Как найти площадь трапеции описанной около окружности

Трапеция. Формулы, признаки и свойства трапеции

Параллельные стороны называются основами трапеции, а две другие боковыми сторонами

Так же, трапецией называется четырехугольник, у которого одна пара противоположных сторон параллельна, и стороны не равны между собой.

  • Основы трапеции — параллельные стороны
  • Боковые стороны — две другие стороны
  • Средняя линия — отрезок, соединяющий середины боковых сторон.
  • Равнобедренная трапеция — трапеция, у которой боковые стороны равны
  • Прямоугольная трапеция — трапеция, у которой одна из боковых сторон перпендикулярна основам
Как найти площадь трапеции описанной около окружностиКак найти площадь трапеции описанной около окружности
Рис.1Рис.2

Содержание
  1. Основные свойства трапеции
  2. Сторона трапеции
  3. Формулы определения длин сторон трапеции:
  4. Средняя линия трапеции
  5. Формулы определения длины средней линии трапеции:
  6. Высота трапеции
  7. Формулы определения длины высоты трапеции:
  8. Диагонали трапеции
  9. Формулы определения длины диагоналей трапеции:
  10. Площадь трапеции
  11. Формулы определения площади трапеции:
  12. Периметр трапеции
  13. Формула определения периметра трапеции:
  14. Окружность описанная вокруг трапеции
  15. Формула определения радиуса описанной вокруг трапеции окружности:
  16. Окружность вписанная в трапецию
  17. Формула определения радиуса вписанной в трапецию окружности
  18. Другие отрезки разносторонней трапеции
  19. Формулы определения длин отрезков проходящих через трапецию:
  20. Трапеция. Свойства трапеции
  21. Свойства трапеции
  22. Свойства и признаки равнобедренной трапеции
  23. Вписанная окружность
  24. Площадь
  25. Площадь трапеции
  26. Формулы площади трапеции
  27. Площадь любых трапеций
  28. Площадь равнобедренной трапеции
  29. Определения трапеции
  30. Элементы трапеции
  31. 🎦 Видео

Видео:найти площадь равнобедренной трапеции описанной около окружностиСкачать

найти площадь равнобедренной трапеции описанной около окружности

Основные свойства трапеции

AK = KB, AM = MC, BN = ND, CL = LD

3. Средняя линия трапеции параллельна основаниям и равна их полусумме:

m =a + b
2

BC : AD = OC : AO = OB : DO

d 1 2 + d 2 2 = 2 a b + c 2 + d 2

Видео:Боковые стороны трапеции, описанной около окружности, равны 13 и 1. Найдите среднюю линию трапеции.Скачать

Боковые стороны трапеции, описанной около окружности, равны 13 и 1. Найдите среднюю линию трапеции.

Сторона трапеции

Формулы определения длин сторон трапеции:

a = b + h · ( ctg α + ctg β )

b = a — h · ( ctg α + ctg β )

a = b + c· cos α + d· cos β

b = a — c· cos α — d· cos β

4. Формулы боковых сторон через высоту и углы при нижнем основании:

с =hd =h
sin αsin β

Видео:Задача про трапецию, описанную около окружностиСкачать

Задача про трапецию, описанную около окружности

Средняя линия трапеции

Формулы определения длины средней линии трапеции:

1. Формула определения длины средней линии через длины оснований:

m =a + b
2

2. Формула определения длины средней линии через площадь и высоту:

m =S
h

Видео:Задание 25 Площадь описанной трапецииСкачать

Задание 25 Площадь описанной трапеции

Высота трапеции

Формулы определения длины высоты трапеции:

h = c· sin α = d· sin β

2. Формула высоты через диагонали и углы между ними:

h =sin γ ·d 1 d 2=sin δ ·d 1 d 2
a + ba + b

3. Формула высоты через диагонали, углы между ними и среднюю линию:

h =sin γ ·d 1 d 2=sin δ ·d 1 d 2
2 m2 m

4. Формула высоты трапеции через площадь и длины оснований:

h =2S
a + b

5. Формула высоты трапеции через площадь и длину средней линии:

h =S
m

Видео:ОГЭ по математике. Задание 15Скачать

ОГЭ по математике. Задание 15

Диагонали трапеции

Формулы определения длины диагоналей трапеции:

d 1 = √ a 2 + d 2 — 2 ad· cos β

d 2 = √ a 2 + c 2 — 2 ac· cos β

2. Формулы диагоналей через четыре стороны:

d 1 =d 2 + ab —a ( d 2 — c 2 )
a — b
d 2 =c 2 + ab —a ( c 2 — d 2 )
a — b

d 1 = √ h 2 + ( a — h · ctg β ) 2 = √ h 2 + ( b + h · ctg α ) 2

d 2 = √ h 2 + ( a — h · ctg α ) 2 = √ h 2 + ( b + h · ctg β ) 2

d 1 = √ c 2 + d 2 + 2 ab — d 2 2

d 2 = √ c 2 + d 2 + 2 ab — d 1 2

Видео:Периметр прямоуг. трапеции, описанной около окружн., равен 100, ее большая боковая сторона равна 37.Скачать

