр окружности, прямой. | ОГЭ 2017 | ЗАДАНИЕ 13 | ШКОЛА ПИФАГОРА

Онлайн калькулятор

Как посчитать диаметр зная длину окружности

Чему равен диаметр если длина окружности ?

Каков диаметр (d) если длина окружности C?

Формула

d = C /π , где π ≈ 3.14

Пример

Если длина круга равна 5 см, то его диаметр примерно равен 1.59 см.

Как посчитать диаметр зная радиус окружности

Чему равен диаметр окружности если

Каков диаметр окружности (d) если её радиус r?

Формула

Пример

Если радиус круга равен 0.5 см, то его диаметр равен 1 см.

Как посчитать диаметр окружности зная её площадь

Чему равен диаметр окружности если

Каков диаметр окружности (d) если её площадь S?

Формула

d = √ 4S /π , где π ≈ 3.14

Пример

Если площадь круга равна 5 см 2 , то его диаметр примерно равен 2.52 см.

Видео:Окружность, диаметр, хорда геометрия 7 классСкачать

Окружность, диаметр, хорда геометрия 7 класс

Как найти диаметр окружности

Диаметр окружности и угол 90 градусов

О чем эта статья:

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Видео:ОГЭ 2019. Задание 17. Разбор задач. Геометрия. Окружность.Скачать

ОГЭ 2019.  Задание 17. Разбор задач. Геометрия. Окружность.

Основные понятия

Прежде чем погружаться в последовательность расчетов, важно понять разницу между понятиями.

Окружность — замкнутая плоская кривая, все точки которой равноудалены от центра, которая лежит в той же плоскости.

Круг — часть плоскости, лежащая внутри окружности, а также сама окружность.

Если говорить проще, окружность — это замкнутая линия, как, например, обруч и велосипедное колесо. Круг — часть плоскости, ограниченная окружностью, как блинчик или вырезанный из картона кружок.

Диаметр — отрезок, который соединяет две точки окружности и проходит через ее центр.

Радиус — отрезок, который соединяет центр окружности и любую точку на ней.

Видео:Вписанный угол, который опирается на диаметрСкачать

Вписанный угол, который опирается на диаметр

Как узнать диаметр. Формулы

В данной теме нам предстоит узнать три формулы:

1. Общая формула.

Исходя из основных определений нам известно, что значение диаметра равно двум радиусам: D = 2 × R, где D — диаметр, R — радиус.

2. Если перед нами стоит задача найти диаметр по длине окружности

D = C : π, где C — длина окружности, π — это константа, которая равна отношению длины окружности к диаметру, она всегда равна 3,14.

Чтобы получить правильный ответ, можно поделить столбиком или использовать онлайн-калькулятор.

3. Если есть чертеж окружности

  • Начертить внутри круга прямую горизонтальную линию. Ее месторасположение не играет значительной роли.
  • Отметить точки пересечения прямой и окружности.
  • Начертить при помощи циркуля две окружности одного радиуса (больше, чем радиус первоначальной окружности), первую — с центром в точке A, вторую — с центром в точке B.
  • Провести прямую через две точки, в которых произошло пересечение. Отметить точки пересечения полученной прямой с окружностью. Диаметр равен этому отрезку.
  • Теперь осталось измерить диаметр круга при помощи линейки. Получилось!

Эти простые формулы могут пригодиться не только на школьных уроках, но и если вы решите освоить профессию дизайнера интерьера, архитектора или модельера одежды.

Видео:немногие знают, как резать уголки для соединений под углом 90 градусов с точными результатами.Скачать

немногие знают, как резать уголки для соединений под углом 90 градусов с точными результатами.

Углы, связанные с окружностью

Диаметр окружности и угол 90 градусовВписанные и центральные углы
Диаметр окружности и угол 90 градусовУглы, образованные хордами, касательными и секущими
Диаметр окружности и угол 90 градусовДоказательства теорем об углах, связанных с окружностью

Видео:Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачиСкачать

Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачи

Вписанные и центральные углы

Определение 1 . Центральным углом называют угол, вершина которого совпадает с центром окружности, а стороны являются радиусами радиусами (рис. 1).

