Как найти производную окружности

Как найти производную окружности

Если функция одной переменной описывается уравнением (y = fleft( x right)), где переменная (y) находится в левой части, а правая часть зависит только от аргумента (x), то говорят, что функция задана в явном виде . Например, следующие функции заданы явно: [ ;; <y = + 2x + 5,>;; ] Во многих задачах, однако, функция может быть задана неявным образом , т.е. в виде уравнения [Fleft( right) = 0.] Конечно, любую явную функцию можно записать в неявном виде. Так указанные выше функции можно представить как [ ;; <y — — 2x — 5 = 0,>;; ] Обратное преобразование можно выполнить далеко не всегда. Часто встречаются функции, заданные неявным уравнением, которые невозможно разрешить относительно переменной (y). Например, для приведенных ниже функций [ <+ — 3 = 0,>;; <frac<> <<sqrt <+ > >> — 4x = 0,>;; <xy — sin left( right) = 0> ] невозможно получить зависимость (yleft( x right)) в явном виде.

Хорошая новость состоит в том, что для нахождения производной (y’left( x right)) неявно заданной функции нет необходимости преобразовывать ее в явную форму. Для этого, зная уравнение (Fleft( right) = 0,) достаточно выполнить следующие действия:

    Сначала необходимо продифференцировать обе части уравнения по переменной (x), предполагая, что (y) − это дифференцируемая функция (x) и используя правило вычисления производной от сложной функции. При этом производная нуля (в правой части) также будет равна нулю.

Замечание : Если правая часть отлична от нуля, т.е. неявное уравнение имеет вид [fleft( right) = gleft( right),] то дифференцируем левую и правую части уравнения.

  • Решить полученное уравнение относительно производной (y’left( x right)).
  • Описанный алгоритм нахождения производной неявной функции используется в приведенных ниже примерах.

    Данное уравнение представляет собой каноническое уравнение параболы . Дифференцируя левую и правую части по (x), получаем: [ <<left( <> right)^prime > = <left( right)^prime >,>;; ;; <Rightarrow y' = frac

    ,;;text;;y ne 0.> ]

    Дифференцируем обе части уравнения по (x) (левую часть дифференцируем как сложную функцию): [ <frac<>left( <+ 2xy + 2> right) = frac<>left( 1 right),>;; <Rightarrow 2x + 2left( right) + 4yy’ = 0,>;; ] Если (y = 1), то из исходного уравнения находим [ <+ 2x + 2 = 1,>;; <Rightarrow + 2x + 1 = 0,>;; <Rightarrow <left( right)^2> = 0,>;; ] Подставив значения (x = -1) и (y = 1), получаем: [ — 1 + 1 — y’ + 2y’ = 0.] Отсюда следует, что (y’ = 0) при (y = 1.)

    </frac

    Предварительно прологарифмируем обе части уравнения: [ <ln left( <> right) = ln left( <> right),>;; ] Здесь предполагается, что (x > 0) и (y > 0.) Кроме того, (x ne 1) и (y ne 1) как основания показательных функций.

    Видео:10 класс, 43 урок, Уравнение касательной к графику функцииСкачать

    10 класс, 43 урок, Уравнение касательной к графику функции

    Касательная к графику функции в точке. Уравнение касательной. Геометрический смысл производной

    Статья дает подробное разъяснение определений, геометрического смысла производной с графическими обозначениями. Будет рассмотрено уравнение касательной прямой с приведением примеров, найдено уравнения касательной к кривым 2 порядка.

    Видео:Уравнение касательной в точке. Практическая часть. 1ч. 10 класс.Скачать

    Уравнение касательной в точке. Практическая часть. 1ч. 10 класс.

    Определения и понятия

    Угол наклона прямой y = k x + b называется угол α , который отсчитывается от положительного направления оси о х к прямой y = k x + b в положительном направлении.

    Как найти производную окружности

    На рисунке направление о х обозначается при помощи зеленой стрелки и в виде зеленой дуги, а угол наклона при помощи красной дуги. Синяя линия относится к прямой.

    Угловой коэффициент прямой y = k x + b называют числовым коэффициентом k .

    Угловой коэффициент равняется тангенсу наклона прямой, иначе говоря k = t g α .

    • Угол наклона прямой равняется 0 только при параллельности о х и угловом коэффициенте, равному нулю, потому как тангенс нуля равен 0 . Значит, вид уравнения будет y = b .
    • Если угол наклона прямой y = k x + b острый, тогда выполняются условия 0 α π 2 или 0 ° α 90 ° . Отсюда имеем, что значение углового коэффициента k считается положительным числом, потому как значение тангенс удовлетворяет условию t g α > 0 , причем имеется возрастание графика.
    • Если α = π 2 , тогда расположение прямой перпендикулярно о х . Равенство задается при помощи равенства x = c со значением с , являющимся действительным числом.
    • Если угол наклона прямой y = k x + b тупой, то соответствует условиям π 2 α π или 90 ° α 180 ° , значение углового коэффициента k принимает отрицательное значение, а график убывает.

    Определение 3

    Секущей называют прямую, которая проходит через 2 точки функции f ( x ) . Иначе говоря, секущая – это прямая, которая проводится через любые две точки графика заданной функции.

    Как найти производную окружности

    По рисунку видно, что А В является секущей, а f ( x ) – черная кривая, α — красная дуга, означающая угол наклона секущей.

    Когда угловой коэффициент прямой равняется тангенсу угла наклона, то видно, что тангенс из прямоугольного треугольника А В С можно найти по отношению противолежащего катета к прилежащему.

    Получаем формулу для нахождения секущей вида:

    k = t g α = B C A C = f ( x B ) — f x A x B — x A , где абсциссами точек А и В являются значения x A , x B , а f ( x A ) , f ( x B ) — это значения функции в этих точках.

    Очевидно, что угловой коэффициент секущей определен при помощи равенства k = f ( x B ) — f ( x A ) x B — x A или k = f ( x A ) — f ( x B ) x A — x B , причем уравнение необходимо записать как y = f ( x B ) — f ( x A ) x B — x A · x — x A + f ( x A ) или
    y = f ( x A ) — f ( x B ) x A — x B · x — x B + f ( x B ) .

    Секущая делит график визуально на 3 части: слева от точки А , от А до В , справа от В . На располагаемом ниже рисунке видно, что имеются три секущие, которые считаются совпадающими, то есть задаются при помощи аналогичного уравнения.

    Как найти производную окружности

    По определению видно, что прямая и ее секущая в данном случае совпадают.

    Секущая может множественно раз пересекать график заданной функции. Если имеется уравнение вида у = 0 для секущей, тогда количество точек пересечения с синусоидой бесконечно.

    Касательная к графику функции f ( x ) в точке x 0 ; f ( x 0 ) называется прямая, проходящая через заданную точку x 0 ; f ( x 0 ) , с наличием отрезка, который имеет множество значений х , близких к x 0 .

    Рассмотрим подробно на ниже приведенном примере. Тогда видно, что прямая, заданная функцией y = x + 1 , считается касательной к y = 2 x в точке с координатами ( 1 ; 2 ) . Для наглядности, необходимо рассмотреть графики с приближенными к ( 1 ; 2 ) значениями. Функция y = 2 x обозначена черным цветом, синяя линия – касательная, красная точка – точка пересечения.

    Как найти производную окружности

    Очевидно, что y = 2 x сливается с прямой у = х + 1 .

    Для определения касательной следует рассмотреть поведение касательной А В при бесконечном приближении точки В к точке А . Для наглядности приведем рисунок.

    Как найти производную окружности

    Секущая А В , обозначенная при помощи синей линии, стремится к положению самой касательной, а угол наклона секущей α начнет стремиться к углу наклона самой касательной α x .

    Касательной к графику функции y = f ( x ) в точке А считается предельное положение секущей А В при В стремящейся к А , то есть B → A .

    Теперь перейдем к рассмотрению геометрического смысла производной функции в точке.

    Видео:Математика без Ху!ни. Уравнение касательной.Скачать

    Математика без Ху!ни. Уравнение касательной.

    Геометрический смысл производной функции в точке

    Перейдем к рассмотрению секущей А В для функции f ( x ) , где А и В с координатами x 0 , f ( x 0 ) и x 0 + ∆ x , f ( x 0 + ∆ x ) , а ∆ x обозначаем как приращение аргумента. Теперь функция примет вид ∆ y = ∆ f ( x ) = f ( x 0 + ∆ x ) — f ( ∆ x ) . Для наглядности приведем в пример рисунок.

    Как найти производную окружности

    Рассмотрим полученный прямоугольный треугольник А В С . Используем определение тангенса для решения, то есть получим отношение ∆ y ∆ x = t g α . Из определения касательной следует, что lim ∆ x → 0 ∆ y ∆ x = t g α x . По правилу производной в точке имеем, что производную f ( x ) в точке x 0 называют пределом отношений приращения функции к приращению аргумента, где ∆ x → 0 , тогда обозначим как f ( x 0 ) = lim ∆ x → 0 ∆ y ∆ x .

    Отсюда следует, что f ‘ ( x 0 ) = lim ∆ x → 0 ∆ y ∆ x = t g α x = k x , где k x обозначают в качестве углового коэффициента касательной.

    То есть получаем, что f ’ ( x ) может существовать в точке x 0 причем как и касательная к заданному графику функции в точке касания равной x 0 , f 0 ( x 0 ) , где значение углового коэффициента касательной в точке равняется производной в точке x 0 . Тогда получаем, что k x = f ‘ ( x 0 ) .

    Геометрический смысл производной функции в точке в том, что дается понятие существования касательной к графику в этой же точке.

    Видео:4.2 Производная Примеры для тренировкиСкачать

    4.2 Производная Примеры для тренировки

    Уравнение касательной прямой

    Чтобы записать уравнение любой прямой на плоскости, необходимо иметь угловой коэффициент с точкой, через которую она проходит. Его обозначение принимается как x 0 при пересечении.

    Уравнение касательной к графику функции y = f ( x ) в точке x 0 , f 0 ( x 0 ) принимает вид y = f ‘ ( x 0 ) · x — x 0 + f ( x 0 ) .

    Имеется в виду, что конечным значением производной f ‘ ( x 0 ) можно определить положение касательной, то есть вертикально при условии lim x → x 0 + 0 f ‘ ( x ) = ∞ и lim x → x 0 — 0 f ‘ ( x ) = ∞ или отсутствие вовсе при условии lim x → x 0 + 0 f ‘ ( x ) ≠ lim x → x 0 — 0 f ‘ ( x ) .

    Расположение касательной зависит от значения ее углового коэффициента k x = f ‘ ( x 0 ) . При параллельности к оси о х получаем, что k k = 0 , при параллельности к о у — k x = ∞ , причем вид уравнения касательной x = x 0 возрастает при k x > 0 , убывает при k x 0 .

    Произвести составление уравнения касательной к графику функции y = e x + 1 + x 3 3 — 6 — 3 3 x — 17 — 3 3 в точке с координатами ( 1 ; 3 ) с определением угла наклона.

    Решение

    По условию имеем, что функция определяется для всех действительных чисел. Получаем, что точка с координатами, заданными по условию, ( 1 ; 3 ) является точкой касания, тогда x 0 = — 1 , f ( x 0 ) = — 3 .

    Необходимо найти производную в точке со значением — 1 . Получаем, что

    y ‘ = e x + 1 + x 3 3 — 6 — 3 3 x — 17 — 3 3 ‘ = = e x + 1 ‘ + x 3 3 ‘ — 6 — 3 3 x ‘ — 17 — 3 3 ‘ = e x + 1 + x 2 — 6 — 3 3 y ‘ ( x 0 ) = y ‘ ( — 1 ) = e — 1 + 1 + — 1 2 — 6 — 3 3 = 3 3

    Значение f ’ ( x ) в точке касания является угловым коэффициентом касательной, который равняется тангенсу наклона.

    Тогда k x = t g α x = y ‘ ( x 0 ) = 3 3

    Отсюда следует, что α x = a r c t g 3 3 = π 6

    Ответ: уравнение касательной приобретает вид

    y = f ‘ ( x 0 ) · x — x 0 + f ( x 0 ) y = 3 3 ( x + 1 ) — 3 y = 3 3 x — 9 — 3 3

    Для наглядности приведем пример в графической иллюстрации.

    Черный цвет используется для графика исходной функции, синий цвет – изображение касательной, красная точка – точка касания. Рисунок, располагаемый справа, показывает в увеличенном виде.

    Как найти производную окружности

    Выяснить наличие существования касательной к графику заданной функции
    y = 3 · x — 1 5 + 1 в точке с координатами ( 1 ; 1 ) . Составить уравнение и определить угол наклона.

    Решение

    По условию имеем, что областью определения заданной функции считается множество всех действительных чисел.

    Перейдем к нахождению производной

    y ‘ = 3 · x — 1 5 + 1 ‘ = 3 · 1 5 · ( x — 1 ) 1 5 — 1 = 3 5 · 1 ( x — 1 ) 4 5

    Если x 0 = 1 , тогда f ’ ( x ) не определена, но пределы записываются как lim x → 1 + 0 3 5 · 1 ( x — 1 ) 4 5 = 3 5 · 1 ( + 0 ) 4 5 = 3 5 · 1 + 0 = + ∞ и lim x → 1 — 0 3 5 · 1 ( x — 1 ) 4 5 = 3 5 · 1 ( — 0 ) 4 5 = 3 5 · 1 + 0 = + ∞ , что означает существование вертикальной касательной в точке ( 1 ; 1 ) .

    Ответ: уравнение примет вид х = 1 , где угол наклона будет равен π 2 .

    Для наглядности изобразим графически.

    Как найти производную окружности

    Найти точки графика функции y = 1 15 x + 2 3 — 4 5 x 2 — 16 5 x — 26 5 + 3 x + 2 , где

    1. Касательная не существует;
    2. Касательная располагается параллельно о х ;
    3. Касательная параллельна прямой y = 8 5 x + 4 .

    Решение

    Необходимо обратить внимание на область определения. По условию имеем, что функция определена на множестве всех действительных чисел. Раскрываем модуль и решаем систему с промежутками x ∈ — ∞ ; 2 и [ — 2 ; + ∞ ) . Получаем, что

    y = — 1 15 x 3 + 18 x 2 + 105 x + 176 , x ∈ — ∞ ; — 2 1 15 x 3 — 6 x 2 + 9 x + 12 , x ∈ [ — 2 ; + ∞ )

    Необходимо продифференцировать функцию. Имеем, что

    y ‘ = — 1 15 x 3 + 18 x 2 + 105 x + 176 ‘ , x ∈ — ∞ ; — 2 1 15 x 3 — 6 x 2 + 9 x + 12 ‘ , x ∈ [ — 2 ; + ∞ ) ⇔ y ‘ = — 1 5 ( x 2 + 12 x + 35 ) , x ∈ — ∞ ; — 2 1 5 x 2 — 4 x + 3 , x ∈ [ — 2 ; + ∞ )

    Когда х = — 2 , тогда производная не существует, потому что односторонние пределы не равны в этой точке:

    lim x → — 2 — 0 y ‘ ( x ) = lim x → — 2 — 0 — 1 5 ( x 2 + 12 x + 35 = — 1 5 ( — 2 ) 2 + 12 ( — 2 ) + 35 = — 3 lim x → — 2 + 0 y ‘ ( x ) = lim x → — 2 + 0 1 5 ( x 2 — 4 x + 3 ) = 1 5 — 2 2 — 4 — 2 + 3 = 3

    Вычисляем значение функции в точке х = — 2 , где получаем, что

    1. y ( — 2 ) = 1 15 — 2 + 2 3 — 4 5 ( — 2 ) 2 — 16 5 ( — 2 ) — 26 5 + 3 — 2 + 2 = — 2 , то есть касательная в точке ( — 2 ; — 2 ) не будет существовать.
    2. Касательная параллельна о х , когда угловой коэффициент равняется нулю. Тогда k x = t g α x = f ‘ ( x 0 ) . То есть необходимо найти значения таких х , когда производная функции обращает ее в ноль. То есть значения f ’ ( x ) и будут являться точками касания, где касательная является параллельной о х .

    Когда x ∈ — ∞ ; — 2 , тогда — 1 5 ( x 2 + 12 x + 35 ) = 0 , а при x ∈ ( — 2 ; + ∞ ) получаем 1 5 ( x 2 — 4 x + 3 ) = 0 .

    — 1 5 ( x 2 + 12 x + 35 ) = 0 D = 12 2 — 4 · 35 = 144 — 140 = 4 x 1 = — 12 + 4 2 = — 5 ∈ — ∞ ; — 2 x 2 = — 12 — 4 2 = — 7 ∈ — ∞ ; — 2 1 5 ( x 2 — 4 x + 3 ) = 0 D = 4 2 — 4 · 3 = 4 x 3 = 4 — 4 2 = 1 ∈ — 2 ; + ∞ x 4 = 4 + 4 2 = 3 ∈ — 2 ; + ∞

    Вычисляем соответствующие значения функции

    y 1 = y — 5 = 1 15 — 5 + 2 3 — 4 5 — 5 2 — 16 5 — 5 — 26 5 + 3 — 5 + 2 = 8 5 y 2 = y ( — 7 ) = 1 15 — 7 + 2 3 — 4 5 ( — 7 ) 2 — 16 5 — 7 — 26 5 + 3 — 7 + 2 = 4 3 y 3 = y ( 1 ) = 1 15 1 + 2 3 — 4 5 · 1 2 — 16 5 · 1 — 26 5 + 3 1 + 2 = 8 5 y 4 = y ( 3 ) = 1 15 3 + 2 3 — 4 5 · 3 2 — 16 5 · 3 — 26 5 + 3 3 + 2 = 4 3

    Отсюда — 5 ; 8 5 , — 4 ; 4 3 , 1 ; 8 5 , 3 ; 4 3 считаются искомыми точками графика функции.

    Рассмотрим графическое изображение решения.

    Как найти производную окружности

    Черная линия – график функции, красные точки – точки касания.

    1. Когда прямые располагаются параллельно, то угловые коэффициенты равны. Тогда необходимо заняться поиском точек графика функции, где угловой коэффициент будет равняться значению 8 5 . Для этого нужно решить уравнение вида y ‘ ( x ) = 8 5 . Тогда, если x ∈ — ∞ ; — 2 , получаем, что — 1 5 ( x 2 + 12 x + 35 ) = 8 5 , а если x ∈ ( — 2 ; + ∞ ) , тогда 1 5 ( x 2 — 4 x + 3 ) = 8 5 .

    Первое уравнение не имеет корней, так как дискриминант меньше нуля. Запишем, что

    — 1 5 x 2 + 12 x + 35 = 8 5 x 2 + 12 x + 43 = 0 D = 12 2 — 4 · 43 = — 28 0

    Другое уравнение имеет два действительных корня, тогда

    1 5 ( x 2 — 4 x + 3 ) = 8 5 x 2 — 4 x — 5 = 0 D = 4 2 — 4 · ( — 5 ) = 36 x 1 = 4 — 36 2 = — 1 ∈ — 2 ; + ∞ x 2 = 4 + 36 2 = 5 ∈ — 2 ; + ∞

    Перейдем к нахождению значений функции. Получаем, что

    y 1 = y ( — 1 ) = 1 15 — 1 + 2 3 — 4 5 ( — 1 ) 2 — 16 5 ( — 1 ) — 26 5 + 3 — 1 + 2 = 4 15 y 2 = y ( 5 ) = 1 15 5 + 2 3 — 4 5 · 5 2 — 16 5 · 5 — 26 5 + 3 5 + 2 = 8 3

    Точки со значениями — 1 ; 4 15 , 5 ; 8 3 являются точками, в которых касательные параллельны прямой y = 8 5 x + 4 .

    Ответ: черная линия – график функции, красная линия – график y = 8 5 x + 4 , синяя линия – касательные в точках — 1 ; 4 15 , 5 ; 8 3 .

    Как найти производную окружности

    Возможно существование бесконечного количества касательных для заданных функций.

    Написать уравнения всех имеющихся касательных функции y = 3 cos 3 2 x — π 4 — 1 3 , которые располагаются перпендикулярно прямой y = — 2 x + 1 2 .

    Решение

    Для составления уравнения касательной необходимо найти коэффициент и координаты точки касания, исходя из условия перпендикулярности прямых. Определение звучит так: произведение угловых коэффициентов, которые перпендикулярны прямым, равняется — 1 , то есть записывается как k x · k ⊥ = — 1 . Из условия имеем, что угловой коэффициент располагается перпендикулярно прямой и равняется k ⊥ = — 2 , тогда k x = — 1 k ⊥ = — 1 — 2 = 1 2 .

    Теперь необходимо найти координаты точек касания. Нужно найти х , после чего его значение для заданной функции. Отметим, что из геометрического смысла производной в точке
    x 0 получаем, что k x = y ‘ ( x 0 ) . Из данного равенства найдем значения х для точек касания.

    y ‘ ( x 0 ) = 3 cos 3 2 x 0 — π 4 — 1 3 ‘ = 3 · — sin 3 2 x 0 — π 4 · 3 2 x 0 — π 4 ‘ = = — 3 · sin 3 2 x 0 — π 4 · 3 2 = — 9 2 · sin 3 2 x 0 — π 4 ⇒ k x = y ‘ ( x 0 ) ⇔ — 9 2 · sin 3 2 x 0 — π 4 = 1 2 ⇒ sin 3 2 x 0 — π 4 = — 1 9

    Это тригонометрическое уравнение будет использовано для вычисления ординат точек касания.

    3 2 x 0 — π 4 = a r c sin — 1 9 + 2 πk или 3 2 x 0 — π 4 = π — a r c sin — 1 9 + 2 πk

    3 2 x 0 — π 4 = — a r c sin 1 9 + 2 πk или 3 2 x 0 — π 4 = π + a r c sin 1 9 + 2 πk

    x 0 = 2 3 π 4 — a r c sin 1 9 + 2 πk или x 0 = 2 3 5 π 4 + a r c sin 1 9 + 2 πk , k ∈ Z

    Z — множество целых чисел.

    Найдены х точек касания. Теперь необходимо перейти к поиску значений у :

    y 0 = 3 cos 3 2 x 0 — π 4 — 1 3

    y 0 = 3 · 1 — sin 2 3 2 x 0 — π 4 — 1 3 или y 0 = 3 · — 1 — sin 2 3 2 x 0 — π 4 — 1 3

    y 0 = 3 · 1 — — 1 9 2 — 1 3 или y 0 = 3 · — 1 — — 1 9 2 — 1 3

    y 0 = 4 5 — 1 3 или y 0 = — 4 5 + 1 3

    Отсюда получаем, что 2 3 π 4 — a r c sin 1 9 + 2 πk ; 4 5 — 1 3 , 2 3 5 π 4 + a r c sin 1 9 + 2 πk ; — 4 5 + 1 3 являются точками касания.

    Ответ: необходимы уравнения запишутся как

    y = 1 2 x — 2 3 π 4 — a r c sin 1 9 + 2 πk + 4 5 — 1 3 , y = 1 2 x — 2 3 5 π 4 + a r c sin 1 9 + 2 πk — 4 5 + 1 3 , k ∈ Z

    Для наглядного изображения рассмотрим функцию и касательную на координатной прямой.

    Рисунок показывает, что расположение функции идет на промежутке [ — 10 ; 10 ] , где черная прямя – график функции, синие линии – касательные, которые располагаются перпендикулярно заданной прямой вида y = — 2 x + 1 2 . Красные точки – это точки касания.

    Как найти производную окружности

    Видео:4. Вычисление производных примеры. Самое начало.Скачать

    4. Вычисление производных примеры. Самое начало.

    Касательная к окружности, эллипсу, гиперболе, параболе

    Канонические уравнения кривых 2 порядка не являются однозначными функциями. Уравнения касательных для них составляются по известным схемам.

    Касательная к окружности

    Для задания окружности с центром в точке x c e n t e r ; y c e n t e r и радиусом R применяется формула x — x c e n t e r 2 + y — y c e n t e r 2 = R 2 .

    Данное равенство может быть записано как объединение двух функций:

    y = R 2 — x — x c e n t e r 2 + y c e n t e r y = — R 2 — x — x c e n t e r 2 + y c e n t e r

    Первая функция располагается вверху, а вторая внизу, как показано на рисунке.

    Как найти производную окружности

    Для составления уравнения окружности в точке x 0 ; y 0 , которая располагается в верхней или нижней полуокружности, следует найти уравнение графика функции вида y = R 2 — x — x c e n t e r 2 + y c e n t e r или y = — R 2 — x — x c e n t e r 2 + y c e n t e r в указанной точке.

    Когда в точках x c e n t e r ; y c e n t e r + R и x c e n t e r ; y c e n t e r — R касательные могут быть заданы уравнениями y = y c e n t e r + R и y = y c e n t e r — R , а в точках x c e n t e r + R ; y c e n t e r и
    x c e n t e r — R ; y c e n t e r будут являться параллельными о у , тогда получим уравнения вида x = x c e n t e r + R и x = x c e n t e r — R .

    Как найти производную окружности

    Касательная к эллипсу

    Когда эллипс имеет центр в точке x c e n t e r ; y c e n t e r с полуосями a и b , тогда он может быть задан при помощи уравнения x — x c e n t e r 2 a 2 + y — y c e n t e r 2 b 2 = 1 .

    Эллипс и окружность могут быть обозначаться при помощи объединения двух функций, а именно: верхнего и нижнего полуэллипса. Тогда получаем, что

    y = b a · a 2 — ( x — x c e n t e r ) 2 + y c e n t e r y = — b a · a 2 — ( x — x c e n t e r ) 2 + y c e n t e r

    Как найти производную окружности

    Если касательные располагаются на вершинах эллипса, тогда они параллельны о х или о у . Ниже для наглядности рассмотрим рисунок.

    Как найти производную окружности

    Написать уравнение касательной к эллипсу x — 3 2 4 + y — 5 2 25 = 1 в точках со значениями x равного х = 2 .

    Решение

    Необходимо найти точки касания, которые соответствуют значению х = 2 . Производим подстановку в имеющееся уравнение эллипса и получаем, что

    x — 3 2 4 x = 2 + y — 5 2 25 = 1 1 4 + y — 5 2 25 = 1 ⇒ y — 5 2 = 3 4 · 25 ⇒ y = ± 5 3 2 + 5

    Тогда 2 ; 5 3 2 + 5 и 2 ; — 5 3 2 + 5 являются точками касания, которые принадлежат верхнему и нижнему полуэллипсу.

    Перейдем к нахождению и разрешению уравнения эллипса относительно y . Получим, что

    x — 3 2 4 + y — 5 2 25 = 1 y — 5 2 25 = 1 — x — 3 2 4 ( y — 5 ) 2 = 25 · 1 — x — 3 2 4 y — 5 = ± 5 · 1 — x — 3 2 4 y = 5 ± 5 2 4 — x — 3 2

    Очевидно, что верхний полуэллипс задается с помощью функции вида y = 5 + 5 2 4 — x — 3 2 , а нижний y = 5 — 5 2 4 — x — 3 2 .

    Применим стандартный алгоритм для того, чтобы составить уравнение касательной к графику функции в точке. Запишем, что уравнение для первой касательной в точке 2 ; 5 3 2 + 5 будет иметь вид

    y ‘ = 5 + 5 2 4 — x — 3 2 ‘ = 5 2 · 1 2 4 — ( x — 3 ) 2 · 4 — ( x — 3 ) 2 ‘ = = — 5 2 · x — 3 4 — ( x — 3 ) 2 ⇒ y ‘ ( x 0 ) = y ‘ ( 2 ) = — 5 2 · 2 — 3 4 — ( 2 — 3 ) 2 = 5 2 3 ⇒ y = y ‘ ( x 0 ) · x — x 0 + y 0 ⇔ y = 5 2 3 ( x — 2 ) + 5 3 2 + 5

    Получаем, что уравнение второй касательной со значением в точке
    2 ; — 5 3 2 + 5 принимает вид

    y ‘ = 5 — 5 2 4 — ( x — 3 ) 2 ‘ = — 5 2 · 1 2 4 — ( x — 3 ) 2 · 4 — ( x — 3 ) 2 ‘ = = 5 2 · x — 3 4 — ( x — 3 ) 2 ⇒ y ‘ ( x 0 ) = y ‘ ( 2 ) = 5 2 · 2 — 3 4 — ( 2 — 3 ) 2 = — 5 2 3 ⇒ y = y ‘ ( x 0 ) · x — x 0 + y 0 ⇔ y = — 5 2 3 ( x — 2 ) — 5 3 2 + 5

    Графически касательные обозначаются так:

    Как найти производную окружности

    Касательная к гиперболе

    Когда гипербола имеет центр в точке x c e n t e r ; y c e n t e r и вершины x c e n t e r + α ; y c e n t e r и x c e n t e r — α ; y c e n t e r , имеет место задание неравенства x — x c e n t e r 2 α 2 — y — y c e n t e r 2 b 2 = 1 , если с вершинами x c e n t e r ; y c e n t e r + b и x c e n t e r ; y c e n t e r — b , тогда задается при помощи неравенства x — x c e n t e r 2 α 2 — y — y c e n t e r 2 b 2 = — 1 .

    Как найти производную окружности

    Гипербола может быть представлена в виде двух объединенных функций вида

    y = b a · ( x — x c e n t e r ) 2 — a 2 + y c e n t e r y = — b a · ( x — x c e n t e r ) 2 — a 2 + y c e n t e r или y = b a · ( x — x c e n t e r ) 2 + a 2 + y c e n t e r y = — b a · ( x — x c e n t e r ) 2 + a 2 + y c e n t e r

    Как найти производную окружности

    В первом случае имеем, что касательные параллельны о у , а во втором параллельны о х .

    Отсюда следует, что для того, чтобы найти уравнение касательной к гиперболе, необходимо выяснить, какой функции принадлежит точка касания. Чтобы определить это, необходимо произвести подстановку в уравнения и проверить их на тождественность.

    Составить уравнение касательной к гиперболе x — 3 2 4 — y + 3 2 9 = 1 в точке 7 ; — 3 3 — 3 .

    Решение

    Необходимо преобразовать запись решения нахождения гиперболы при помощи 2 функций. Получим, что

    x — 3 2 4 — y + 3 2 9 = 1 ⇒ y + 3 2 9 = x — 3 2 4 — 1 ⇒ y + 3 2 = 9 · x — 3 2 4 — 1 ⇒ y + 3 = 3 2 · x — 3 2 — 4 и л и y + 3 = — 3 2 · x — 3 2 — 4 ⇒ y = 3 2 · x — 3 2 — 4 — 3 y = — 3 2 · x — 3 2 — 4 — 3

    Необходимо выявить, к какой функции принадлежит заданная точка с координатами 7 ; — 3 3 — 3 .

    Очевидно, что для проверки первой функции необходимо y ( 7 ) = 3 2 · ( 7 — 3 ) 2 — 4 — 3 = 3 3 — 3 ≠ — 3 3 — 3 , тогда точка графику не принадлежит, так как равенство не выполняется.

    Для второй функции имеем, что y ( 7 ) = — 3 2 · ( 7 — 3 ) 2 — 4 — 3 = — 3 3 — 3 ≠ — 3 3 — 3 , значит, точка принадлежит заданному графику. Отсюда следует найти угловой коэффициент.

    y ‘ = — 3 2 · ( x — 3 ) 2 — 4 — 3 ‘ = — 3 2 · x — 3 ( x — 3 ) 2 — 4 ⇒ k x = y ‘ ( x 0 ) = — 3 2 · x 0 — 3 x 0 — 3 2 — 4 x 0 = 7 = — 3 2 · 7 — 3 7 — 3 2 — 4 = — 3

    Ответ: уравнение касательной можно представить как

    y = — 3 · x — 7 — 3 3 — 3 = — 3 · x + 4 3 — 3

    Наглядно изображается так:

    Как найти производную окружности

    Касательная к параболе

    Чтобы составить уравнение касательной к параболе y = a x 2 + b x + c в точке x 0 , y ( x 0 ) , необходимо использовать стандартный алгоритм, тогда уравнение примет вид y = y ‘ ( x 0 ) · x — x 0 + y ( x 0 ) . Такая касательная в вершине параллельна о х .

    Следует задать параболу x = a y 2 + b y + c как объединение двух функций. Поэтому нужно разрешить уравнение относительно у . Получаем, что

    x = a y 2 + b y + c ⇔ a y 2 + b y + c — x = 0 D = b 2 — 4 a ( c — x ) y = — b + b 2 — 4 a ( c — x ) 2 a y = — b — b 2 — 4 a ( c — x ) 2 a

    Графически изобразим как:

    Как найти производную окружности

    Для выяснения принадлежности точки x 0 , y ( x 0 ) функции, нежно действовать по стандартному алгоритму. Такая касательная будет параллельна о у относительно параболы.

    Написать уравнение касательной к графику x — 2 y 2 — 5 y + 3 , когда имеем угол наклона касательной 150 ° .

    Решение

    Начинаем решение с представления параболы в качестве двух функций. Получим, что

    — 2 y 2 — 5 y + 3 — x = 0 D = ( — 5 ) 2 — 4 · ( — 2 ) · ( 3 — x ) = 49 — 8 x y = 5 + 49 — 8 x — 4 y = 5 — 49 — 8 x — 4

    Значение углового коэффициента равняется значению производной в точке x 0 этой функции и равняется тангенсу угла наклона.

    k x = y ‘ ( x 0 ) = t g α x = t g 150 ° = — 1 3

    Отсюда определим значение х для точек касания.

    Первая функция запишется как

    y ‘ = 5 + 49 — 8 x — 4 ‘ = 1 49 — 8 x ⇒ y ‘ ( x 0 ) = 1 49 — 8 x 0 = — 1 3 ⇔ 49 — 8 x 0 = — 3

    Очевидно, что действительных корней нет, так как получили отрицательное значение. Делаем вывод, что касательной с углом 150 ° для такой функции не существует.

    Вторая функция запишется как

    y ‘ = 5 — 49 — 8 x — 4 ‘ = — 1 49 — 8 x ⇒ y ‘ ( x 0 ) = — 1 49 — 8 x 0 = — 1 3 ⇔ 49 — 8 x 0 = — 3 x 0 = 23 4 ⇒ y ( x 0 ) = 5 — 49 — 8 · 23 4 — 4 = — 5 + 3 4

    Имеем, что точки касания — 23 4 ; — 5 + 3 4 .

    Ответ: уравнение касательной принимает вид

    Видео:Производная функции. 10 класс.Скачать

    Производная функции. 10 класс.

    Касательная к окружности

    Как найти производную окружности

    О чем эта статья:

    Видео:4.3 Найти производную функцииСкачать

    4.3 Найти производную функции

    Касательная к окружности, секущая и хорда — в чем разница

    В самом названии касательной отражается суть понятия — это прямая, которая не пересекает окружность, а лишь касается ее в одной точке. Взглянув на рисунок окружности ниже, несложно догадаться, что точку касания от центра отделяет расстояние, в точности равное радиусу.

    Как найти производную окружности

    Касательная к окружности — это прямая, имеющая с ней всего одну общую точку.

    Если мы проведем прямую поближе к центру окружности — так, чтобы расстояние до него было меньше радиуса — неизбежно получится две точки пересечения. Такая прямая называется секущей, а отрезок, расположенный между точками пересечения, будет хордой (на рисунке ниже это ВС ).

    Как найти производную окружности

    Секущая к окружности — это прямая, которая пересекает ее в двух местах, т. е. имеет с ней две общие точки. Часть секущей, расположенная внутри окружности, будет называться хордой.

    Видео:АЛГЕБРА С НУЛЯ — Что такое Производная?Скачать

    АЛГЕБРА С НУЛЯ — Что такое Производная?

    Свойства касательной к окружности

    Выделяют четыре свойства касательной, которые необходимо знать для решения задач. Два из них достаточно просты и легко доказуемы, а вот еще над двумя придется немного подумать. Рассмотрим все по порядку.

    Касательная к окружности и радиус, проведенный в точку касания, взаимно перпендикулярны.

    Не будем принимать это на веру, попробуем доказать. Итак, у нас даны:

    • окружность с центральной точкой А;
    • прямая а — касательная к ней;
    • радиус АВ, проведенный к касательной.

    Докажем, что касательная и радиус АВ взаимно перпендикулярны, т.е. аАВ.

    Пойдем от противного — предположим, что между прямой а и радиусом АВ нет прямого угла и проведем настоящий перпендикуляр к касательной, назвав его АС.

    В таком случае наш радиус АВ будет считаться наклонной, а наклонная, как известно, всегда длиннее перпендикуляра. Получается, что АВ > АС. Но если бы это было на самом деле так, наша прямая а пересекалась бы с окружностью два раза, ведь расстояние от центра А до нее — меньше радиуса. Но по условию задачи а — это касательная, а значит, она может иметь лишь одну точку касания.

    Итак, мы получили противоречие. Делаем вывод, что настоящим перпендикуляром к прямой а будет вовсе не АС, а АВ.

    Как найти производную окружности

    Курсы подготовки к ОГЭ по математике от Skysmart придадут уверенности в себе и помогут освежить знания перед экзаменом.

    Задача

    У нас есть окружность, центр которой обозначен О. Из точки С проведена прямая, и она касается этой окружности в точке А. Известно, что ∠АСО = 28°. Найдите величину дуги АВ.

    Мы знаем, что касательная АС ⟂ АО, следовательно ∠САО = 90°.

    Поскольку нам известны величины двух углов треугольника ОАС, не составит труда найти величину и третьего угла.

    ∠АОС = 180° — ∠САО — ∠АСО = 180° — 90° — 28° = 62°

    Поскольку вершина угла АОС лежит в центре окружности, можно вспомнить свойство центрального угла — как известно, он равен дуге, на которую опирается. Следовательно, АВ = 62°.

    Как найти производную окружности

    Если провести две касательных к окружности из одной точки, лежащей вне этой окружности, то их отрезки от этой начальной точки до точки касания будут равны.

    Докажем и это свойство на примере. Итак, у нас есть окружность с центром А, давайте проведем к ней две касательные из точки D. Обозначим эти прямые как ВD и CD . А теперь выясним, на самом ли деле BD = CD.

    Для начала дополним наш рисунок, проведем еще одну прямую из точки D в центр окружности. Как видите, у нас получилось два треугольника: ABD и ACD . Поскольку мы уже знаем, что касательная и радиус к ней перпендикулярны, углы ABD и ACD должны быть равны 90°.

    Как найти производную окружности

    Итак, у нас есть два прямоугольных треугольника с общей гипотенузой AD. Учитывая, что радиусы окружности всегда равны, мы понимаем, что катеты AB и AC у этих треугольников тоже одинаковой длины. Следовательно, ΔABD = ΔACD (по катету и гипотенузе).. Значит, оставшиеся катеты, а это как раз наши BD и CD (отрезки касательных к окружности), аналогично равны.

    Важно: прямая, проложенная из стартовой точки до центра окружности (в нашем примере это AD), делит угол между касательными пополам.

    Задача 1

    У нас есть окружность с радиусом 4,5 см. К ней из точки D, удаленной от центра на 9 см, провели две прямые, которые касаются окружности в точках B и C. Определите градусную меру угла, под которым пересекаются касательные.

    Решение

    Для этой задачи вполне подойдет уже рассмотренный выше рисунок окружности с радиусами АВ и АC. Поскольку касательная ВD перпендикулярна радиусу АВ , у нас есть прямоугольный треугольник АВD. Зная длину его катета и гипотенузы, определим величину ∠BDA.

    ∠BDA = 30° (по свойству прямоугольного треугольника: угол, лежащий напротив катета, равного половине гипотенузы, составляет 30°).

    Мы знаем, что прямая, проведенная из точки до центра окружности, делит угол между касательными, проведенными из этой же точки, пополам. Другими словами:

    ∠BDC = ∠BDA × 2 = 30° × 2 = 60°

    Итак, угол между касательными составляет 60°.

    Как найти производную окружности

    Задача 2

    К окружности с центром О провели две касательные КМ и КN. Известно, что ∠МКN равен 50°. Требуется определить величину угла ∠NМК.

    Решение

    Согласно вышеуказанному свойству мы знаем, что КМ = КN. Следовательно, треугольник МNК является равнобедренным.

    Углы при его основании будут равны, т.е. ∠МNК = ∠NМК.

    ∠МNК = (180° — ∠МКN) : 2 = (180° — 50°) : 2 = 65°

    Как найти производную окружности

    Соотношение между касательной и секущей: если они проведены к окружности из одной точки, лежащей вне окружности, то квадрат расстояния до точки касания равен произведению длины всей секущей на ее внешнюю часть.

    Данное свойство намного сложнее предыдущих, и его лучше записать в виде уравнения.

    Начертим окружность и проведем из точки А за ее пределами касательную и секущую. Точку касания обозначим В, а точки пересечения — С и D. Тогда CD будет хордой, а отрезок AC — внешней частью секущей.

    Как найти производную окружности

    Задача 1

    Из точки М к окружности проведены две прямые, пусть одна из них будет касательной МA, а вторая — секущей МB. Известно, что хорда ВС = 12 см, а длина всей секущей МB составляет 16 см. Найдите длину касательной к окружности МA.

    Решение

    Исходя из соотношения касательной и секущей МА 2 = МВ × МС.

    Найдем длину внешней части секущей:

    МС = МВ — ВС = 16 — 12 = 4 (см)

    МА 2 = МВ × МС = 16 х 4 = 64

    Как найти производную окружности

    Задача 2

    Дана окружность с радиусом 6 см. Из некой точки М к ней проведены две прямые — касательная МA и секущая МB . Известно, что прямая МB пересекает центр окружности O. При этом МB в 2 раза длиннее касательной МA . Требуется определить длину отрезка МO.

    Решение

    Допустим, что МО = у, а радиус окружности обозначим как R.

    В таком случае МВ = у + R, а МС = у – R.

    Поскольку МВ = 2 МА, значит:

    МА = МВ : 2 = (у + R) : 2

    Согласно теореме о касательной и секущей, МА 2 = МВ × МС.

    (у + R) 2 : 4 = (у + R) × (у — R)

    Сократим уравнение на (у + R), так как эта величина не равна нулю, и получим:

    Поскольку R = 6, у = 5R : 3 = 30 : 3 = 10 (см).

    Как найти производную окружности

    Ответ: MO = 10 см.

    Угол между хордой и касательной, проходящей через конец хорды, равен половине дуги, расположенной между ними.

    Это свойство тоже стоит проиллюстрировать на примере: допустим, у нас есть касательная к окружности, точка касания В и проведенная из нее хорда . Отметим на касательной прямой точку C, чтобы получился угол AВC.

    Как найти производную окружности

    Задача 1

    Угол АВС между хордой АВ и касательной ВС составляет 32°. Найдите градусную величину дуги между касательной и хордой.

    Решение

    Согласно свойствам угла между касательной и хордой, ∠АВС = ½ АВ.

    АВ = ∠АВС × 2 = 32° × 2 = 64°

    Как найти производную окружности

    Задача 2

    У нас есть окружность с центром О, к которой идет прямая, касаясь окружности в точке K. Из этой точки проводим хорду KM, и она образует с касательной угол MKB, равный 84°. Давайте найдем величину угла ОMK.

    Решение

    Поскольку ∠МКВ равен половине дуги между KM и КВ, следовательно:

    КМ = 2 ∠МКВ = 2 х 84° = 168°

    Обратите внимание, что ОМ и ОK по сути являются радиусами, а значит, ОМ = ОК. Из этого следует, что треугольник ОMK равнобедренный.

    ∠ОКМ = ∠ОМК = (180° — ∠КОМ) : 2

    Так как центральный угол окружности равен угловой величине дуги, на которую он опирается, то:

    ∠ОМК = (180° — ∠КОМ) : 2 = (180° — 168°) : 2 = 6°

    🎦 Видео

    Как найти производную, и больше ее не терять!?Скачать

    Как найти производную, и больше ее не терять!?

    14. Что такое параметрически заданная функция, производная параметрически заданной функции.Скачать

    14. Что такое параметрически заданная функция, производная параметрически заданной функции.

    Математика Без Ху!ни. Производная сложной функции.Скачать

    Математика Без Ху!ни. Производная сложной функции.

    Производная: секретные методы решения. Готовимся к ЕГЭ | Математика TutorOnlineСкачать

    Производная: секретные методы решения. Готовимся к ЕГЭ | Математика TutorOnline

    16. Производная n-го порядка. №1Скачать

    16. Производная n-го порядка. №1

    Математика это не ИсламСкачать

    Математика это не Ислам

    5. Производная сложной функции примеры №1.Скачать

    5. Производная сложной функции примеры №1.

    Что такое касательная | Осторожно, спойлер! | Борис Трушин |Скачать

    Что такое касательная | Осторожно, спойлер! | Борис Трушин |

    15. Производная второго порядка, ее механический смысл.Скачать

    15. Производная второго порядка, ее механический смысл.

    11.1. Касательная к неявной функции / производная неявной функции ПРИМЕРЫСкачать

    11.1. Касательная к неявной функции / производная неявной функции ПРИМЕРЫ

    11. Производная неявной функции примерыСкачать

    11. Производная неявной функции примеры

    Производная неявной функцииСкачать

    Производная неявной функции
    Поделиться или сохранить к себе: