Радиус описанной окружности прямоугольного треугольника равен половине его гипотенузы.
a , b — катеты прямоугольного треугольника
c — гипотенуза
Формула радиуса описанной окружности прямоугольного треугольника (R):
Калькулятор — вычислить, найти радиус описанной окружности прямоугольного треугольника
- Нахождение радиуса описанной вокруг треугольника окружности
- Формулы вычисления радиуса описанной окружности
- Произвольный треугольник
- Прямоугольный треугольник
- Равносторонний треугольник
- Примеры задач
- Радиус описанной окружности около прямоугольного треугольника онлайн
- 1. Радиус окружности описанной около прямоугольного треугольника, если известна гипотенуза треугольника
- 2. Радиус окружности описанной около прямоугольного треугольника, если известны катеты треугольника
- 3. Радиус окружности описанной около прямоугольного треугольника, если известны катет и противолежащий угол треугольника
- 4. Радиус окружности описанной около прямоугольного треугольника, если известны катет и прилежащий острый угол треугольника
- 🎥 Видео
Видео:Сможешь найти радиус окружности? Окружность, вписанная в прямоугольный треугольникСкачать

Нахождение радиуса описанной вокруг треугольника окружности
В данной публикации мы рассмотрим формулы, с помощью которых можно вычислить радиус окружности, описанной около произвольного (любого), прямоугольного или равностороннего треугольника. Также разберем примеры решения задач для закрепления представленного теоретического материала.
Видео:Как найти центр и радиус нарисованной окружности #математика #егэ2023 #школа #fyp #shortsСкачать

Формулы вычисления радиуса описанной окружности
Произвольный треугольник
Радиус окружности, описанной вокруг любого треугольника, рассчитывается по формуле:
где a, b, c – стороны треугольника, S – его площадь.
Прямоугольный треугольник
Радиус окружности, описанной около прямоугольного треугольника, равен половине его гипотенузы или высоте, проведенной к гипотенузе.
Равносторонний треугольник
Радиус описанной около правильного треугольника окружности вычисляется по формуле:
где a – сторона треугольника.
Видео:найти радиус окружности, описанной вокруг треугольникаСкачать

Примеры задач
Задание 1 
Дан треугольник со сторонами 4, 6 и 9 см. Найдите радиус описанной около него окружности.
Решение 
Для начала нам необходимо найти площадь треугольника. Т.к. нам известны длины всех его сторон, можно применить формулу Герона:
Теперь мы можем воспользоваться первой формулой из перечисленных выше для расчета радиуса круга:
Задание 2 
Дан треугольник, у которого известны две стороны из трех: 6 и 8 см. Найдите радиус описанной вокруг него окружности.
Решение 
Треугольник со сторонами 6 и 8 см может быть только прямоугольным, причем известные по условиям задачи стороны являются его катетами. Таким образом, мы можем найти гипотенузу фигуры, воспользовавшись теоремой Пифагора:
Как мы знаем, радиус круга, описанного вокруг прямоугольного треугольника, равняется половине его гипотенузы, следовательно: R = 10 : 2 = 5.
Видео:Найти центр и радиус окружностиСкачать

Радиус описанной окружности около прямоугольного треугольника онлайн
С помощю этого онлайн калькулятора можно найти радиус описанной окружности около любого треугольника, в том числе радиус описанной окружности около прямоугольного треугольника. Для нахождения радиуса окружности описанной около треугольника введите известные данные в ячейки и нажмите на кнопку «Вычислить». Теоретическую часть и численные примеры смотрите ниже.
| Открыть онлайн калькулятор | 
Видео:Как найти радиус окружности, зная три отрезка | Денис ЖучковСкачать

1. Радиус окружности описанной около прямоугольного треугольника, если известна гипотенуза треугольника
Пусть известна гипотенуза c прямоугольного треугольника (Рис.1). Найдем радиус описанной окружности около треугольника.
|  | 
На странице Радиус окружности описанной около треугольника формула радиуса описанной окружности около треугольника по стороне и противолежащему углу имеет вид:
| ( small R=frac ) | 
где C − угол противолежащий гипотенузе прямоугольного треугольника. Поскольку угол, противолежащий гипотенузе − прямой, то получим:
| ( small R=frac=frac, ) | 
| ( small R=frac. ) | (1) | 
Пример 1. Известна гипотенуза ( small с=frac ) прямоугольного треугольника. Найти радиус окружности описанной около треугольника.
Решение. Для нахождения радиуса окружности описанной около треугольника воспользуемся формулой (1).
Подставим значение ( small c=frac ) в (1):
|  | 
Ответ: 
Видео:Найти радиус равнобедренного прямоугольного треугольника 3 задание проф. ЕГЭ по математикеСкачать

2. Радиус окружности описанной около прямоугольного треугольника, если известны катеты треугольника
Пусть известны катеты a и b прямоугольного треугольника. Найдем радиус описанной окружности около треугольника (Рис.2).
|  | 
Из теоремы Пифагора запишем формулу гипотенузы, выраженная через катеты:
| ( small c=sqrt. ) | (2) | 
Подставляя (2) в (1), получим:
| ( small R=frac=frac<large sqrt>, ) | 
| ( small R=frac<large sqrt>. ) | (3) | 
Пример 2. Катеты прямоугольного треугольника равны: ( small a=15 , ; b=3.) Найти радиус окружности описанной около треугольника.
Решение. Для нахождения радиуса окружности описанной около прямоугольного треугольника воспользуемся формулой (3). Подставим значения ( small a=15 , ; b=3) в (3):
|  | 
Ответ: 
Видео:Радиус описанной окружностиСкачать

3. Радиус окружности описанной около прямоугольного треугольника, если известны катет и противолежащий угол треугольника
|  | 
Формула для вычисления радиуса окружности описанной около прямоугольного треугольника, если известны катет и противолежащий угол треугольника аналогична формуле вычисления радиуса описанной окружности около произвольного треугольника (см. статью на странице Радиус описанной окружности около треугольника онлайн):
|  | (4) | 
Видео:Радиус и диаметрСкачать

4. Радиус окружности описанной около прямоугольного треугольника, если известны катет и прилежащий острый угол треугольника
Пусть известны катет a и прилежащий острый угол B прямоугольного треугольника (Рис.4). Найдем радиус описанной окружности около треугольника.
|  | 
Так как треугольник прямоугольный, то сумма острых углов треугольника равна 90°:
| ( small angle A+angle B=90°. ) | 
| ( small angle A=90°-angle B. ) | (5) | 
Подставляя (5) в (4), получим:
| ( small R=frac=frac) ( small =frac ) | 
| ( small R=frac. ) | (6) | 
Пример 3. Катет прямоугольного треугольника равен: ( small a=15 ,) а прилежащий угол равен ( small angle B=25°. ) Найти радиус окружности описанной около треугольника.
Решение. Для нахождения радиуса окружности описанной около прямоугольного треугольника воспользуемся формулой (6). Подставим значения ( small a=15 , ; angle B=25° ) в (6):
|  | 
Ответ: 
🎥 Видео
Как Найти Радиус Сегмента на Потолке. Радиус Окружности По Хорде И Высоте СегментаСкачать

КАК НАЙТИ РАДИУС КРУГА (ОКРУЖНОСТИ), ЕСЛИ ИЗВЕСТНА ДЛИНА ОКРУЖНОСТИ? Примеры | МАТЕМАТИКА 6 классСкачать

Окружность. Как найти Радиус и ДиаметрСкачать

Математика за минуту: Объяснение формулы радиуса вписанной окружности в прямоугольный треугольник.Скачать

Длина окружности. Математика 6 класс.Скачать

Геометрия Украденная задача Найти радиусСкачать

Геометрия 9 класс. Радиус описанной и вписанной окружности треугольника. Формулы радиуса.Скачать

Формулы для радиуса окружности #shortsСкачать

Найти радиус. Задача на вниманиеСкачать

Найти радиус окружности если известны длины пересекающихся хордСкачать

Задача 6 №27932 ЕГЭ по математике. Урок 146Скачать

Правильные многоугольники. Геометрия 9 класс | Математика | TutorOnlineСкачать