Диаметр окружности и угол 90 градусов

Определение 2 . Вписанным углом называют угол, вершина которого лежит на окружности, а стороны являются хордами хордами (рис. 2).

Диаметр окружности и угол 90 градусов

Напомним, что углы можно измерять в градусах и в радианах. Дуги окружности также можно измерять в градусах и в радианах, что вытекает из следующего определения.

Определение 3 . Угловой мерой (угловой величиной) дуги окружности является величина центрального угла, опирающегося на эту дугу.

Видео:Точное выставление угла стен 90°. Как правильно сделать РАЗМЕТКУ? Штукатурка стен.Скачать

Точное выставление угла стен 90°. Как правильно сделать  РАЗМЕТКУ? Штукатурка стен.

Теоремы о вписанных и центральных углах

ФигураРисунокТеорема
Вписанный уголДиаметр окружности и угол 90 градусов

Величина вписанного угла равна половине величины центрального угла, опирающегося на ту же дугу.

Вписанный уголДиаметр окружности и угол 90 градусовВписанные углы, опирающиеся на одну и ту же дугу равны.Вписанный уголДиаметр окружности и угол 90 градусовВписанные углы, опирающиеся на одну и ту же хорду, равны, если их вершины лежат по одну сторону от этой хордыВписанный уголДиаметр окружности и угол 90 градусовДва вписанных угла, опирающихся на одну и ту же хорду, в сумме составляют 180° , если их вершины лежат по разные стороны от этой хордыВписанный уголДиаметр окружности и угол 90 градусовВписанный угол является прямым углом, тогда и только тогда, когда он опирается на диаметрОкружность, описанная около прямоугольного треугольникаДиаметр окружности и угол 90 градусов

Середина гипотенузы прямоугольного треугольника является центром описанной
около этого треугольника окружности.

Величина вписанного угла равна половине величины центрального угла, опирающегося на ту же дугу.

Диаметр окружности и угол 90 градусов

Вписанные углы, опирающиеся на одну и ту же дугу равны.

Диаметр окружности и угол 90 градусов

Вписанные углы, опирающиеся на одну и ту же хорду, равны, если их вершины лежат по одну сторону от этой хорды

Диаметр окружности и угол 90 градусов

Два вписанных угла, опирающихся на одну и ту же хорду, в сумме составляют 180° , если их вершины лежат по разные стороны от этой хорды

Диаметр окружности и угол 90 градусов

Вписанный угол является прямым углом, тогда и только тогда, когда он опирается на диаметр

Диаметр окружности и угол 90 градусов

Середина гипотенузы прямоугольного треугольника является центром описанной
около этого треугольника окружности.

Диаметр окружности и угол 90 градусов

Видео:Урок по теме ЦЕНТРАЛЬНЫЕ И ВПИСАННЫЕ УГЛЫ 8 КЛАСССкачать

Урок по теме ЦЕНТРАЛЬНЫЕ И ВПИСАННЫЕ УГЛЫ 8 КЛАСС

Теоремы об углах, образованных хордами, касательными и секущими

Вписанный угол
Окружность, описанная около прямоугольного треугольника
ФигураРисунокТеоремаФормула
Угол, образованный пересекающимися хордамиДиаметр окружности и угол 90 градусов

Величина угла, образованного пересекающимися хордами, равна половине суммы величин дуг, заключённых между его сторонами.

Диаметр окружности и угол 90 градусовУгол, образованный секущими, которые пересекаются вне кругаДиаметр окружности и угол 90 градусов

Величина угла, образованного секущими, пересекающимися вне круга, равна половине разности величин дуг, заключённых между его сторонами

Диаметр окружности и угол 90 градусовУгол, образованный касательной и хордой, проходящей через точку касанияДиаметр окружности и угол 90 градусов

Величина угла, образованного касательной и хордой, проходящей через точку касания, равна половине величины дуги, заключённой между его сторонами

Диаметр окружности и угол 90 градусовУгол, образованный касательной и секущейДиаметр окружности и угол 90 градусов

Величина угла, образованного касательной и секущей, равна половине разности величин дуг, заключённых между его сторонами

Диаметр окружности и угол 90 градусовУгол, образованный двумя касательными к окружностиДиаметр окружности и угол 90 градусов

Величина угла, образованного двумя касательными к окружности, равна половине разности величин дуг, заключённых между его сторонами

Диаметр окружности и угол 90 градусов

Величина угла, образованного пересекающимися хордами, равна половине суммы величин дуг, заключённых между его сторонами.

Диаметр окружности и угол 90 градусов

Диаметр окружности и угол 90 градусов

Величина угла, образованного секущими, пересекающимися вне круга, равна половине разности величин дуг, заключённых между его сторонами

Величина угла, образованного касательной и хордой, проходящей через точку касания, равна половине величины дуги, заключённой между его сторонами

Диаметр окружности и угол 90 градусов

Диаметр окружности и угол 90 градусов

Величина угла, образованного касательной и секущей, равна половине разности величин дуг, заключённых между его сторонами

Диаметр окружности и угол 90 градусов

Диаметр окружности и угол 90 градусов

Величина угла, образованного двумя касательными к окружности, равна половине разности величин дуг, заключённых между его сторонами

Видео:Как легко сформировать УГОЛ 90 градусов и выставить МАЯКИ за 10 МИНУТ?Скачать

Как легко сформировать УГОЛ 90 градусов и выставить МАЯКИ за 10 МИНУТ?

Доказательства теорем об углах, связанных с окружностью

Теорема 1 . Величина вписанного угла равна половине величины центрального угла, опирающегося на ту же дугу.

Доказательство . Рассмотрим сначала вписанный угол ABC , сторона BC которого является диаметром окружности диаметром окружности , и центральный угол AOC (рис. 5).

Диаметр окружности и угол 90 градусов

Диаметр окружности и угол 90 градусов

Диаметр окружности и угол 90 градусов

Диаметр окружности и угол 90 градусов

Таким образом, в случае, когда одна из сторон вписанного угла проходит через центр окружности, теорема 1 доказана.

Теперь рассмотрим случай, когда центр окружности лежит внутри вписанного угла (рис. 6).

Диаметр окружности и угол 90 градусов

В этом случае справедливы равенства

Диаметр окружности и угол 90 градусов

Диаметр окружности и угол 90 градусов

Диаметр окружности и угол 90 градусов

и теорема 1 в этом случае доказана.

Осталось рассмотреть случай, когда центр окружности лежит вне вписанного угла (рис. 7).

Диаметр окружности и угол 90 градусов

В этом случае справедливы равенства

Диаметр окружности и угол 90 градусов

Диаметр окружности и угол 90 градусов

Диаметр окружности и угол 90 градусов

что и завершает доказательство теоремы 1.

Теорема 2 . Величина угла, образованного пересекающимися хордами хордами , равна половине суммы величин дуг, заключённых между его сторонами.

Доказательство . Рассмотрим рисунок 8.

Диаметр окружности и угол 90 градусов

Нас интересует величина угла AED , образованного пересекающимися в точке E хордами AB и CD . Поскольку угол AED – внешний угол треугольника BED , а углы CDB и ABD являются вписанными углами, то справедливы равенства

Диаметр окружности и угол 90 градусов

Диаметр окружности и угол 90 градусов

что и требовалось доказать.

Теорема 3 . Величина угла, образованного секущими секущими , пересекающимися вне круга, равна половине разности величин дуг, заключённых между сторонами этого угла.

Доказательство . Рассмотрим рисунок 9.

Диаметр окружности и угол 90 градусов

Диаметр окружности и угол 90 градусов

Нас интересует величина угла BED , образованного пересекающимися в точке E секущими AB и CD . Поскольку угол ADC – внешний угол треугольника ADE , а углы ADC , DCB и DAB являются вписанными углами, то справедливы равенства

Диаметр окружности и угол 90 градусов

Диаметр окружности и угол 90 градусов

что и требовалось доказать.

Теорема 4 . Величина угла, образованного касательной и хордой касательной и хордой , проходящей через точку касания, равна половине величины дуги, заключённой между его сторонами.

Доказательство . Рассмотрим рисунок 10.

Диаметр окружности и угол 90 градусов

Диаметр окружности и угол 90 градусов

Нас интересует величина угла BAC , образованного касательной AB и хордой AC . Поскольку AD – диаметр диаметр , проходящий через точку касания, а угол ACD – вписанный угол, опирающийся на диаметр, то углы DAB и DCA – прямые. Поэтому справедливы равенства

Диаметр окружности и угол 90 градусов

Диаметр окружности и угол 90 градусов

что и требовалось доказать

Теорема 5 . Величина угла, образованного касательной и секущей касательной и секущей , равна половине разности величин дуг, заключённых между сторонами этого угла.

Доказательство . Рассмотрим рисунок 11.

Диаметр окружности и угол 90 градусов

Диаметр окружности и угол 90 градусов

Нас интересует величина угла BED , образованного касательной AB и секущей CD . Заметим, что угол BDC – внешний угол треугольника DBE , а углы BDC и BCD являются вписанными углами. Кроме того, углы DBE и DCB , в силу теоремы 4, равны. Поэтому справедливы равенства

Диаметр окружности и угол 90 градусов

Диаметр окружности и угол 90 градусов

что и требовалось доказать.

Теорема 6 .Величина угла, образованного двумя касательными к окружности касательными к окружности , равна половине разности величин дуг, заключённых между его сторонами.

Доказательство . Рассмотрим рисунок 12.

Диаметр окружности и угол 90 градусов

Диаметр окружности и угол 90 градусов

Нас интересует величина угла BED , образованного касательными AB и CD . Заметим, что углы BOD и BED в сумме составляют π радиан. Поэтому справедливо равенство

📸 Видео

№145. Отрезок МК — диаметр окружности с центром О, а МР и РК — равные хорды этой окружностиСкачать

№145. Отрезок МК — диаметр окружности с центром О, а МР и РК — равные хорды этой окружности

Вписанный угол, опирающийся на диаметр окружности ... | ОГЭ 2017 | ЗАДАНИЕ 13 | ШКОЛА ПИФАГОРАСкачать

Вписанный угол, опирающийся на диаметр окружности ... | ОГЭ 2017 | ЗАДАНИЕ 13 | ШКОЛА ПИФАГОРА

Длина дуги окружности. 9 класс.Скачать

Длина дуги окружности. 9 класс.

Вписанные и центральные углы #огэ #огэматематика #математикаСкачать

Вписанные и центральные углы #огэ #огэматематика #математика

РАДИУС ОКРУЖНОСТЬ ДИАМЕТР КРУГ / 3 КЛАСС МАТЕМАТИКА. ЧТО ТАКОЕ ОКРУЖНОСТЬ ? ЧТО ТАКОЕ РАДИУС ?Скачать

РАДИУС ОКРУЖНОСТЬ ДИАМЕТР КРУГ / 3 КЛАСС МАТЕМАТИКА. ЧТО ТАКОЕ ОКРУЖНОСТЬ ? ЧТО ТАКОЕ РАДИУС ?
Поделиться или сохранить к себе:
Угол, образованный пересекающимися хордами хордами
Диаметр окружности и угол 90 градусов
Формула: Диаметр окружности и угол 90 градусов
Угол, образованный секущими секущими , которые пересекаются вне круга
Формула: Диаметр окружности и угол 90 градусов
Угол, образованный касательной и хордой хордой , проходящей через точку касания
Диаметр окружности и угол 90 градусов
Формула: Диаметр окружности и угол 90 градусов
Угол, образованный касательной и секущей касательной и секущей
Формула: Диаметр окружности и угол 90 градусов
Угол, образованный двумя касательными касательными к окружности
Формулы: Диаметр окружности и угол 90 градусов