|  Вписанные и центральные углы | 
|  Углы, образованные хордами, касательными и секущими | 
|  Доказательства теорем об углах, связанных с окружностью | 
- Вписанные и центральные углы
- Теоремы о вписанных и центральных углах
- Теоремы об углах, образованных хордами, касательными и секущими
- Доказательства теорем об углах, связанных с окружностью
- Теорема синусов
- Доказательство теоремы синусов
- Доказательство следствия из теоремы синусов
- Теорема о вписанном в окружность угле
- Примеры решения задач
- Запоминаем
- Геометрия. Урок 5. Окружность
- Определение окружности
- Отрезки в окружности
- Дуга в окружности
- Углы в окружности
- Длина окружности, длина дуги
- Площадь круга и его частей
- Теорема синусов
- Примеры решений заданий из ОГЭ
- 🎬 Видео
Видео:Радиус и диаметрСкачать

Вписанные и центральные углы
Определение 1 . Центральным углом называют угол, вершина которого совпадает с центром окружности, а стороны являются радиусами радиусами (рис. 1).
Определение 2 . Вписанным углом называют угол, вершина которого лежит на окружности, а стороны являются хордами хордами (рис. 2).
Напомним, что углы можно измерять в градусах и в радианах. Дуги окружности также можно измерять в градусах и в радианах, что вытекает из следующего определения.
Определение 3 . Угловой мерой (угловой величиной) дуги окружности является величина центрального угла, опирающегося на эту дугу.
Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать

Теоремы о вписанных и центральных углах
| Фигура | Рисунок | Теорема | |||||||||||||||||||||||||||||||||||
| Вписанный угол |  | ||||||||||||||||||||||||||||||||||||
| Вписанный угол |  | Вписанные углы, опирающиеся на одну и ту же дугу равны. | |||||||||||||||||||||||||||||||||||
| Вписанный угол |  | Вписанные углы, опирающиеся на одну и ту же хорду, равны, если их вершины лежат по одну сторону от этой хорды | |||||||||||||||||||||||||||||||||||
| Вписанный угол |  | Два вписанных угла, опирающихся на одну и ту же хорду, в сумме составляют 180° , если их вершины лежат по разные стороны от этой хорды | |||||||||||||||||||||||||||||||||||
| Вписанный угол |  | Вписанный угол является прямым углом, тогда и только тогда, когда он опирается на диаметр | |||||||||||||||||||||||||||||||||||
| Окружность, описанная около прямоугольного треугольника |  | 
| Вписанный угол | |||||||||||||||||||||||||||||||||
| Окружность, описанная около прямоугольного треугольника | |||||||||||||||||||||||||||||||||
| Фигура | Рисунок | Теорема | Формула | 
| Угол, образованный пересекающимися хордами |  |  | |
| Угол, образованный секущими, которые пересекаются вне круга |  |  | |
| Угол, образованный касательной и хордой, проходящей через точку касания |  |  | |
| Угол, образованный касательной и секущей |  |  | |
| Угол, образованный двумя касательными к окружности |  |  | 
| Угол, образованный пересекающимися хордами хордами | 
|  | 
| Формула:  | 
| Угол, образованный секущими секущими , которые пересекаются вне круга | 
| Формула:  | 
| Величина угла, образованного секущими, пересекающимися вне круга, равна половине разности величин дуг, заключённых между его сторонами | 
| Угол, образованный касательной и хордой хордой , проходящей через точку касания | 
|  | 
| Формула:  | 
| Угол, образованный касательной и секущей касательной и секущей | 
| Формула:  | 
| Величина угла, образованного касательной и секущей, равна половине разности величин дуг, заключённых между его сторонами | 
| Угол, образованный двумя касательными касательными к окружности | 
| Формулы:  | 
| Величина угла, образованного двумя касательными к окружности, равна половине разности величин дуг, заключённых между его сторонами Видео:Длина дуги окружности. 9 класс.Скачать  Доказательства теорем об углах, связанных с окружностьюТеорема 1 . Величина вписанного угла равна половине величины центрального угла, опирающегося на ту же дугу. Доказательство . Рассмотрим сначала вписанный угол ABC , сторона BC которого является диаметром окружности диаметром окружности , и центральный угол AOC (рис. 5). Таким образом, в случае, когда одна из сторон вписанного угла проходит через центр окружности, теорема 1 доказана. Теперь рассмотрим случай, когда центр окружности лежит внутри вписанного угла (рис. 6). В этом случае справедливы равенства и теорема 1 в этом случае доказана. Осталось рассмотреть случай, когда центр окружности лежит вне вписанного угла (рис. 7). В этом случае справедливы равенства что и завершает доказательство теоремы 1. Теорема 2 . Величина угла, образованного пересекающимися хордами хордами , равна половине суммы величин дуг, заключённых между его сторонами. Доказательство . Рассмотрим рисунок 8. Нас интересует величина угла AED , образованного пересекающимися в точке E хордами AB и CD . Поскольку угол AED – внешний угол треугольника BED , а углы CDB и ABD являются вписанными углами, то справедливы равенства что и требовалось доказать. Теорема 3 . Величина угла, образованного секущими секущими , пересекающимися вне круга, равна половине разности величин дуг, заключённых между сторонами этого угла. Доказательство . Рассмотрим рисунок 9. Нас интересует величина угла BED , образованного пересекающимися в точке E секущими AB и CD . Поскольку угол ADC – внешний угол треугольника ADE , а углы ADC , DCB и DAB являются вписанными углами, то справедливы равенства что и требовалось доказать. Теорема 4 . Величина угла, образованного касательной и хордой касательной и хордой , проходящей через точку касания, равна половине величины дуги, заключённой между его сторонами. Доказательство . Рассмотрим рисунок 10. Нас интересует величина угла BAC , образованного касательной AB и хордой AC . Поскольку AD – диаметр диаметр , проходящий через точку касания, а угол ACD – вписанный угол, опирающийся на диаметр, то углы DAB и DCA – прямые. Поэтому справедливы равенства что и требовалось доказать Теорема 5 . Величина угла, образованного касательной и секущей касательной и секущей , равна половине разности величин дуг, заключённых между сторонами этого угла. Доказательство . Рассмотрим рисунок 11. Нас интересует величина угла BED , образованного касательной AB и секущей CD . Заметим, что угол BDC – внешний угол треугольника DBE , а углы BDC и BCD являются вписанными углами. Кроме того, углы DBE и DCB , в силу теоремы 4, равны. Поэтому справедливы равенства что и требовалось доказать. Теорема 6 .Величина угла, образованного двумя касательными к окружности касательными к окружности , равна половине разности величин дуг, заключённых между его сторонами. Доказательство . Рассмотрим рисунок 12. Нас интересует величина угла BED , образованного касательными AB и CD . Заметим, что углы BOD и BED в сумме составляют π радиан. Поэтому справедливо равенство Видео:Длина окружности. Площадь круга. 6 класс.Скачать  Теорема синусовО чем эта статья: Статья находится на проверке у методистов Skysmart.  Видео:9 класс, 6 урок, Уравнение окружностиСкачать  Доказательство теоремы синусовТеорема синусов звучит так: стороны треугольника пропорциональны синусам противолежащих углов. Нарисуем стандартный треугольник и запишем теорему формулой:   Формула теоремы синусов:   Докажем теорему с помощью формулы площади треугольника через синус его угла.   Из этой формулы мы получаем два соотношения:  
  bc sinα = ca sinβ  Из этих двух соотношений получаем:   Теорема синусов для треугольника доказана. Эта теорема пригодится, чтобы найти: 
 Видео:Длина окружности. Математика 6 класс.Скачать  Доказательство следствия из теоремы синусовУ теоремы синусов есть важное следствие. Нарисуем треугольник, опишем вокруг него окружность и рассмотрим следствие через радиус.   где R — радиус описанной около треугольника окружности. Так образовались три формулы радиуса описанной окружности:   Основной смысл следствия из теоремы синусов заключен в этой формуле:   Радиус описанной окружности не зависит от углов α, β, γ. Удвоенный радиус описанной окружности равен отношению стороны треугольника к синусу противолежащего угла. Для доказательства следствия теоремы синусов рассмотрим три случая. 1. Угол ∠А = α — острый в треугольнике АВС.   Проведем диаметр BA1. В этом случае точка А и точка А1 лежат в одной полуплоскости от прямой ВС. Используем теорему о вписанном угле и видим, что ∠А = ∠А1 = α. Треугольник BA1C — прямоугольный, в нём ∠ BCA1 = 90°, так как он опирается на диаметр BA1. Чтобы найти катет a в треугольнике BA1C, нужно умножить гипотенузу BA1 на синус противолежащего угла. BA1 = 2R, где R — радиус окружности Следовательно: R = α/2 sinα Для острого треугольника с описанной окружностью теорема доказана. 2. Угол ∠А = α — тупой в треугольнике АВС. Проведем диаметр окружности BA1. Точки А и A1 по разные стороны от прямой ВС. Четырёхугольник ACA1B вписан в окружность, и его основное свойство в том, что сумма противолежащих углов равна 180°. Следовательно, ∠А1 = 180° — α.   Вспомним свойство вписанного в окружность четырёхугольника:   Также известно, что sin(180° — α) = sinα. В треугольнике BCA1 угол при вершине С равен 90°, потому что он опирается на диаметр. Следовательно, катет а мы находим таким образом: α = 2R sin (180° — α) = 2R sinα Следовательно: R = α/2 sinα Для тупого треугольника с описанной окружностью теорема доказана. Часто используемые тупые углы: 
 3. Угол ∠А = 90°.   В прямоугольнике АВС угол А прямой, а противоположная сторона BC = α = 2R, где R — это радиус описанной окружности.   Для прямоугольного треугольника с описанной окружностью теорема доказана. Для тех, кто хочет связать свою жизнь с точными науками, Skysmart предлагает курсы по профильной математике. Видео:Как Найти Радиус Сегмента на Потолке. Радиус Окружности По Хорде И Высоте СегментаСкачать  Теорема о вписанном в окружность углеИз теоремы синусов и ее следствия можно сделать любопытный вывод: если известна одна сторона треугольника и синус противолежащего угла — можно найти и радиус описанной окружности. Но треугольник не задаётся только этими величинами. Это значит, что если треугольник еще не задан, найти радиус описанной окружности возможно. Раскроем эту тему на примере теоремы о вписанном в окружность угле и следствиях из нее. Теорема о вписанном угле: вписанный в окружность угол измеряется половиной дуги, на которую он опирается.   ∠А = α опирается на дугу ВС. Дуга ВС содержит столько же градусов, сколько ее центральный угол ∠BOC. Формула теоремы о вписанном угле:   Следствие 1 из теоремы о вписанном в окружность угле Вписанные углы, опирающиеся на одну дугу, равны.   ∠А = ∠BAC опирается на дугу ВС. Поэтому ∠A = 1/2(∠COB). Если мы возьмём точки A1, А2. Аn и проведём от них лучи, которые опираются на одну и ту же дугу, то получим:   На рисунке изображено множество треугольников, у которых есть общая сторона СВ и одинаковый противолежащий угол. Треугольники являются подобными, и их объединяет одинаковый радиус описанной окружности. Следствие 2 из теоремы о вписанном в окружность угле Вписанные углы, которые опираются на диаметр, равны 90°, то есть прямые.   ВС — диаметр описанной окружности, следовательно ∠COB = 180°.   Следствие 3 из теоремы о вписанном в окружность угле Сумма противоположных углов вписанного в окружность четырёхугольника равна 180°. Это значит, что:   Угол ∠А = α опирается на дугу DCB. Поэтому DCB = 2α по теореме о вписанном угле. Угол ∠С = γ опирается на дугу DAB. Поэтому DAB = 2γ. Но так как 2α и 2γ — это вся окружность, то 2α + 2γ = 360°. Следовательно: α + γ = 180°. Поэтому: ∠A + ∠C = 180°. Следствие 4 из теоремы о вписанном в окружность угле Синусы противоположных углов вписанного четырехугольника равны. То есть: sinγ = sin(180° — α) Так как sin(180° — α) = sinα, то sinγ = sin(180° — α) = sinα Видео:Радиус м-а-а-а-ленькой такой окружности. А ДОМАШКА - ВЕЩЬ!Скачать  Примеры решения задачТеорема синусов и следствия из неё активно используются при решении задач. Рассмотрим несколько примеров, чтобы закрепить материал. Пример 1. В треугольнике ABC ∠A = 45°,∠C = 15°, BC = 4√6. Найти AC. 
 ∠B = 180° — 45° — 15° = 120°  Пример 2. Гипотенуза и один из катетов прямоугольного треугольника равны 10 и 8 см. Найти угол, который расположен напротив данного катета. В этой статье мы узнали, что в прямоугольном треугольнике напротив гипотенузы располагается угол, равный 90°. Примем неизвестный угол за x. Тогда соотношение сторон выглядит так:     Значит x = sin (4/5) ≈ 53,1°. Ответ: угол составляет примерно 53,1°. Видео:Радианная мера угла. 9 класс.Скачать  ЗапоминаемОбычная теорема: стороны треугольника пропорциональны синусам противолежащих углов. >  | 








































