Периметр прямоуг. трапеции, описанной около окружн., равен 100, ее большая боковая сторона равна 37.

Площадь трапеции

Формулы определения площади трапеции:

1. Формула площади через основания и высоту:

S =( a + b )· h
2

3. Формула площади через диагонали и угол между ними:

S =d 1 d 2· sin γ=d 1 d 2· sin δ
22

4. Формула площади через четыре стороны:

S =a + bc 2 —(( a — b ) 2 + c 2 — d 2)2
22( a — b )

5. Формула Герона для трапеции

S =a + b√ ( p — a )( p — b )( p — a — c )( p — a — d )
| a — b |

где

p =a + b + c + d— полупериметр трапеции.
2

Видео:КАК найти площадь трапеции? Геометрия 8 класс | МатематикаСкачать

КАК найти площадь трапеции? Геометрия 8 класс | Математика

Периметр трапеции

Формула определения периметра трапеции:

1. Формула периметра через основания:

Видео:Площадь трапеции и радиус описанной. ДАЕШЬ УСТНОЕ РЕШЕНИЕ!?Скачать

Площадь трапеции и радиус описанной. ДАЕШЬ УСТНОЕ РЕШЕНИЕ!?

Окружность описанная вокруг трапеции

Формула определения радиуса описанной вокруг трапеции окружности:

1. Формула радиуса через стороны и диагональ:

R =a·c·d 1
4√ p ( p — a )( p — c )( p — d 1)

где

p =a + c + d 1
2

a — большее основание

Видео:Вписанные и описанные четырехугольники. Практическая часть. 9 класс.Скачать

Вписанные  и описанные четырехугольники. Практическая часть. 9 класс.

Окружность вписанная в трапецию

Формула определения радиуса вписанной в трапецию окружности

1. Формула радиуса вписанной окружности через высоту:

r =h
2

Видео:ЕГЭ математика 2023 Вариант 2 задача 1Скачать

ЕГЭ математика 2023  Вариант 2 задача 1

Другие отрезки разносторонней трапеции

Формулы определения длин отрезков проходящих через трапецию:

1. Формула определения длин отрезков проходящих через трапецию:

KM = NL =bKN = ML =aTO = OQ =a · b
22a + b

Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!

Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.

Видео:Задание 25 Площадь описанной трапеции 2 способСкачать

Задание 25 Площадь описанной трапеции 2 способ

Трапеция. Свойства трапеции

Трапеция – четырехугольник, у которого только одна пара сторон параллельна (а другая пара сторон не параллельна).

Как найти площадь трапеции описанной около окружности

Параллельные стороны трапеции называются основаниями. Другие две — боковые стороны .
Если боковые стороны равны, трапеция называется равнобедренной .

Как найти площадь трапеции описанной около окружности

Трапеция, у которой есть прямые углы при боковой стороне, называется прямоугольной .

Как найти площадь трапеции описанной около окружности

Отрезок, соединяющий середины боковых сторон, называется средней линией трапеции .

Как найти площадь трапеции описанной около окружности

Видео:2113 Боковые стороны трапеции описанной около окружности равны 16 и 3 Найдите среднюю линию трапецииСкачать

2113 Боковые стороны трапеции описанной около окружности равны 16 и 3 Найдите среднюю линию трапеции

Свойства трапеции

1. Средняя линия трапеции параллельна основаниям и равна их полусумме.

Как найти площадь трапеции описанной около окружности

2. Биссектриса любого угла трапеции отсекает на её основании (или продолжении) отрезок, равный боковой стороне.

Как найти площадь трапеции описанной около окружности

3. Треугольники Как найти площадь трапеции описанной около окружностии Как найти площадь трапеции описанной около окружности, образованные отрезками диагоналей и основаниями трапеции, подобны.

Коэффициент подобия – Как найти площадь трапеции описанной около окружности

Отношение площадей этих треугольников есть Как найти площадь трапеции описанной около окружности.

Как найти площадь трапеции описанной около окружности

4. Треугольники Как найти площадь трапеции описанной около окружностии Как найти площадь трапеции описанной около окружности, образованные отрезками диагоналей и боковыми сторонами трапеции, имеют одинаковую площадь.

Как найти площадь трапеции описанной около окружности

5. В трапецию можно вписать окружность, если сумма оснований трапеции равна сумме её боковых сторон.

Как найти площадь трапеции описанной около окружности

6. Отрезок, соединяющий середины диагоналей, равен полуразности оснований и лежит на средней линии.

Как найти площадь трапеции описанной около окружности

7. Точка пересечения диагоналей трапеции, точка пересечения продолжений её боковых сторон и середины оснований лежат на одной прямой.

Как найти площадь трапеции описанной около окружности

8. Если сумма углов при любом основании трапеции равна 90°, то отрезок, соединяющий середины оснований, равен их полуразности.

Как найти площадь трапеции описанной около окружности

Видео:Задание 26 Описанная равнобедренная трапеция Площадь трапецииСкачать

Задание 26 Описанная равнобедренная трапеция  Площадь трапеции

Свойства и признаки равнобедренной трапеции

1. В равнобедренной трапеции углы при любом основании равны.

Как найти площадь трапеции описанной около окружности

2. В равнобедренной трапеции длины диагоналей равны.

3. Если трапецию можно вписать в окружность, то трапеция – равнобедренная.

Как найти площадь трапеции описанной около окружности

4. Около равнобедренной трапеции можно описать окружность.

5. Если в равнобедренной трапеции диагонали перпендикулярны, то высота равна полусумме оснований.

Как найти площадь трапеции описанной около окружности

Видео:9 класс, 24 урок, Формулы для вычисления площади правильного многоугольника, его стороныСкачать

9 класс, 24 урок, Формулы для вычисления площади правильного многоугольника, его стороны

Вписанная окружность

Если в трапецию вписана окружность с радиусом Как найти площадь трапеции описанной около окружностии она делит боковую сторону точкой касания на два отрезка — Как найти площадь трапеции описанной около окружностии Как найти площадь трапеции описанной около окружности, то Как найти площадь трапеции описанной около окружности

Как найти площадь трапеции описанной около окружности

Видео:Площадь равнобедренной трапеции, описанной около окружности VictorSh02181Скачать

Площадь равнобедренной трапеции, описанной около окружности VictorSh02181

Площадь

Как найти площадь трапеции описанной около окружностиили Как найти площадь трапеции описанной около окружностигде Как найти площадь трапеции описанной около окружности– средняя линия

Как найти площадь трапеции описанной около окружности

Смотрите хорошую подборку задач с трапецией (входят в ГИА и часть В ЕГЭ) здесь и здесь.

Чтобы не потерять страничку, вы можете сохранить ее у себя:

Видео:Основания равнобедренной трапеции равны 72 и 30. Центр окружности, описанной около трапеции... (ЕГЭ)Скачать

Основания равнобедренной трапеции равны 72 и 30. Центр окружности, описанной около трапеции... (ЕГЭ)

Площадь трапеции

Как найти площадь трапеции описанной около окружности

Площадь трапеции, формулы расчета, определение,
способы найти площадь, нахождение площади
через величины и примеры площади трапеции.

Все формулы расчета площади трапеции
через основания и угол, периметр, радиус,
синус и две стороны, диагональ,
высоту, среднюю линию.

Площадь трапеции, можно измерить, в единицах
измерения в квадрате: мм 2 , см 2 , м 2 и км 2 и так далее.

Площадь трапеции через окружность вписанную можно
найти, зная радиус окружности вписанной в трапецию
и некоторые другие величины.

Формулы площади трапеции

Площадь любых трапеций

Ⅰ. Площадь трапеции через основания и высоту:

Как найти площадь трапеции описанной около окружности
[ S = frac cdot h ]
a,b — основания трапеции;
h — высота трапеции;

Ⅱ. Площадь трапеции через высоту и среднюю линию:

Как найти площадь трапеции описанной около окружности
[ S = mh ]
m — средняя линия трапеции;
h — высота трапеции;

Ⅲ. Площадь трапеции через диагонали и угол между ними:
Как найти площадь трапеции описанной около окружности

[ S =fracd_1d_2 cdot sin alpha ]
( d_1, d_2 ) ​​- диагонали трапеции;
sin α — синус угла альфа в трапеции;

Ⅳ. Площадь трапеции через периметр, высоту и боковые стороны:
Как найти площадь трапеции описанной около окружности
[ S = frach ]
P — периметр трапеции;
c,d — боковые стороны трапеции;
h — высота трапеции;

Ⅴ. Площадь трапеции через основания и боковые стороны:
Как найти площадь трапеции описанной около окружности[ S = frac
cdot sqrt<c^2-(frac)^2> ]
a,b — основания трапеции;
с,d — боковые стороны трапеции;

Ⅵ. Площадь трапеции через основания и углы:

Как найти площадь трапеции описанной около окружности

a,b — основания трапеции;
α — угол при основании a в трапеции;
β — угол при основании b в трапеции;
sin α — синус угла альфа в трапеции;
sin β — синус угла бетта в трапеции;

Площадь равнобедренной трапеции

Ⅰ. Площадь трапеции через синус угла, среднюю линию и боковую сторону:
Как найти площадь трапеции описанной около окружности

[ S = ld cdot sin α ]

l — средняя линия равнобедренной трапеции;
d — боковая сторона равнобедренной трапеции;
α — угол альфа при боковой стороне d равнобедренной трапеции;
sin α — синус угла альфа в равнобедренной трапеции;

Ⅱ. Площадь трапеции через диагонали и синус угла:
Как найти площадь трапеции описанной около окружности

[ S = frac cdot sin α ]

d — диагональ равнобедренной трапеции;
α — угол между двумя диагоналями в равнобедренной трапеции;
sin α — синус угла альфа в равнобедренной трапеции;

Ⅲ. Площадь трапеции через радиус вписанной окружности и основания:
Как найти площадь трапеции описанной около окружности

r — радиус вписанной окружности равнобедренной трапеции;
a, b — основания равнобедренной трапеции;

Ⅳ. Площадь трапеции через основания:
Как найти площадь трапеции описанной около окружности

a, b — основания равнобедренной трапеции;

Ⅴ. Площадь трапеции через основания и среднюю линию:
Как найти площадь трапеции описанной около окружности

l — средняя линия равнобедренной трапеции;
a, b — основания равнобедренной трапеции;

Ⅵ. Площадь трапеции через синус угла и стороны:
Как найти площадь трапеции описанной около окружности

[ S = c cdot sin α cdot (a-c cdot cos α) ]

a — нижнее основание равнобедренной трапеции;
с — боковая сторона равнобедренной трапеции;
sin α — синус угла альфа в равнобедренной трапеции;
cos α — косинус угла альфа в равнобедренной трапеции;

Ⅶ. Площадь трапеции через угол и радиус вписанной окружности:
Как найти площадь трапеции описанной около окружности

r — радиус вписанной окружности равнобедренной трапеции;
sin α — синус угла альфа в равнобедренной трапеции;

Определения трапеции

Трапеция — это четырехугольник, у которого две
стороны параллельны а две другие нет.

Зная углы трапеции, можно определить, к какому виду
она относится. Всего различают три вида трапеций:

Площадь равнобедренной, прямоугольной трапеции,
можно найти через формулы площади обычной трапеции.

Формул, с помощью которых, можно найти площадь трапеции
через описанную окружность около трапеции, не существует.

Элементы трапеции

Любая трапеция является четырехугольником,
поэтому у трапеции 4 угла и 4 стороны.

Основание трапеции — это сторона, противолежащая
сторона которой параллельна.

Боковая сторона трапеции — это сторона, противолежащая
сторона которой не параллельна.

Средняя линия трапеции — это отрезок, соединяющий
середины боковых сторон трапеции.

Диагональ трапеции — это отрезок, соединяющий две
вершины, которые лежат в разных концах трапеции.

Высота трапеции — это отрезок, соединяющий меньшее основание с большим,
образуя при этом два угла по 90 градусов на большей стороне.

Основания у трапеции не могут быть никогда равны.
Боковые стороны могут быть равны только,
если трапеция — равнобедренная.

Площадь трапеции — это площадь геометрической фигуры,
у которой четыре стороны и четыре угла, причем только
две стороны параллельны а остальные нет.

🎦 Видео

Найти площадь квадрата описанного около окружности радиуса 19Скачать

Найти площадь квадрата описанного около окружности радиуса 19

Сможешь найти площадь трапеции? Как найти площадь трапеции если все стороны известны?Скачать

Сможешь найти площадь трапеции? Как найти площадь трапеции если все стороны известны?

Вписанные и описанные окружности. Вебинар | МатематикаСкачать

Вписанные и описанные окружности. Вебинар | Математика
Поделиться или сохранить к себе: