Как найти производную окружности

Видео:Математика без Ху!ни. Уравнение касательной.Скачать

Математика без Ху!ни. Уравнение касательной.

Как найти производную окружности

Если функция одной переменной описывается уравнением (y = fleft( x right)), где переменная (y) находится в левой части, а правая часть зависит только от аргумента (x), то говорят, что функция задана в явном виде . Например, следующие функции заданы явно: [ ;; <y = + 2x + 5,>;; ] Во многих задачах, однако, функция может быть задана неявным образом , т.е. в виде уравнения [Fleft( right) = 0.] Конечно, любую явную функцию можно записать в неявном виде. Так указанные выше функции можно представить как [ ;; <y — — 2x — 5 = 0,>;; ] Обратное преобразование можно выполнить далеко не всегда. Часто встречаются функции, заданные неявным уравнением, которые невозможно разрешить относительно переменной (y). Например, для приведенных ниже функций [ <+ — 3 = 0,>;; <frac<> <<sqrt <+ > >> — 4x = 0,>;; <xy — sin left( right) = 0> ] невозможно получить зависимость (yleft( x right)) в явном виде.

Хорошая новость состоит в том, что для нахождения производной (y’left( x right)) неявно заданной функции нет необходимости преобразовывать ее в явную форму. Для этого, зная уравнение (Fleft( right) = 0,) достаточно выполнить следующие действия:

    Сначала необходимо продифференцировать обе части уравнения по переменной (x), предполагая, что (y) − это дифференцируемая функция (x) и используя правило вычисления производной от сложной функции. При этом производная нуля (в правой части) также будет равна нулю.

Замечание : Если правая часть отлична от нуля, т.е. неявное уравнение имеет вид [fleft( right) = gleft( right),] то дифференцируем левую и правую части уравнения.

  • Решить полученное уравнение относительно производной (y’left( x right)).
  • Описанный алгоритм нахождения производной неявной функции используется в приведенных ниже примерах.

    Данное уравнение представляет собой каноническое уравнение параболы . Дифференцируя левую и правую части по (x), получаем: [ <<left( <> right)^prime > = <left( right)^prime >,>;; ;; <Rightarrow y' = frac

    ,;;text;;y ne 0.> ]

    Дифференцируем обе части уравнения по (x) (левую часть дифференцируем как сложную функцию): [ <frac<>left( <+ 2xy + 2> right) = frac<>left( 1 right),>;; <Rightarrow 2x + 2left( right) + 4yy’ = 0,>;; ] Если (y = 1), то из исходного уравнения находим [ <+ 2x + 2 = 1,>;; <Rightarrow + 2x + 1 = 0,>;; <Rightarrow <left( right)^2> = 0,>;; ] Подставив значения (x = -1) и (y = 1), получаем: [ — 1 + 1 — y’ + 2y’ = 0.] Отсюда следует, что (y’ = 0) при (y = 1.)

    </frac

    Предварительно прологарифмируем обе части уравнения: [ <ln left( <> right) = ln left( <> right),>;; ] Здесь предполагается, что (x > 0) и (y > 0.) Кроме того, (x ne 1) и (y ne 1) как основания показательных функций.

    Видео:Уравнение касательной в точке. Практическая часть. 1ч. 10 класс.Скачать

    Уравнение касательной в точке. Практическая часть. 1ч. 10 класс.

    Касательная к графику функции в точке. Уравнение касательной. Геометрический смысл производной

    Статья дает подробное разъяснение определений, геометрического смысла производной с графическими обозначениями. Будет рассмотрено уравнение касательной прямой с приведением примеров, найдено уравнения касательной к кривым 2 порядка.

    Видео:10 класс, 43 урок, Уравнение касательной к графику функцииСкачать

    10 класс, 43 урок, Уравнение касательной к графику функции

    Определения и понятия

    Угол наклона прямой y = k x + b называется угол α , который отсчитывается от положительного направления оси о х к прямой y = k x + b в положительном направлении.

    Как найти производную окружности

    На рисунке направление о х обозначается при помощи зеленой стрелки и в виде зеленой дуги, а угол наклона при помощи красной дуги. Синяя линия относится к прямой.

    Угловой коэффициент прямой y = k x + b называют числовым коэффициентом k .

    Угловой коэффициент равняется тангенсу наклона прямой, иначе говоря k = t g α .

    • Угол наклона прямой равняется 0 только при параллельности о х и угловом коэффициенте, равному нулю, потому как тангенс нуля равен 0 . Значит, вид уравнения будет y = b .
    • Если угол наклона прямой y = k x + b острый, тогда выполняются условия 0 α π 2 или 0 ° α 90 ° . Отсюда имеем, что значение углового коэффициента k считается положительным числом, потому как значение тангенс удовлетворяет условию t g α > 0 , причем имеется возрастание графика.
    • Если α = π 2 , тогда расположение прямой перпендикулярно о х . Равенство задается при помощи равенства x = c со значением с , являющимся действительным числом.
    • Если угол наклона прямой y = k x + b тупой, то соответствует условиям π 2 α π или 90 ° α 180 ° , значение углового коэффициента k принимает отрицательное значение, а график убывает.

    Определение 3

    Секущей называют прямую, которая проходит через 2 точки функции f ( x ) . Иначе говоря, секущая – это прямая, которая проводится через любые две точки графика заданной функции.

    Как найти производную окружности

    По рисунку видно, что А В является секущей, а f ( x ) – черная кривая, α — красная дуга, означающая угол наклона секущей.

    Когда угловой коэффициент прямой равняется тангенсу угла наклона, то видно, что тангенс из прямоугольного треугольника А В С можно найти по отношению противолежащего катета к прилежащему.

    Получаем формулу для нахождения секущей вида:

    k = t g α = B C A C = f ( x B ) — f x A x B — x A , где абсциссами точек А и В являются значения x A , x B , а f ( x A ) , f ( x B ) — это значения функции в этих точках.

    Очевидно, что угловой коэффициент секущей определен при помощи равенства k = f ( x B ) — f ( x A ) x B — x A или k = f ( x A ) — f ( x B ) x A — x B , причем уравнение необходимо записать как y = f ( x B ) — f ( x A ) x B — x A · x — x A + f ( x A ) или
    y = f ( x A ) — f ( x B ) x A — x B · x — x B + f ( x B ) .

    Секущая делит график визуально на 3 части: слева от точки А , от А до В , справа от В . На располагаемом ниже рисунке видно, что имеются три секущие, которые считаются совпадающими, то есть задаются при помощи аналогичного уравнения.

    Как найти производную окружности

    По определению видно, что прямая и ее секущая в данном случае совпадают.

    Секущая может множественно раз пересекать график заданной функции. Если имеется уравнение вида у = 0 для секущей, тогда количество точек пересечения с синусоидой бесконечно.

    Касательная к графику функции f ( x ) в точке x 0 ; f ( x 0 ) называется прямая, проходящая через заданную точку x 0 ; f ( x 0 ) , с наличием отрезка, который имеет множество значений х , близких к x 0 .

    Рассмотрим подробно на ниже приведенном примере. Тогда видно, что прямая, заданная функцией y = x + 1 , считается касательной к y = 2 x в точке с координатами ( 1 ; 2 ) . Для наглядности, необходимо рассмотреть графики с приближенными к ( 1 ; 2 ) значениями. Функция y = 2 x обозначена черным цветом, синяя линия – касательная, красная точка – точка пересечения.

    Как найти производную окружности

    Очевидно, что y = 2 x сливается с прямой у = х + 1 .

    Для определения касательной следует рассмотреть поведение касательной А В при бесконечном приближении точки В к точке А . Для наглядности приведем рисунок.

    Как найти производную окружности

    Секущая А В , обозначенная при помощи синей линии, стремится к положению самой касательной, а угол наклона секущей α начнет стремиться к углу наклона самой касательной α x .

    Касательной к графику функции y = f ( x ) в точке А считается предельное положение секущей А В при В стремящейся к А , то есть B → A .

    Теперь перейдем к рассмотрению геометрического смысла производной функции в точке.

    Видео:4.3 Найти производную функцииСкачать

    4.3 Найти производную функции

    Геометрический смысл производной функции в точке

    Перейдем к рассмотрению секущей А В для функции f ( x ) , где А и В с координатами x 0 , f ( x 0 ) и x 0 + ∆ x , f ( x 0 + ∆ x ) , а ∆ x обозначаем как приращение аргумента. Теперь функция примет вид ∆ y = ∆ f ( x ) = f ( x 0 + ∆ x ) — f ( ∆ x ) . Для наглядности приведем в пример рисунок.

    Как найти производную окружности

    Рассмотрим полученный прямоугольный треугольник А В С . Используем определение тангенса для решения, то есть получим отношение ∆ y ∆ x = t g α . Из определения касательной следует, что lim ∆ x → 0 ∆ y ∆ x = t g α x . По правилу производной в точке имеем, что производную f ( x ) в точке x 0 называют пределом отношений приращения функции к приращению аргумента, где ∆ x → 0 , тогда обозначим как f ( x 0 ) = lim ∆ x → 0 ∆ y ∆ x .

    Отсюда следует, что f ‘ ( x 0 ) = lim ∆ x → 0 ∆ y ∆ x = t g α x = k x , где k x обозначают в качестве углового коэффициента касательной.

    То есть получаем, что f ’ ( x ) может существовать в точке x 0 причем как и касательная к заданному графику функции в точке касания равной x 0 , f 0 ( x 0 ) , где значение углового коэффициента касательной в точке равняется производной в точке x 0 . Тогда получаем, что k x = f ‘ ( x 0 ) .

    Геометрический смысл производной функции в точке в том, что дается понятие существования касательной к графику в этой же точке.

    Видео:4. Вычисление производных примеры. Самое начало.Скачать

    4. Вычисление производных примеры. Самое начало.

    Уравнение касательной прямой

    Чтобы записать уравнение любой прямой на плоскости, необходимо иметь угловой коэффициент с точкой, через которую она проходит. Его обозначение принимается как x 0 при пересечении.

    Уравнение касательной к графику функции y = f ( x ) в точке x 0 , f 0 ( x 0 ) принимает вид y = f ‘ ( x 0 ) · x — x 0 + f ( x 0 ) .

    Имеется в виду, что конечным значением производной f ‘ ( x 0 ) можно определить положение касательной, то есть вертикально при условии lim x → x 0 + 0 f ‘ ( x ) = ∞ и lim x → x 0 — 0 f ‘ ( x ) = ∞ или отсутствие вовсе при условии lim x → x 0 + 0 f ‘ ( x ) ≠ lim x → x 0 — 0 f ‘ ( x ) .

    Расположение касательной зависит от значения ее углового коэффициента k x = f ‘ ( x 0 ) . При параллельности к оси о х получаем, что k k = 0 , при параллельности к о у — k x = ∞ , причем вид уравнения касательной x = x 0 возрастает при k x > 0 , убывает при k x 0 .

    Произвести составление уравнения касательной к графику функции y = e x + 1 + x 3 3 — 6 — 3 3 x — 17 — 3 3 в точке с координатами ( 1 ; 3 ) с определением угла наклона.

    Решение

    По условию имеем, что функция определяется для всех действительных чисел. Получаем, что точка с координатами, заданными по условию, ( 1 ; 3 ) является точкой касания, тогда x 0 = — 1 , f ( x 0 ) = — 3 .

    Необходимо найти производную в точке со значением — 1 . Получаем, что

    y ‘ = e x + 1 + x 3 3 — 6 — 3 3 x — 17 — 3 3 ‘ = = e x + 1 ‘ + x 3 3 ‘ — 6 — 3 3 x ‘ — 17 — 3 3 ‘ = e x + 1 + x 2 — 6 — 3 3 y ‘ ( x 0 ) = y ‘ ( — 1 ) = e — 1 + 1 + — 1 2 — 6 — 3 3 = 3 3

    Значение f ’ ( x ) в точке касания является угловым коэффициентом касательной, который равняется тангенсу наклона.

    Тогда k x = t g α x = y ‘ ( x 0 ) = 3 3

    Отсюда следует, что α x = a r c t g 3 3 = π 6

    Ответ: уравнение касательной приобретает вид

    y = f ‘ ( x 0 ) · x — x 0 + f ( x 0 ) y = 3 3 ( x + 1 ) — 3 y = 3 3 x — 9 — 3 3

    Для наглядности приведем пример в графической иллюстрации.

    Черный цвет используется для графика исходной функции, синий цвет – изображение касательной, красная точка – точка касания. Рисунок, располагаемый справа, показывает в увеличенном виде.

    Как найти производную окружности

    Выяснить наличие существования касательной к графику заданной функции
    y = 3 · x — 1 5 + 1 в точке с координатами ( 1 ; 1 ) . Составить уравнение и определить угол наклона.

    Решение

    По условию имеем, что областью определения заданной функции считается множество всех действительных чисел.

    Перейдем к нахождению производной

    y ‘ = 3 · x — 1 5 + 1 ‘ = 3 · 1 5 · ( x — 1 ) 1 5 — 1 = 3 5 · 1 ( x — 1 ) 4 5

    Если x 0 = 1 , тогда f ’ ( x ) не определена, но пределы записываются как lim x → 1 + 0 3 5 · 1 ( x — 1 ) 4 5 = 3 5 · 1 ( + 0 ) 4 5 = 3 5 · 1 + 0 = + ∞ и lim x → 1 — 0 3 5 · 1 ( x — 1 ) 4 5 = 3 5 · 1 ( — 0 ) 4 5 = 3 5 · 1 + 0 = + ∞ , что означает существование вертикальной касательной в точке ( 1 ; 1 ) .

    Ответ: уравнение примет вид х = 1 , где угол наклона будет равен π 2 .

    Для наглядности изобразим графически.

    Как найти производную окружности

    Найти точки графика функции y = 1 15 x + 2 3 — 4 5 x 2 — 16 5 x — 26 5 + 3 x + 2 , где

    1. Касательная не существует;
    2. Касательная располагается параллельно о х ;
    3. Касательная параллельна прямой y = 8 5 x + 4 .

    Решение

    Необходимо обратить внимание на область определения. По условию имеем, что функция определена на множестве всех действительных чисел. Раскрываем модуль и решаем систему с промежутками x ∈ — ∞ ; 2 и [ — 2 ; + ∞ ) . Получаем, что

    y = — 1 15 x 3 + 18 x 2 + 105 x + 176 , x ∈ — ∞ ; — 2 1 15 x 3 — 6 x 2 + 9 x + 12 , x ∈ [ — 2 ; + ∞ )

    Необходимо продифференцировать функцию. Имеем, что

    y ‘ = — 1 15 x 3 + 18 x 2 + 105 x + 176 ‘ , x ∈ — ∞ ; — 2 1 15 x 3 — 6 x 2 + 9 x + 12 ‘ , x ∈ [ — 2 ; + ∞ ) ⇔ y ‘ = — 1 5 ( x 2 + 12 x + 35 ) , x ∈ — ∞ ; — 2 1 5 x 2 — 4 x + 3 , x ∈ [ — 2 ; + ∞ )

    Когда х = — 2 , тогда производная не существует, потому что односторонние пределы не равны в этой точке:

    lim x → — 2 — 0 y ‘ ( x ) = lim x → — 2 — 0 — 1 5 ( x 2 + 12 x + 35 = — 1 5 ( — 2 ) 2 + 12 ( — 2 ) + 35 = — 3 lim x → — 2 + 0 y ‘ ( x ) = lim x → — 2 + 0 1 5 ( x 2 — 4 x + 3 ) = 1 5 — 2 2 — 4 — 2 + 3 = 3

    Вычисляем значение функции в точке х = — 2 , где получаем, что

    1. y ( — 2 ) = 1 15 — 2 + 2 3 — 4 5 ( — 2 ) 2 — 16 5 ( — 2 ) — 26 5 + 3 — 2 + 2 = — 2 , то есть касательная в точке ( — 2 ; — 2 ) не будет существовать.
    2. Касательная параллельна о х , когда угловой коэффициент равняется нулю. Тогда k x = t g α x = f ‘ ( x 0 ) . То есть необходимо найти значения таких х , когда производная функции обращает ее в ноль. То есть значения f ’ ( x ) и будут являться точками касания, где касательная является параллельной о х .

    Когда x ∈ — ∞ ; — 2 , тогда — 1 5 ( x 2 + 12 x + 35 ) = 0 , а при x ∈ ( — 2 ; + ∞ ) получаем 1 5 ( x 2 — 4 x + 3 ) = 0 .

    — 1 5 ( x 2 + 12 x + 35 ) = 0 D = 12 2 — 4 · 35 = 144 — 140 = 4 x 1 = — 12 + 4 2 = — 5 ∈ — ∞ ; — 2 x 2 = — 12 — 4 2 = — 7 ∈ — ∞ ; — 2 1 5 ( x 2 — 4 x + 3 ) = 0 D = 4 2 — 4 · 3 = 4 x 3 = 4 — 4 2 = 1 ∈ — 2 ; + ∞ x 4 = 4 + 4 2 = 3 ∈ — 2 ; + ∞

    Вычисляем соответствующие значения функции

    y 1 = y — 5 = 1 15 — 5 + 2 3 — 4 5 — 5 2 — 16 5 — 5 — 26 5 + 3 — 5 + 2 = 8 5 y 2 = y ( — 7 ) = 1 15 — 7 + 2 3 — 4 5 ( — 7 ) 2 — 16 5 — 7 — 26 5 + 3 — 7 + 2 = 4 3 y 3 = y ( 1 ) = 1 15 1 + 2 3 — 4 5 · 1 2 — 16 5 · 1 — 26 5 + 3 1 + 2 = 8 5 y 4 = y ( 3 ) = 1 15 3 + 2 3 — 4 5 · 3 2 — 16 5 · 3 — 26 5 + 3 3 + 2 = 4 3

    Отсюда — 5 ; 8 5 , — 4 ; 4 3 , 1 ; 8 5 , 3 ; 4 3 считаются искомыми точками графика функции.

    Рассмотрим графическое изображение решения.

    Как найти производную окружности

    Черная линия – график функции, красные точки – точки касания.

    1. Когда прямые располагаются параллельно, то угловые коэффициенты равны. Тогда необходимо заняться поиском точек графика функции, где угловой коэффициент будет равняться значению 8 5 . Для этого нужно решить уравнение вида y ‘ ( x ) = 8 5 . Тогда, если x ∈ — ∞ ; — 2 , получаем, что — 1 5 ( x 2 + 12 x + 35 ) = 8 5 , а если x ∈ ( — 2 ; + ∞ ) , тогда 1 5 ( x 2 — 4 x + 3 ) = 8 5 .

    Первое уравнение не имеет корней, так как дискриминант меньше нуля. Запишем, что

    — 1 5 x 2 + 12 x + 35 = 8 5 x 2 + 12 x + 43 = 0 D = 12 2 — 4 · 43 = — 28 0

    Другое уравнение имеет два действительных корня, тогда

    1 5 ( x 2 — 4 x + 3 ) = 8 5 x 2 — 4 x — 5 = 0 D = 4 2 — 4 · ( — 5 ) = 36 x 1 = 4 — 36 2 = — 1 ∈ — 2 ; + ∞ x 2 = 4 + 36 2 = 5 ∈ — 2 ; + ∞

    Перейдем к нахождению значений функции. Получаем, что

    y 1 = y ( — 1 ) = 1 15 — 1 + 2 3 — 4 5 ( — 1 ) 2 — 16 5 ( — 1 ) — 26 5 + 3 — 1 + 2 = 4 15 y 2 = y ( 5 ) = 1 15 5 + 2 3 — 4 5 · 5 2 — 16 5 · 5 — 26 5 + 3 5 + 2 = 8 3

    Точки со значениями — 1 ; 4 15 , 5 ; 8 3 являются точками, в которых касательные параллельны прямой y = 8 5 x + 4 .

    Ответ: черная линия – график функции, красная линия – график y = 8 5 x + 4 , синяя линия – касательные в точках — 1 ; 4 15 , 5 ; 8 3 .

    Как найти производную окружности

    Возможно существование бесконечного количества касательных для заданных функций.

    Написать уравнения всех имеющихся касательных функции y = 3 cos 3 2 x — π 4 — 1 3 , которые располагаются перпендикулярно прямой y = — 2 x + 1 2 .

    Решение

    Для составления уравнения касательной необходимо найти коэффициент и координаты точки касания, исходя из условия перпендикулярности прямых. Определение звучит так: произведение угловых коэффициентов, которые перпендикулярны прямым, равняется — 1 , то есть записывается как k x · k ⊥ = — 1 . Из условия имеем, что угловой коэффициент располагается перпендикулярно прямой и равняется k ⊥ = — 2 , тогда k x = — 1 k ⊥ = — 1 — 2 = 1 2 .

    Теперь необходимо найти координаты точек касания. Нужно найти х , после чего его значение для заданной функции. Отметим, что из геометрического смысла производной в точке
    x 0 получаем, что k x = y ‘ ( x 0 ) . Из данного равенства найдем значения х для точек касания.

    y ‘ ( x 0 ) = 3 cos 3 2 x 0 — π 4 — 1 3 ‘ = 3 · — sin 3 2 x 0 — π 4 · 3 2 x 0 — π 4 ‘ = = — 3 · sin 3 2 x 0 — π 4 · 3 2 = — 9 2 · sin 3 2 x 0 — π 4 ⇒ k x = y ‘ ( x 0 ) ⇔ — 9 2 · sin 3 2 x 0 — π 4 = 1 2 ⇒ sin 3 2 x 0 — π 4 = — 1 9

    Это тригонометрическое уравнение будет использовано для вычисления ординат точек касания.

    3 2 x 0 — π 4 = a r c sin — 1 9 + 2 πk или 3 2 x 0 — π 4 = π — a r c sin — 1 9 + 2 πk

    3 2 x 0 — π 4 = — a r c sin 1 9 + 2 πk или 3 2 x 0 — π 4 = π + a r c sin 1 9 + 2 πk

    x 0 = 2 3 π 4 — a r c sin 1 9 + 2 πk или x 0 = 2 3 5 π 4 + a r c sin 1 9 + 2 πk , k ∈ Z

    Z — множество целых чисел.

    Найдены х точек касания. Теперь необходимо перейти к поиску значений у :

    y 0 = 3 cos 3 2 x 0 — π 4 — 1 3

    y 0 = 3 · 1 — sin 2 3 2 x 0 — π 4 — 1 3 или y 0 = 3 · — 1 — sin 2 3 2 x 0 — π 4 — 1 3

    y 0 = 3 · 1 — — 1 9 2 — 1 3 или y 0 = 3 · — 1 — — 1 9 2 — 1 3

    y 0 = 4 5 — 1 3 или y 0 = — 4 5 + 1 3

    Отсюда получаем, что 2 3 π 4 — a r c sin 1 9 + 2 πk ; 4 5 — 1 3 , 2 3 5 π 4 + a r c sin 1 9 + 2 πk ; — 4 5 + 1 3 являются точками касания.

    Ответ: необходимы уравнения запишутся как

    y = 1 2 x — 2 3 π 4 — a r c sin 1 9 + 2 πk + 4 5 — 1 3 , y = 1 2 x — 2 3 5 π 4 + a r c sin 1 9 + 2 πk — 4 5 + 1 3 , k ∈ Z

    Для наглядного изображения рассмотрим функцию и касательную на координатной прямой.

    Рисунок показывает, что расположение функции идет на промежутке [ — 10 ; 10 ] , где черная прямя – график функции, синие линии – касательные, которые располагаются перпендикулярно заданной прямой вида y = — 2 x + 1 2 . Красные точки – это точки касания.

    Как найти производную окружности

    Видео:АЛГЕБРА С НУЛЯ — Что такое Производная?Скачать

    АЛГЕБРА С НУЛЯ — Что такое Производная?

    Касательная к окружности, эллипсу, гиперболе, параболе

    Канонические уравнения кривых 2 порядка не являются однозначными функциями. Уравнения касательных для них составляются по известным схемам.

    Касательная к окружности

    Для задания окружности с центром в точке x c e n t e r ; y c e n t e r и радиусом R применяется формула x — x c e n t e r 2 + y — y c e n t e r 2 = R 2 .

    Данное равенство может быть записано как объединение двух функций:

    y = R 2 — x — x c e n t e r 2 + y c e n t e r y = — R 2 — x — x c e n t e r 2 + y c e n t e r

    Первая функция располагается вверху, а вторая внизу, как показано на рисунке.

    Как найти производную окружности

    Для составления уравнения окружности в точке x 0 ; y 0 , которая располагается в верхней или нижней полуокружности, следует найти уравнение графика функции вида y = R 2 — x — x c e n t e r 2 + y c e n t e r или y = — R 2 — x — x c e n t e r 2 + y c e n t e r в указанной точке.

    Когда в точках x c e n t e r ; y c e n t e r + R и x c e n t e r ; y c e n t e r — R касательные могут быть заданы уравнениями y = y c e n t e r + R и y = y c e n t e r — R , а в точках x c e n t e r + R ; y c e n t e r и
    x c e n t e r — R ; y c e n t e r будут являться параллельными о у , тогда получим уравнения вида x = x c e n t e r + R и x = x c e n t e r — R .

    Как найти производную окружности

    Касательная к эллипсу

    Когда эллипс имеет центр в точке x c e n t e r ; y c e n t e r с полуосями a и b , тогда он может быть задан при помощи уравнения x — x c e n t e r 2 a 2 + y — y c e n t e r 2 b 2 = 1 .

    Эллипс и окружность могут быть обозначаться при помощи объединения двух функций, а именно: верхнего и нижнего полуэллипса. Тогда получаем, что

    y = b a · a 2 — ( x — x c e n t e r ) 2 + y c e n t e r y = — b a · a 2 — ( x — x c e n t e r ) 2 + y c e n t e r

    Как найти производную окружности

    Если касательные располагаются на вершинах эллипса, тогда они параллельны о х или о у . Ниже для наглядности рассмотрим рисунок.

    Как найти производную окружности

    Написать уравнение касательной к эллипсу x — 3 2 4 + y — 5 2 25 = 1 в точках со значениями x равного х = 2 .

    Решение

    Необходимо найти точки касания, которые соответствуют значению х = 2 . Производим подстановку в имеющееся уравнение эллипса и получаем, что

    x — 3 2 4 x = 2 + y — 5 2 25 = 1 1 4 + y — 5 2 25 = 1 ⇒ y — 5 2 = 3 4 · 25 ⇒ y = ± 5 3 2 + 5

    Тогда 2 ; 5 3 2 + 5 и 2 ; — 5 3 2 + 5 являются точками касания, которые принадлежат верхнему и нижнему полуэллипсу.

    Перейдем к нахождению и разрешению уравнения эллипса относительно y . Получим, что

    x — 3 2 4 + y — 5 2 25 = 1 y — 5 2 25 = 1 — x — 3 2 4 ( y — 5 ) 2 = 25 · 1 — x — 3 2 4 y — 5 = ± 5 · 1 — x — 3 2 4 y = 5 ± 5 2 4 — x — 3 2

    Очевидно, что верхний полуэллипс задается с помощью функции вида y = 5 + 5 2 4 — x — 3 2 , а нижний y = 5 — 5 2 4 — x — 3 2 .

    Применим стандартный алгоритм для того, чтобы составить уравнение касательной к графику функции в точке. Запишем, что уравнение для первой касательной в точке 2 ; 5 3 2 + 5 будет иметь вид

    y ‘ = 5 + 5 2 4 — x — 3 2 ‘ = 5 2 · 1 2 4 — ( x — 3 ) 2 · 4 — ( x — 3 ) 2 ‘ = = — 5 2 · x — 3 4 — ( x — 3 ) 2 ⇒ y ‘ ( x 0 ) = y ‘ ( 2 ) = — 5 2 · 2 — 3 4 — ( 2 — 3 ) 2 = 5 2 3 ⇒ y = y ‘ ( x 0 ) · x — x 0 + y 0 ⇔ y = 5 2 3 ( x — 2 ) + 5 3 2 + 5

    Получаем, что уравнение второй касательной со значением в точке
    2 ; — 5 3 2 + 5 принимает вид

    y ‘ = 5 — 5 2 4 — ( x — 3 ) 2 ‘ = — 5 2 · 1 2 4 — ( x — 3 ) 2 · 4 — ( x — 3 ) 2 ‘ = = 5 2 · x — 3 4 — ( x — 3 ) 2 ⇒ y ‘ ( x 0 ) = y ‘ ( 2 ) = 5 2 · 2 — 3 4 — ( 2 — 3 ) 2 = — 5 2 3 ⇒ y = y ‘ ( x 0 ) · x — x 0 + y 0 ⇔ y = — 5 2 3 ( x — 2 ) — 5 3 2 + 5

    Графически касательные обозначаются так:

    Как найти производную окружности

    Касательная к гиперболе

    Когда гипербола имеет центр в точке x c e n t e r ; y c e n t e r и вершины x c e n t e r + α ; y c e n t e r и x c e n t e r — α ; y c e n t e r , имеет место задание неравенства x — x c e n t e r 2 α 2 — y — y c e n t e r 2 b 2 = 1 , если с вершинами x c e n t e r ; y c e n t e r + b и x c e n t e r ; y c e n t e r — b , тогда задается при помощи неравенства x — x c e n t e r 2 α 2 — y — y c e n t e r 2 b 2 = — 1 .

    Как найти производную окружности

    Гипербола может быть представлена в виде двух объединенных функций вида

    y = b a · ( x — x c e n t e r ) 2 — a 2 + y c e n t e r y = — b a · ( x — x c e n t e r ) 2 — a 2 + y c e n t e r или y = b a · ( x — x c e n t e r ) 2 + a 2 + y c e n t e r y = — b a · ( x — x c e n t e r ) 2 + a 2 + y c e n t e r

    Как найти производную окружности

    В первом случае имеем, что касательные параллельны о у , а во втором параллельны о х .

    Отсюда следует, что для того, чтобы найти уравнение касательной к гиперболе, необходимо выяснить, какой функции принадлежит точка касания. Чтобы определить это, необходимо произвести подстановку в уравнения и проверить их на тождественность.

    Составить уравнение касательной к гиперболе x — 3 2 4 — y + 3 2 9 = 1 в точке 7 ; — 3 3 — 3 .

    Решение

    Необходимо преобразовать запись решения нахождения гиперболы при помощи 2 функций. Получим, что

    x — 3 2 4 — y + 3 2 9 = 1 ⇒ y + 3 2 9 = x — 3 2 4 — 1 ⇒ y + 3 2 = 9 · x — 3 2 4 — 1 ⇒ y + 3 = 3 2 · x — 3 2 — 4 и л и y + 3 = — 3 2 · x — 3 2 — 4 ⇒ y = 3 2 · x — 3 2 — 4 — 3 y = — 3 2 · x — 3 2 — 4 — 3

    Необходимо выявить, к какой функции принадлежит заданная точка с координатами 7 ; — 3 3 — 3 .

    Очевидно, что для проверки первой функции необходимо y ( 7 ) = 3 2 · ( 7 — 3 ) 2 — 4 — 3 = 3 3 — 3 ≠ — 3 3 — 3 , тогда точка графику не принадлежит, так как равенство не выполняется.

    Для второй функции имеем, что y ( 7 ) = — 3 2 · ( 7 — 3 ) 2 — 4 — 3 = — 3 3 — 3 ≠ — 3 3 — 3 , значит, точка принадлежит заданному графику. Отсюда следует найти угловой коэффициент.

    y ‘ = — 3 2 · ( x — 3 ) 2 — 4 — 3 ‘ = — 3 2 · x — 3 ( x — 3 ) 2 — 4 ⇒ k x = y ‘ ( x 0 ) = — 3 2 · x 0 — 3 x 0 — 3 2 — 4 x 0 = 7 = — 3 2 · 7 — 3 7 — 3 2 — 4 = — 3

    Ответ: уравнение касательной можно представить как

    y = — 3 · x — 7 — 3 3 — 3 = — 3 · x + 4 3 — 3

    Наглядно изображается так:

    Как найти производную окружности

    Касательная к параболе

    Чтобы составить уравнение касательной к параболе y = a x 2 + b x + c в точке x 0 , y ( x 0 ) , необходимо использовать стандартный алгоритм, тогда уравнение примет вид y = y ‘ ( x 0 ) · x — x 0 + y ( x 0 ) . Такая касательная в вершине параллельна о х .

    Следует задать параболу x = a y 2 + b y + c как объединение двух функций. Поэтому нужно разрешить уравнение относительно у . Получаем, что

    x = a y 2 + b y + c ⇔ a y 2 + b y + c — x = 0 D = b 2 — 4 a ( c — x ) y = — b + b 2 — 4 a ( c — x ) 2 a y = — b — b 2 — 4 a ( c — x ) 2 a

    Графически изобразим как:

    Как найти производную окружности

    Для выяснения принадлежности точки x 0 , y ( x 0 ) функции, нежно действовать по стандартному алгоритму. Такая касательная будет параллельна о у относительно параболы.

    Написать уравнение касательной к графику x — 2 y 2 — 5 y + 3 , когда имеем угол наклона касательной 150 ° .

    Решение

    Начинаем решение с представления параболы в качестве двух функций. Получим, что

    — 2 y 2 — 5 y + 3 — x = 0 D = ( — 5 ) 2 — 4 · ( — 2 ) · ( 3 — x ) = 49 — 8 x y = 5 + 49 — 8 x — 4 y = 5 — 49 — 8 x — 4

    Значение углового коэффициента равняется значению производной в точке x 0 этой функции и равняется тангенсу угла наклона.

    k x = y ‘ ( x 0 ) = t g α x = t g 150 ° = — 1 3

    Отсюда определим значение х для точек касания.

    Первая функция запишется как

    y ‘ = 5 + 49 — 8 x — 4 ‘ = 1 49 — 8 x ⇒ y ‘ ( x 0 ) = 1 49 — 8 x 0 = — 1 3 ⇔ 49 — 8 x 0 = — 3

    Очевидно, что действительных корней нет, так как получили отрицательное значение. Делаем вывод, что касательной с углом 150 ° для такой функции не существует.

    Вторая функция запишется как

    y ‘ = 5 — 49 — 8 x — 4 ‘ = — 1 49 — 8 x ⇒ y ‘ ( x 0 ) = — 1 49 — 8 x 0 = — 1 3 ⇔ 49 — 8 x 0 = — 3 x 0 = 23 4 ⇒ y ( x 0 ) = 5 — 49 — 8 · 23 4 — 4 = — 5 + 3 4

    Имеем, что точки касания — 23 4 ; — 5 + 3 4 .

    Ответ: уравнение касательной принимает вид

    Видео:4.2 Производная Примеры для тренировкиСкачать

    4.2 Производная Примеры для тренировки

    Касательная к окружности

    Как найти производную окружности

    О чем эта статья:

    Видео:Производная функции. 10 класс.Скачать

    Производная функции. 10 класс.

    Касательная к окружности, секущая и хорда — в чем разница

    В самом названии касательной отражается суть понятия — это прямая, которая не пересекает окружность, а лишь касается ее в одной точке. Взглянув на рисунок окружности ниже, несложно догадаться, что точку касания от центра отделяет расстояние, в точности равное радиусу.

    Как найти производную окружности

    Касательная к окружности — это прямая, имеющая с ней всего одну общую точку.

    Если мы проведем прямую поближе к центру окружности — так, чтобы расстояние до него было меньше радиуса — неизбежно получится две точки пересечения. Такая прямая называется секущей, а отрезок, расположенный между точками пересечения, будет хордой (на рисунке ниже это ВС ).

    Как найти производную окружности

    Секущая к окружности — это прямая, которая пересекает ее в двух местах, т. е. имеет с ней две общие точки. Часть секущей, расположенная внутри окружности, будет называться хордой.

    Видео:14. Что такое параметрически заданная функция, производная параметрически заданной функции.Скачать

    14. Что такое параметрически заданная функция, производная параметрически заданной функции.

    Свойства касательной к окружности

    Выделяют четыре свойства касательной, которые необходимо знать для решения задач. Два из них достаточно просты и легко доказуемы, а вот еще над двумя придется немного подумать. Рассмотрим все по порядку.

    Касательная к окружности и радиус, проведенный в точку касания, взаимно перпендикулярны.

    Не будем принимать это на веру, попробуем доказать. Итак, у нас даны:

    • окружность с центральной точкой А;
    • прямая а — касательная к ней;
    • радиус АВ, проведенный к касательной.

    Докажем, что касательная и радиус АВ взаимно перпендикулярны, т.е. аАВ.

    Пойдем от противного — предположим, что между прямой а и радиусом АВ нет прямого угла и проведем настоящий перпендикуляр к касательной, назвав его АС.

    В таком случае наш радиус АВ будет считаться наклонной, а наклонная, как известно, всегда длиннее перпендикуляра. Получается, что АВ > АС. Но если бы это было на самом деле так, наша прямая а пересекалась бы с окружностью два раза, ведь расстояние от центра А до нее — меньше радиуса. Но по условию задачи а — это касательная, а значит, она может иметь лишь одну точку касания.

    Итак, мы получили противоречие. Делаем вывод, что настоящим перпендикуляром к прямой а будет вовсе не АС, а АВ.

    Как найти производную окружности

    Курсы подготовки к ОГЭ по математике от Skysmart придадут уверенности в себе и помогут освежить знания перед экзаменом.

    Задача

    У нас есть окружность, центр которой обозначен О. Из точки С проведена прямая, и она касается этой окружности в точке А. Известно, что ∠АСО = 28°. Найдите величину дуги АВ.

    Мы знаем, что касательная АС ⟂ АО, следовательно ∠САО = 90°.

    Поскольку нам известны величины двух углов треугольника ОАС, не составит труда найти величину и третьего угла.

    ∠АОС = 180° — ∠САО — ∠АСО = 180° — 90° — 28° = 62°

    Поскольку вершина угла АОС лежит в центре окружности, можно вспомнить свойство центрального угла — как известно, он равен дуге, на которую опирается. Следовательно, АВ = 62°.

    Как найти производную окружности

    Если провести две касательных к окружности из одной точки, лежащей вне этой окружности, то их отрезки от этой начальной точки до точки касания будут равны.

    Докажем и это свойство на примере. Итак, у нас есть окружность с центром А, давайте проведем к ней две касательные из точки D. Обозначим эти прямые как ВD и CD . А теперь выясним, на самом ли деле BD = CD.

    Для начала дополним наш рисунок, проведем еще одну прямую из точки D в центр окружности. Как видите, у нас получилось два треугольника: ABD и ACD . Поскольку мы уже знаем, что касательная и радиус к ней перпендикулярны, углы ABD и ACD должны быть равны 90°.

    Как найти производную окружности

    Итак, у нас есть два прямоугольных треугольника с общей гипотенузой AD. Учитывая, что радиусы окружности всегда равны, мы понимаем, что катеты AB и AC у этих треугольников тоже одинаковой длины. Следовательно, ΔABD = ΔACD (по катету и гипотенузе).. Значит, оставшиеся катеты, а это как раз наши BD и CD (отрезки касательных к окружности), аналогично равны.

    Важно: прямая, проложенная из стартовой точки до центра окружности (в нашем примере это AD), делит угол между касательными пополам.

    Задача 1

    У нас есть окружность с радиусом 4,5 см. К ней из точки D, удаленной от центра на 9 см, провели две прямые, которые касаются окружности в точках B и C. Определите градусную меру угла, под которым пересекаются касательные.

    Решение

    Для этой задачи вполне подойдет уже рассмотренный выше рисунок окружности с радиусами АВ и АC. Поскольку касательная ВD перпендикулярна радиусу АВ , у нас есть прямоугольный треугольник АВD. Зная длину его катета и гипотенузы, определим величину ∠BDA.

    ∠BDA = 30° (по свойству прямоугольного треугольника: угол, лежащий напротив катета, равного половине гипотенузы, составляет 30°).

    Мы знаем, что прямая, проведенная из точки до центра окружности, делит угол между касательными, проведенными из этой же точки, пополам. Другими словами:

    ∠BDC = ∠BDA × 2 = 30° × 2 = 60°

    Итак, угол между касательными составляет 60°.

    Как найти производную окружности

    Задача 2

    К окружности с центром О провели две касательные КМ и КN. Известно, что ∠МКN равен 50°. Требуется определить величину угла ∠NМК.

    Решение

    Согласно вышеуказанному свойству мы знаем, что КМ = КN. Следовательно, треугольник МNК является равнобедренным.

    Углы при его основании будут равны, т.е. ∠МNК = ∠NМК.

    ∠МNК = (180° — ∠МКN) : 2 = (180° — 50°) : 2 = 65°

    Как найти производную окружности

    Соотношение между касательной и секущей: если они проведены к окружности из одной точки, лежащей вне окружности, то квадрат расстояния до точки касания равен произведению длины всей секущей на ее внешнюю часть.

    Данное свойство намного сложнее предыдущих, и его лучше записать в виде уравнения.

    Начертим окружность и проведем из точки А за ее пределами касательную и секущую. Точку касания обозначим В, а точки пересечения — С и D. Тогда CD будет хордой, а отрезок AC — внешней частью секущей.

    Как найти производную окружности

    Задача 1

    Из точки М к окружности проведены две прямые, пусть одна из них будет касательной МA, а вторая — секущей МB. Известно, что хорда ВС = 12 см, а длина всей секущей МB составляет 16 см. Найдите длину касательной к окружности МA.

    Решение

    Исходя из соотношения касательной и секущей МА 2 = МВ × МС.

    Найдем длину внешней части секущей:

    МС = МВ — ВС = 16 — 12 = 4 (см)

    МА 2 = МВ × МС = 16 х 4 = 64

    Как найти производную окружности

    Задача 2

    Дана окружность с радиусом 6 см. Из некой точки М к ней проведены две прямые — касательная МA и секущая МB . Известно, что прямая МB пересекает центр окружности O. При этом МB в 2 раза длиннее касательной МA . Требуется определить длину отрезка МO.

    Решение

    Допустим, что МО = у, а радиус окружности обозначим как R.

    В таком случае МВ = у + R, а МС = у – R.

    Поскольку МВ = 2 МА, значит:

    МА = МВ : 2 = (у + R) : 2

    Согласно теореме о касательной и секущей, МА 2 = МВ × МС.

    (у + R) 2 : 4 = (у + R) × (у — R)

    Сократим уравнение на (у + R), так как эта величина не равна нулю, и получим:

    Поскольку R = 6, у = 5R : 3 = 30 : 3 = 10 (см).

    Как найти производную окружности

    Ответ: MO = 10 см.

    Угол между хордой и касательной, проходящей через конец хорды, равен половине дуги, расположенной между ними.

    Это свойство тоже стоит проиллюстрировать на примере: допустим, у нас есть касательная к окружности, точка касания В и проведенная из нее хорда . Отметим на касательной прямой точку C, чтобы получился угол AВC.

    Как найти производную окружности

    Задача 1

    Угол АВС между хордой АВ и касательной ВС составляет 32°. Найдите градусную величину дуги между касательной и хордой.

    Решение

    Согласно свойствам угла между касательной и хордой, ∠АВС = ½ АВ.

    АВ = ∠АВС × 2 = 32° × 2 = 64°

    Как найти производную окружности

    Задача 2

    У нас есть окружность с центром О, к которой идет прямая, касаясь окружности в точке K. Из этой точки проводим хорду KM, и она образует с касательной угол MKB, равный 84°. Давайте найдем величину угла ОMK.

    Решение

    Поскольку ∠МКВ равен половине дуги между KM и КВ, следовательно:

    КМ = 2 ∠МКВ = 2 х 84° = 168°

    Обратите внимание, что ОМ и ОK по сути являются радиусами, а значит, ОМ = ОК. Из этого следует, что треугольник ОMK равнобедренный.

    ∠ОКМ = ∠ОМК = (180° — ∠КОМ) : 2

    Так как центральный угол окружности равен угловой величине дуги, на которую он опирается, то:

    ∠ОМК = (180° — ∠КОМ) : 2 = (180° — 168°) : 2 = 6°

    📽️ Видео

    Математика Без Ху!ни. Производная сложной функции.Скачать

    Математика Без Ху!ни. Производная сложной функции.

    16. Производная n-го порядка. №1Скачать

    16. Производная n-го порядка. №1

    Производная: секретные методы решения. Готовимся к ЕГЭ | Математика TutorOnlineСкачать

    Производная: секретные методы решения. Готовимся к ЕГЭ | Математика TutorOnline

    Как найти производную, и больше ее не терять!?Скачать

    Как найти производную, и больше ее не терять!?

    Что такое касательная | Осторожно, спойлер! | Борис Трушин |Скачать

    Что такое касательная | Осторожно, спойлер! | Борис Трушин |

    Математика это не ИсламСкачать

    Математика это не Ислам

    15. Производная второго порядка, ее механический смысл.Скачать

    15. Производная второго порядка, ее механический смысл.

    5. Производная сложной функции примеры №1.Скачать

    5. Производная сложной функции примеры №1.

    11.1. Касательная к неявной функции / производная неявной функции ПРИМЕРЫСкачать

    11.1. Касательная к неявной функции / производная неявной функции ПРИМЕРЫ

    Производная неявной функцииСкачать

    Производная неявной функции

    11. Производная неявной функции примерыСкачать

    11. Производная неявной функции примеры
    Поделиться или сохранить к себе: